
On the Impact of Sampling Frequency on Software Energy
Measurements

Rubén Saborido1, Venera Arnaoudova4, Giovanni Beltrame2, Foutse Khomh3, Giuliano Antoniol1
SOCCER1–MIST2–SWAT3 1 Labs., DGIGL, Polytechnique Montréal, Canada

4 Dep. of Computer Science, The University of Texas at Dallas
<first name>.<last name>@polymtl.ca

ABSTRACT
Energy consumption is a major concern when developing
and evolving mobile applications and researchers are inves-
tigating ways to reduce energy consumption.We conjecture
that these studies are at the border between hardware and
software and we must be careful on how the energy consump-
tion is measured. To the best of our knowledge, no previous
work investigates how much energy and power consumption
is due to high frequency events missed when sampling at
low frequencies such as 10 kHz and verified the error at the
precision of method level.

In this paper, we propose an approach for accurate mea-
surements of the energy consumption of mobile applications.
We apply the proposed approach to assess the energy con-
sumption of 21 mobile, closed source, applications and four
open source Android applications.We show that by sampling
at 10 kHz one may expect a median error of 8%, however,
such error may be as high as 50%.

Keywords
Software Energy Consumption, Performance, Android.

1. INTRODUCTION
With the current trend of pervasive mobile devices, which

will eventually lead to the Internet-of-Things, there is an
increasing interest in reducing the energy consumption of
mobile applications, and therefore prolonging the time be-
tween battery recharges.

Battery usage has complex dependencies on the hardware
platform, and multiple software layers. The hardware, its
firmware, the operating system, and the various software
components used by an application, all contribute to deter-
mining its energy footprint.

What is the new idea?
Researchers have recently relied on platforms like Atom-
LEAP [10] or Monsoon power monitor [11] to acquire power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

measurements. However, for both devices the sampling fre-
quency is at maximum 10 kHz. These are important steps
forward in understanding the impact of software on energy
consumption.

We claim that dynamic behaviour exceeds 10 kHz and
thus the accuracy of recent investigations in software engi-
neering related to mobile energy consumption can be im-
proved by increasing energy sampling frequency and more
precisely identify application consumed energy. To support
our claim, we design an approach that enables accurate mea-
suring of energy consumption at higher sampling frequencies
(i.e., above 10 kHz) up to the method level. Using this ap-
proach, we compare energy consumption measurements of
21 (closed source) Android applications at sampling rates of
60 Hz, 5 kHz, 10 kHz, 125 kHz and 500 kHz. Our findings
show that an important fraction of the power is consumed
at high frequencies and thus missed by current approaches,
and the inaccuracy can be as high as 50%. We also observed
that only 1% of energy is consumed above 125 kHz, hence
we claim that 125 kHz is sufficient to measure the power
consumption of mobile applications.

Why is it new?
To the best of our knowledge, no previous work investigates
how much energy and power consumption is due to high
frequency events missed when sampling at low frequencies
such as 10 kHz and verified the error at the precision of
method level. Considering this fact, the contributions of the
idea proposed in this paper are the following:

1. Empirical evidence that a higher sampling rate is needed;

2. A methodology for more accurate measurements of en-
ergy consumption at application and method levels;

What are the most related papers?
There is a rich literature on energy consumption monitoring,
especially in the area of embedded and mobile devices, as
such devices only have limited battery power.

Hindle [3, 4] measures the power using an external power
monitor called the Watts Up? Pro, operating at a frequency
of 60 Hz, and developed a test-bed that can be used to as-
sess the energy consumption of different revisions of a mobile
application. Vásquez et al. [11] mine energy-greedy API us-
age patterns in Android applications using a Monsoon power
monitor capable of sampling power at 5 kHz frequency. Li et
al. [5] also use a Monsoon monitor to investigate best energy-
saving programming practices at 5 kHz sampling rate. Hao

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1219v1 | CC-BY 4.0 Open Access | rec: 7 Jul 2015, publ: 7 Jul 2015

P
re
P
rin

ts

VregVinV+

V-

Vdiff

Oscilloscope

PC

USB

Power supply
Mobile device

Trigger

Figure 1: Measurement setup.

et al. [2] estimate the power consumption of Android appli-
cations at a fine-grained level (per-instruction). They use a
Low Power Energy Aware Processing (LEAP) power mea-
surement device (Atom-LEAP) [10] operating at 10 kHz.
Using the same measurement device, Li et al. measured the
energy consumption of source code lines [7] and studied the
API level energy consumption patterns of 405 mobile ap-
plications [6]. All of these previous works suffer from one
main limitation, i.e., the frequency of energy measurement
reaches 10 kHz at best.

2. METHODOLOGY
This section is organized following the logic of a primer on

energy measurement, signal acquisition and accurate energy
measurement. Due to the limited space, the description is
necessarily very succinct and the interested reader may wish
to refer to the classic signal processing books [1, 8].

2.1 Energy Measurement
Given a device with input voltage V (t) and current I(t),

the input power at time t can be computed at the device
power supply via Ohm’s law i.e., P (t) = V (t) · I(t). The
energy consumed in the interval [0, T], is then computed as
the integral over time of the power P (t). If we assume that
measures are taken at discrete intervals ∆τ , i.e., they are
sampled with a sampling frequency Fc = 1/∆τ , two samples
are ∆τ seconds apart [8], the absorbed energy is computed
assuming a constant power between two measurements:

ET =

∫ T

0

P (t)dt '
∑
k

P (k∆τ)∆τ (1)

2.2 Signal Acquisition
The choice of the sampling frequency Fc = 1/∆τ (mea-

sured in hertz Hz, events per second), is critical and impacts
the accuracy of energy consumption estimate. A too low fre-
quency can be misleading: all events (power peaks) between
two samples are lost and averaged away. Even worse, a
method execution lasting less than ∆τ seconds will be com-
pletely lost. The maximum frequency that is observable in
a signal sampled with frequency Fc is Fc/2, known as the
Nyquist frequency FN [8].

2.3 Accurate Energy Measurement
There are different ways to measure and compute P (t)

and thus ET . One may resort on a special dedicated instru-
ment such as the Monsoon power meter or use the processor
energy estimation features or assume some kind of relation
between execution time and the energy used. In this paper

we propose to use a medium/high end digital oscilloscope
or similar device; the oscilloscope is triggered by the mobile
device/application and measure only the current via a re-
sistor as shown in Fig. 1. We need three components: (i) a
stabilized power supply that provides a higher voltage, (ii)
a precise power regulator that will bring the voltage down
to the device voltage, and (iii) a high precision (1% metal
film) resistor placed before the input of the power regulator.

Fig. 1 shows the setup we used for the measurement. The
regulator is used to stabilize the voltage, and the known
resistor Rp is used to measure the current flow. With such
setup the power consumed by a device, at a given instant
t, is computed by the product of the voltage, Vreg(t), and

the current I(t), which is easily obtained: I =
Vdiff

Rp
, where

Vdiff is the drop of voltage on the extremities of the resistor
Rp.

A key element of our measurement approach is the pres-
ence of a trigger signal, a signal raised by the mobile applica-
tion/device activating/stopping the signal acquisition. This
is crucial to ensure 1) the synchronization between code ex-
ecution and sampled input values and 2) that only what is
really needed is measured. The application under study is
instrumented (decompiled and re-packaged if needed) with
specific, device dependent, trigger code used to rise and
lower the trigger signal before(after) the code region (e.g.,
method) to measure. Obviously, on a standard Android
phone one need to add an interface between the USB port
and an external GPIO or to hack the kernel and, for exam-
ple, remap the volume button into a generic GPIO to use it
like a trigger.

3. CASE STUDY
The overarching goal of this paper is to provide a guidance

to developers helping them to better gauge and understand
the energy consumption role of various components in An-
droid applications.

Our experiments have the specific objective to examine
the amount of power consumed by Android components at
frequencies higher than 10 kHz and estimate the errors in-
curred by current approaches. The context of our study
consists of 21 closed source Android applications presented
in Table 1, four open source applications shown in Table 2)
and a hardware setup described in Fig. 1.

Table 1: Android closed source applications used.
Application name Version
25000 Best Quotes 1.0.7
8500+ Drink Recipes 1.0.6
Android Antivirus 2.0.1
AnEq Equalizer Free 1.0.9
Anti dog mosquito whistle 1.3
Anti Mosquito Sonic Repellent 1.0.0
Antivirus Security Free 4.1.4.204288
aTimer 1.3
AudioPlayer 1.2.0
Battery Info 1.6
Battery Info Always 1.2.0
Better Notepad 0.0.5
Botanica 1.0.0
Classical Music Radio Lite 1.0.3
Droid Notepad 1.11
Inspiring Quotes 1.2.0
news|swipe 1.0.0
Simple Weather 1.1.3
Sleep Sound Aid 20121007
Write Now Notepad 1.1.5
YouTube 1.0.5.4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1219v1 | CC-BY 4.0 Open Access | rec: 7 Jul 2015, publ: 7 Jul 2015

P
re
P
rin

ts

Table 2: Android open source applications used.
Application name Version
Cool Switch 1.0.0
F-Droid 0.83
Ringdroid 2.4
Tomdroid note 0.7.5

The 21 closed source applications are a subset of applica-
tions previously used works (e.g., [11]) aiming at quantifying
energy consumption.

The remainder of this section introduce our research ques-
tion, describe our measurement setup, and data analysis ap-
proaches.

RQ: Do applications consume power at frequen-
cies higher than 10 kHz?
Previous work have investigated the energy consumption of
applications, using sampling frequencies lower or equal to
10 kHz. We claim that these measurements, probably, are
biased by their low sampling frequencies, and such error in
measurement may lead to inaccurate conclusions. Sampling
at low frequency may not affect the continuous power con-
sumption but will affect the dynamic part. In other words,
fast methods or events may be lost or averaged out. In this
research question, we examine the amount of power con-
sumed by Android components and methods, at frequencies
higher than 10 kHz and estimate the errors incurred by cur-
rent approaches.

3.1 Measurement Setup
Device. The experiment was run on a BeagleBone Black1

on which we installed Android 4.2.2 Jelly Bean2. This plat-
form is attractive for several reasons. The ARM processor
is a processor also used in mobile device applications; it is
reasonably cheap and it runs a fully flagged Android con-
figuration including almost any application available on the
Android market. As a plus, it has ports that can be easily
driven to trigger data acquisition.
Circuit. We use a DC power supply (Extech Instruments
382270) as input to the circuit of Fig. 1 and set the voltage
to 10V. We connect the device to the output of the regulator
(7805C, Vreg = 5V) and we measure the drop of voltage on
the extremities of the resistance (Rp = 1.8Ω, rated for 12W)
on the oscilloscope (Tektronix MSO3012). We connect the
oscilloscope via USB to a laptop (3G RAM, Windows 7), to
measure and process the data.
Measurements. We measured the signal of the oscillo-
scope (Vdiff of Fig. 1) but, before, we verified the noise of
the measurement circuit, the power supply and the over-
all measurement apparatus by acquiring two channels (one
for V+ and one for V- versus the common ground – com-
mon mode rejection setup). We observed a very low and
acceptable level of noise. Furthermore, we observed that
even a single channel measurement gave acceptable noise
level. We therefore used one channel for the energy mea-
surement and one channel for the trigger events. Finally,
we sampled the energy consumption as follows: First, we
sampled the voltage Vdiff at 500 kHz and inspect the fre-
quency spectra to ascertain the presence of high frequency
components. Next, we set the sampling frequency Fc at
one order of magnitude higher than the fastest sampling
frequency used in previous studies PFc, i.e., Fc = 10PFc.

1http://beagleboard.org/BLACK
2http://elinux.org/Beagleboard:Android

Frequency (Hz)

Figure 2: Spectrum analysis.

We chosen 125 kHz because it is a sub-multiple of 500 kHz,
which allowed us to compare the signal acquired at 125 kHz
with the down-sample (one sample every four) version of the
signal acquired at 500 kHz. After this step, we sampled the
signal at 500 kHz and computed the spectra. We removed
the spectral line at zero frequency, compared the energy of
the signal sampled at 500 kHz with the energy in the bands
(0, 30], (0, 2500], (0, 5000], (0, 62500], and compute the per-
centage error. These energy bands corresponds respectively
to the sampling frequencies of 60 Hz, 5 kHz, 10 kHz and
125 kHz.

4. RESULTS
Fig. 2 shows the consumption amplitude for 60 seconds

of the noise, Android idling and Android playing YouTube.
The noise is negligible (low green color peaks close to 10000
Hz). In particular, we observe that YouTube has an evident
high frequency components above 10 kHz. The power in the
grey area (i.e., frequencies below 5 kHz) clearly does not
account for all the power and thus all the consumed energy.
We can also observe power peaks in the regions between
5 kHz and 20 kHz as well as a surge of power around 48 kHz.

Figure 3: Power measurement error rate at various
sampling rates for a sample of 21 Android applica-
tions.

RQ: Do applications consume power at frequen-
cies higher than 10 kHz?

Fig. 3 reports the boxplot of the energy estimation errors
for various sampling frequencies. As described above, we

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1219v1 | CC-BY 4.0 Open Access | rec: 7 Jul 2015, publ: 7 Jul 2015

P
re
P
rin

ts

http://beagleboard.org/BLACK
http://elinux.org/Beagleboard:Android

sampled at 500 kHz one execution of each application and
then computed the percentage error of the dynamic compo-
nent (i.e., we removed the spectral line at zero frequency) of
the signal. The reference value of Fig. 3 is the total energy
between (0, 250000]. It is clear that when sampling at very
low frequencies one can miss up to 50% (sampling at 60 Hz)
of the signal dynamic. Table 3 reports summary statistics of
Vdiff for the same energy traces used in the boxplot of Fig. 3.
The table reports the min, max and median percentage er-
rors plus the results of the Wilcoxon paired test [9] (using
a 95% confidence level) between the error at 125 kHz (me-
dian -0.71%) and the error at a given sampling frequency.
For any comparison exhibiting a statistically significant dif-
ference, we further compute the Cliff’s δ effect size [9]The
table figures confirm the intuition that a sampling frequency
of 125 kHz is sufficient with a worst case error below 1.5%
and a median of 0.7%. We can also observe that sampling at
10 kHz is likely sufficient for many application as the median
error is of about 8%, but with the risk of a maximum error
close to 16%. This means that the dynamic part of the en-
ergy may be underestimated by any value between zero and
16% with a median of 8%. It is also clear that sampling fre-
quencies below 10 kHz may severely underestimate energy
components in the high frequency bands.

Table 3: Percentual Error Summary Statistics for
Various Sampling Frequencies.
Fc (Hz) Min Max Median p-value Cliff Delta
60 -0.07 -99.64 -49.69 <0.00001 -0.91 (Large)
5000 -0.001 -33.47 13.27 <0.00001 -0.91 (Large)
10000 -0.001 -16.08 -7.85 <0.00001 -0.91 (Large)
48000 -0.0002 -6.94 -3.64 <0.00001 -0.91 (Large)
125000 -0.00008 -1.32 -0.71

For the same applications, we observed an error (for the
entire energy trace and overall power) below 1%. Thus the
developer has to clearly define what is his/her goal; the two
goals: how much energy used my application and how much
energy uses this method are not the same. For the first goal
a low sampling frequency may be fine but for the second it
may not. In fact, a low sampling frequency can make it very
hard to assess the energy consumption of any given method.

5. CONCLUSIONS
We have measured on an Android platform the energy

consumption of several applications (21 close source and four
open source) using different sampling frequencies between 60
Hz and 500 kHz. In our setup and for the applications used
in the study we found that (1) above 100 kHz there is no real
energy (we measured only 0.2% of the total power in that
band); (2) there is non negligible energy in the frequency
band between 5 kHz and 50 kHz. In a nutshell, a sampling
frequency of 10 kHz, in our setup, can miss up to 50% of the
used method dynamic energy.
It is worth underlying two points. First and foremost it is
unclear the origin of the high frequency energy. As suggested
by [6] perhaps tight loops can be the major source or per-
haps it is due to very short and fast methods. Second, it is
again not obvious how this high frequency energy has to be
attributed to different code area. We believe it is essential to
replicate the measurement presented in [6] to fully assess the
impact of our findings on a larger code base and precisely
ascertain where the high frequency energy originates.

Acknowledgment
The authors would like to thank Jérôme Collin and Guil-
laume Rivest for their valuable help as well as the Electrical
Engineering department of Polytechnique Montreal for shar-
ing their resources.

6. REFERENCES
[1] Chatfield, C. The Analysis of Time Series: An

Introduction, 6th edition ed. Chapman and Hall/CRC,
2003.

[2] Hao, S., Li, D., Halfond, W. G. J., and
Govindan, R. Estimating mobile application energy
consumption using program analysis. In Proceedings of
the 2013 International Conference on Software
Engineering (Piscataway, NJ, USA, 2013), ICSE ’13,
IEEE Press, pp. 92–101.

[3] Hindle, A. Green mining: A methodology of relating
software change to power consumption. In Mining
Software Repositories (MSR), 2012 9th IEEE Working
Conference on (June 2012), pp. 78–87.

[4] Hindle, A., Wilson, A., Rasmussen, K., Barlow,
E. J., Campbell, J. C., and Romansky, S.
Greenminer: A hardware based mining software
repositories software energy consumption framework.
In Proceedings of the 11th Working Conference on
Mining Software Repositories (New York, NY, USA,
2014), MSR 2014, ACM, pp. 12–21.

[5] Li, D., and Halfond, W. G. J. An investigation
into energy-saving programming practices for android
smartphone app development. In Proceedings of the
3rd International Workshop on Green and Sustainable
Software (New York, NY, USA, 2014), GREENS 2014,
ACM, pp. 46–53.

[6] Li, D., Hao, S., Gui, J., and Halfond, W. An
empirical study of the energy consumption of android
applications. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on
(Sept 2014), pp. 121–130.

[7] Li, D., Hao, S., Halfond, W. G. J., and
Govindan, R. Calculating source line level energy
information for android applications. In Proceedings of
the 2013 International Symposium on Software
Testing and Analysis (New York, NY, USA, 2013),
ISSTA 2013, ACM, pp. 78–89.

[8] Oppenheim, A. V., and Schafer, R. W. Digital
signal processing. Prentice-Hall, 1975.

[9] Sheskin, D. J. Handbook of Parametric and
Nonparametric Statistical Procedures (fourth edition).
Chapman & All, 2007.

[10] Singh, D., Peterson, P. A. H., Reiher, P. L., and
Kaiser, W. J. The Atom LEAP platform for
energy-efficient embedded computing: Architecture,
operation, and system implementation.
http://lasr.cs.ucla.edu/leap/FrontPage?action=

AttachFile&do=get&target=leapwhitepaper.pdf.
last viewed: 20-Nov-2014.

[11] Vásquez, M. L., Bavota, G., Bernal-Cárdenas,
C., Oliveto, R., Penta, M. D., and Poshyvanyk,
D. Mining energy-greedy api usage patterns in android

apps: an empirical study. In MSR (2014), pp. 2–11.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1219v1 | CC-BY 4.0 Open Access | rec: 7 Jul 2015, publ: 7 Jul 2015

P
re
P
rin

ts

http://lasr.cs.ucla.edu/leap/FrontPage?action=AttachFile&do=get&target=leapwhitepaper.pdf
http://lasr.cs.ucla.edu/leap/FrontPage?action=AttachFile&do=get&target=leapwhitepaper.pdf

	Introduction
	Methodology
	Energy Measurement
	Signal Acquisition
	Accurate Energy Measurement

	Case Study
	Measurement Setup

	Results
	Conclusions
	References

