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Abstract 

Despite the central role of species distributions in ecology and conservation, occurrence information remains 

geographically and taxonomically incomplete and biased. Numerous socio-economic and ecological drivers of uneven 

record collection and mobilization among species have been suggested, but the generality of their effects remains 

untested. We develop scale-independent metrics of range coverage and geographical record bias, and apply them to 

2.8M point-occurrence records of 3,625 mammal species to evaluate 13 putative drivers of species-level variation in 

data availability. We find that data limitations are mainly linked to range size and shape, and the geography of socio-

economic conditions. Surprisingly, species attributes related to detection and collection probabilities, such as body size 

or diurnality, are much weaker predictors of the amount and range coverage of available records. Our results highlight 

the need to prioritize range-restricted species and to address the key socio-economic drivers of data bias in data 

mobilization efforts and distribution modeling. 
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Introduction 

Detailed information on species distributions is 

fundamental to basic and applied ecology (Whittaker 

et al. 2005; Boitani et al. 2011). Expert range maps 

have become a key source for many large-scale 

analyses, but they incur high errors of commission 

towards finer spatial scales and their accuracy varies 

with species-level ecological and range attributes (Jetz 

et al. 2008). Moreover, range maps exist only for few 

groups of organisms. This makes point occurrence 

records a critical resource for developing distribution 

datasets for more taxonomic groups and at relevant 

spatial scales (Jetz et al. 2012). Large amounts of 

digital occurrence records from field observations, 

museum specimens, and other sources have been 

mobilized via national and international data-sharing 

networks, most notably that of the Global Biodiversity 

Information Facility (GBIF; Edwards 2000). While 

such records represent vital fine-scale information on 

spatial and temporal occurrences of species, severe 

gaps and biases hamper broader application (Rocchini 

et al. 2011). These data limitations have been mostly 

studied with a focus on geographical assemblages 

(Soria-Auza & Kessler 2008; Meyer et al. 2015), 

whereas differences among species have received less 

attention (Cayuela et al. 2009). 

Bias towards species with certain (bio-)geographical, 

phylogenetic, or ecological attributes can lead to 

biased ecological inference (Garamszegi & Møller 

2011) and inefficient conservation (Gonzalez-Suarez 

et al. 2012). For instance, in comparative studies, 

species-level bias violates the statistical assumptions 

that missing species are randomly distributed across 

the entire range of relevant dimensions and that data 

quality is constant across observations (Garamszegi & 

Møller 2011). A better understanding of species-level 

variation in occurrence information is crucial for 

effectively closing information gaps and for 

developing robust ecological models that can 

differentiate between true absences of species and 

missing information (Dorazio 2014; Iknayan et al. 

2014). While the reliability of range maps in relation 

to range size and species attributes has been assessed 

(Jetz et al. 2008), patterns and drivers of species-level 

variation in point-occurrence information remain 

largely ignored. 

Species-level variation and bias in point-occurrence 

information arise from at least three different 

characteristics of available occurrence records: i) 

record count per species, the most commonly studied 

and perhaps most intuitive metric (Cayuela et al. 

2009; Burton 2012), ii) range coverage, i.e., the 

degree to which records document a species 

throughout its entire range, and iii) geographical bias, 

i.e., the non-randomness in records’ representation of 

different range parts. Depending on the research 

question at hand, species-level variation in these three 

aspects of occurrence information can have different 

ramifications. For instance, species distribution 

models do not necessarily require high range coverage 

as long as a minimum number of environmentally 

unbiased records is available (Varela et al. 2014). In 

contrast, protected area gap analyses are fully reliant 

on high range coverage of species. 

Many possible drivers of species-level variation in 

occurrence records have been suggested (see Box 1). 

An often-cited, but rarely tested cause for species-

level variation may be that species attributes affect 

detection and collection probabilities. For instance, 

more records might be available for species that are 

better detectable due to higher abundances (Dorazio 

2007), or because they possess specific traits that 

make them more conspicuous, such as large body size 

or diurnal activity (Iknayan et al. 2014). Further, more 

records might have accumulated for early-described 

species as well as for species that attract more 

scientific or public interest, or for which records are 

logistically, legally, or ethically easier to collect and 

share (Amori & Gippoliti 2000; Whitlock et al. 2010). 

Besides species attributes, geographical factors may 

constrain occurrence information. First, range 

geometry, i.e., the size and shape of a range, might 

affect the likelihood that a given range part is close or 

distant to a given record. Second, socio-economic 

factors, such as area appeal, proximity to research 

institutions, cooperation with data-sharing networks, 

and financial resources may limit occurrence 

information by affecting the likelihood that records 

from within a given range are collected, digitized, and 

shared (Meyer et al. 2015). While all above-

mentioned factors might drive species-level variation 

in record count and range coverage, within-range 

geographical bias of records should be driven by 

range size and within-range variation in socio-

economic factors (see Box 1).  

Here, we provide the first analysis of global patterns 

and drivers of species-level variation in point-

occurrence information. We integrated c. 2.8 million 

geographically and taxonomically validated records 

mobilized via GBIF for 3,625 terrestrial mammal 

species (c. 72% of all extant species) with their expert 

range maps. We developed scale-independent metrics 

for range coverage and geographical bias to explore 

relationships among the three different aspects of 

occurrence information – record count, range 

coverage and geographical bias – while accounting 

for range geometry. We expected range coverage to 

increase with record count and to decrease with 

geographical bias, range size and range shape 

irregularity. We then tested three major classes of 

hypotheses about constraints on record count and 
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range coverage, namely species attributes, range 

geometry, and socio-economic factors (represented by 

13 different variables; described in detail in Box 1). 

Additionally, we tested whether range size and within-

range variations in socio-economic factors drive 

geographical bias. We assessed the relative 

importance of variables at the global scale and 

additionally at the scale of zoogeographical realms. 

Our work provides the first global assessment of 

species-level variation in different aspects of 

mammalian occurrence information, and the first 

comparison of the relative effects of species-specific, 

geometric and socioeconomic factors. 

Materials and Methods 

Measuring occurrence information 

We overlaid 4,524,585 point occurrence records 

mobilized via GBIF (retrieved Oct 2012; see 

Supplementary Information (SI) 1) with expert-drawn 

extent-of-occurrence range maps of 5,057 species of 

terrestrial mammals (IUCN 2010). Occurrence records 

provide direct evidence that a particular species 

occurred at a particular geographical point at a 

particular point in time (Soberón & Peterson 2004). In 

contrast, range maps delimit the geographical 

distribution of known and assumed species 

occurrences, based on expert interpretation of different 

distribution data types (Graham & Hijmans 2006). 

Range maps overestimate distributions at fine scales, 

but typically provide a less biased view of 

distributions than occurrence records and can serve as 

geographical reference of likely distributions at coarse 

scales (Hurlbert & Jetz 2007). We matched 

taxonomies between records and range maps and used 

range map overlays to validate records geographically 

(SI 1). The final, rigorously cleaned dataset contained 

2,849,058 records for 3,625 species.  

In addition to simple record count, we then used 

records and range maps to develop two response 

metrics for occurrence information: ‘range coverage’ 

and ‘geographical bias’. Range coverage describes 

the detail with which a species’ range is documented 

by available records. Geographical bias, in contrast, 

describes the level of non-randomness with which 

records represent different range parts. Both metrics 

are based on the great-circle distance (in km) of every 

one of 1000 random points placed across the range 

map to its geographically closest occurrence record 

(i.e., the record ‘covering’ that range part). Parts of 

ranges with random points close to their nearest 

records can be considered ‘well-covered’ (Fig. 1, Fig. 

S1).  

Range coverage. Range coverage was calculated as 

the negative mean minimum distance (MMD) between 

1000 random points and n available records, such that 

less negative values corresponded to higher range 

coverage: 

Range coverage = – MMD = – 
1

1000
∑ 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑅𝑃𝑖1000

𝑖=1 , 

where MinDistRPi is the minimum distance of the i-th 

random point to its nearest record (Fig. S1; Fig. 1 for 

examples). 

Geographical bias. To quantify geographical bias in 

records’ representation of different range parts, we 

related the MMD to a null model of the potential 

MMD under random sampling. We randomly placed n 

(number of actually available records) ‘pseudo 

records’ across the range, repeated this 1000 times, 

and each time calculated MMD. Geographical bias 

was then the standardized effect size, calculated as the 

difference between observed MMD and null model 

mean divided by the null model standard deviation:  

Geographical bias = 
MMD𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−mean (MMD𝑁𝑢𝑙𝑙𝑀𝑜𝑑𝑒𝑙)

sd (MMD𝑁𝑢𝑙𝑙𝑀𝑜𝑑𝑒𝑙)
. 

Higher geographical bias scores result if sampling 

locations are highly clumped and concentrated in one 

range part, as well as from high levels of information 

duplication, e.g., large record counts from exactly the 

same sampling locations (Fig. 1, Fig. S1). The large 

number of random points ensures that even large 

ranges are appropriately represented and that 

commission errors due to range map inaccuracies do 

not greatly affect range coverage and geographical 

bias metrics. 

Predictors of occurrence information 

We tested three major classes of hypotheses related to 

species attributes, range geometry, and socio-

economic factors, which were represented by 13 

variables (Box 1) as potential drivers of whether 

species have any mobilized records (details in SI 2) as 

well as of record count and range coverage. We tested 

range size and 8 variables of within-range variation in 

socio-economic factors as potential drivers of 

geographical bias (details in SI 3). 

Species attributes: i) We estimated diurnality by 

assigning the activity period of each species on an 

ordinal scale based on data in Wilman et al. (2014): 

1=nocturnal only; 2=nocturnal and crepuscular;
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Box 1 Putative drivers of species-level variation in occurrence information 

Species-level variation in occurrence information (record count, range coverage, geographical bias) may be driven by species attributes, 

range geometry and socio-economic factors. For each of these groups of hypotheses, we first provide a brief rationale for including 

individual factors and then summarize their hypothesized effects. 

 

Species attributes: 

Certain species attributes may drive record count and range coverage because they positively affect species’ detectability, popularity, or 

sampling logistics.  

i) Diurnality: Predominantly diurnal species are more likely to be detected (Burton 2012). 

ii) Body size: Despite the often-cited conspicuousness and appeal of large-bodied species (Knight 2008; Brooke et al. 2014), their lower 

abundances (Robinson & Redford 1986), and greater sensitivity to disturbance (Blumstein 2006) lead to lower detectability. Furthermore, 

larger specimens are logistically more difficult to collect, transport and store. 

iii) Foraging stratum: Terrestrial species are more detectable than arboreal species with standard sampling techniques (Chutipong et al. 

2014).  

iv) Dietary level: Higher dietary levels (i.e., specialization on high-energy but low-abundance resources) are associated with lower 

abundances (Robinson & Redford 1986) and larger home ranges (Tucker et al. 2014), resulting in lower detectability. 

v) Time since description: Early-described species have had more time to accumulate records.  

vi) Public interest: It is more appealing and easier to attract funding for sampling and data mobilization of species of great public interest 

(e.g., due to commercial, medicinal, aesthetic, psychological, or cultural reasons; see Knight (2008); Perry (2010); Tyler et al. (2012)).  

vii) Threat status: Despite higher interest in threatened species (Tyler et al. 2012), their often lower abundances and smaller ranges lead to 

lower detectability (Dorazio 2007) and their threat status prohibits specimen collection. Records of threatened species are less often 

shared to prevent exposing exact occurrences to the public (Whitlock et al. 2010).  

We hypothesized record count and range coverage to be positively affected by diurnality, time since description and public interest, and 

negatively by body size, foraging stratum (e.g., arboreal vs. terrestrial), dietary level, and threat status. We did not expect these factors to 

influence within-range geographical bias.  

 

Range geometry: 

Under geographically non-random sampling, range geometry is expected to affect the likelihood of ranges intersecting sampling locations.  

viii) Range Size: We expected clusters of sampling locations interspersed with areas of lower record availability. Unless records are 

perfectly clumped, large ranges are bound to intersect with more clusters of sampling locations. Under this scenario, species with larger 

ranges are more likely to have higher record counts and, when controlling for record count, lower geographical bias in the representation 

of different range parts. Conversely, larger range sizes are increasingly less likely to achieve high range coverage, as random points in 

such ranges would be increasingly less likely to be close to a given record. 

ix) Range shape irregularity: The same geographical constraints that cause non-uniform dispersal and elongated ranges, like rivers, coast 

lines and mountain ranges (Pigot et al. 2010), have historically determined human transportation routes (Rodrigue et al. 2006). Hence, 

record counts should be higher for elongated ranges, because researchers’ study areas and species’ ranges are more likely to intersect. 

Range coverage, however, should be lower for more elongated or fragmented ranges, as random points in such ranges would be 

increasingly less likely to be close to a given record.  

We hypothesized that both range size and range shape irregularity positively affect record count, and negatively affect range coverage. 

We further hypothesize that when controlling for record count, geographical bias is negatively correlated with range size.  

 

Socio-economic factors: 

We considered four socio-economic factors that are particularly important for limiting mammalian assemblage-level occurrence 

information (Meyer et al. 2015).  

x) Area appeal: Biologists prefer to work in areas with many rare or range-restricted species (Soria-Auza & Kessler 2008). 

xi) Proximity to research institutions: Species close to researchers’ home institutions are more likely to be well-sampled, due to easier 

logistics of carrying out multiple field surveys at different sites. Areas remote from research institutions are visited less frequently, 

making it likely that rare species evade detection (Dennis & Thomas 2000). 

xii) GBIF participation: Political commitment to international data sharing limits data mobilization (Yesson et al. 2007) .  

xiii) Financial resources: Financial resources for data collection and mobilization, associated with research or conservation programs, 

limit record availability for species in a given country (Soberón & Peterson 2004). 

We hypothesized record count and range coverage to be positively influenced by favorable socio-economic conditions averaged within 

ranges, and geographical bias to be positively related to within-range variation in these factors. 
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3=crepuscular only (active only around dusk/dawn); 

4=nocturnal, crepuscular and diurnal; 5=crepuscular 

and diurnal; 6=diurnal only. Data on ii) adult body 

mass (in g) and iii) dietary level was also taken from 

Wilman et al. (2014). For the latter, we first grouped 

ten diet categories into an ordinal scale: 1=low-

nutrition/high-abundance plant matter (e.g., leaves, 

wood); 2=high-nutrition/low-abundance plant matter 

(e.g., fruits, seeds, nectar); 3=animal matter (e.g., 

vertebrates, invertebrates and carrion). We then 

calculated weighted averages of dietary level scores, 

such that an omnivore with a diet composed of 25% 

leaves, 25% fruit and 50% invertebrates was assigned 

a score of 2.25. We assigned categorical data (Wilman 

et al. 2014) on iv) main foraging stratum on an ordinal 

scale: 1=terrestrial (including, e.g., bats that forage 

close to the water surface); 2=scansorial (climbing); 

3=arboreal; 4=aerial. We calculated v) time since 

description (in years until 2014) from dates in species 

author information (IUCN 2010). vi) Public interest 

for species was estimated based on the prominence of 

species names in internet activity, represented by 

numbers of Google hits for verbatim scientific names 

(as of November 2013). As an estimate of vii) threat 

status, we assigned threat categories from the 

International Union for the Conservation of Nature’s 

Red List (IUCN 2010) on an ordinal scale: 1=LC, 

2=NT, 3=VU, 4=EN, 5=CR, 6=EW. 

Range geometry: To model effects of viii) range size, 

we used the area of the original expert range map 

polygons (in km²). Because existing methods to 

quantify range shape are either grain-size dependent 

or only focus on specific shape aspects (usually 

elongation; compare Pigot et al. (2010)), we 

developed a new metric of ix) range shape 

irregularity: the ratio of the mean distance between 

1000 random points within the range to the mean 

distance between 1000 random points within a circle 

of the same area (see Fig. 1 for examples). Ratios 

increase from 1 (perfect circle) as range shapes 

become more elongated or fragmented. 

Socio-economic factors: To estimate x) area appeal 

to researchers, we calculated the mean mammalian 

endemism richness score across range map-

overlapping 110-km grid cells. Endemism richness is 

the sum of inverse range sizes of all species present in 

a cell (Kier & Barthlott 2001). To calculate the xi) 

proximity of a species’ range to research institutions, 

we first identified institutions that could have 

potentially contributed records for that species 

because they have performed surveys in range-

overlapping countries (inferred from sampling 

locations of all their contributed mammal records). 

Proximity to institutions was then the mean inverse 

great circle distance of 100 random points placed 

across that species’ range to those institutions, 

weighted by the institutions’ relative contribution to 

all mammal records in range-overlapping countries:  

108
* ∑ (

RelProp𝑖

D𝑖

𝑛
𝑖=0 ), 

where RelPropi is the relative contribution of the i-th 

publisher to records from the range-overlapping 

countries and Di its distance (in km) to the random 

point. We calculated xii) GBIF participation of range-

overlapping countries as the proportion of a species’ 

range that falls within GBIF-participating countries 

(as of 2012). We estimated xiii) locally available 

financial resources from conservation funding data 

(Waldron et al. 2013). Large, species-rich countries 

require more resources to attain high coverage for all 

species (Meyer et al. 2015). We therefore first divided 

country-level conservation funds by the country’s total 

area of overlapping mammal ranges, to calculate a 

country’s available resources per species range size 

to-be-covered (in million USD/10,000 km² range 

size). For each species, we then calculated the mean 

available resources across all range-overlapping 

countries, weighted by relative overlap.  

Statistical modeling 

First, we modeled effects of record count, 

geographical bias, and range geometry (size and 

shape) on range coverage. Then, we used species 

attributes, range geometry and socio-economic factors 

to model record count and range coverage. Finally, 

we modeled effects of range size and within-range 

variation in socio-economic factors on geographical 

bias. We modeled record count using generalized 

linear models (GLM) with a quasi-Poisson distribution 

to account for over-dispersion (O’Hara & Kotze 

2010). We modeled range coverage and geographical 

bias with ordinary least squares models (OLS). For 

details on models of whether or not species have any 

record, models of geographical bias, tests for spatial 

and phylogenetic autocorrelation, additional models of 

omitted variables, and limitations of this study, see SI 

2-6). All analyses were performed in R 2.15.2–3.1.2 

(R Core Team 2014). 

Preliminary tests for taxonomic bias yielded strong 

effects of species’ order memberships on record 

count, range coverage and geographical bias (also 

weaker effects of family memberships; memberships 

following IUCN (2010); see SI 2, Table S2 A). We 

therefore included ‘mammal order’ as a fixed control 

variable in all models. We inspected model residuals 

for normality and autocorrelation, using global 

Moran’s I for spatial autocorrelation (Dormann et al. 
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2007) and a phylogenetic adaptation of Moran’s I for 

phylogenetic autocorrelation (Abouheif 1999) based 

on the phylogeny in Fritz et al. (2009). These tests 

revealed that further accounting for phylogenetic or 

spatial non-independence was not necessary (Fig. S3, 

for details see SI 5). We used multi-model inference 

(Burnham & Anderson. 2002) to assess model support 

and identify minimum adequate models and relative 

importance of predictor variables, by running all 

possible model subsets and performing model 

selection based on Akaike’s Information Criterion 

(AIC) for OLS and quasi-AIC for GLM. After 

assessing the relative support of all predictor 

variables, we calculated fractions of total explained 

variation in record count and range coverage 

attributable uniquely and jointly to the three major 

hypotheses using variation partitioning based on the 

respective minimum adequate models (Peres-Neto et 

al. 2006). 

We log10-transformed and z-transformed continuous 

predictor and response variables to improve linearity 

and to obtain standardized coefficients. We used 

negative log10-transformed MMDs to model range 

coverage, such that variables causing high range 

coverage would yield positive effects. We limited 

collinearity by only including explanatory variables 

with generalized variance inflation factors ≤10 

(Dormann et al. 2013; Table S4-5). We modeled 

record count, range coverage and geographical bias 

at the global scale and separately for each of six 

zoogeographical realms (Olson et al. 2001). We 

assigned species to realm-scale models if their ranges 

overlapped the realm by >70%. 

Results 

Patterns in occurrence information 

3,625 or 72% of the 5,057 mammal species considered 

had at least one validated record (see Fig. S2, SI 2 for 

models of whether species have any records). Among 

these, record count varied by five, range coverage and 

geographical bias by four orders of magnitude, 

respectively (Fig. 2 A-C, Table S1). Globally, the 

mean record count per species was 563 (SD=3,073, 

median=13, Table S1) and record count had a heavily 

right-skewed distribution. Range coverage averaged -

205.5 km across species (SD=375.5, median=-199). 

For all three aspects of occurrence information, we 

observed significant variation between higher 

taxonomic levels (Fig. 2 D-F, see also SI 2, Table S1, 

ANOVA results in Table S2 A). Among the more 

speciose mammal orders, primates stood out for 

below-average record counts, and carnivores for 

below-average range coverage scores. High record 

counts and range coverage scores characterized 

Australasian marsupials (Fig. 2 D-E), which also had 

above-average geographical bias scores (Fig. 2 F, 

Table S1). Phylogenetic and spatial autocorrelation 

analyses attributed this taxonomic bias in occurrence 

information mainly to a better representation of 

species living in certain regions, rather than to a strong 

phylogenetic component (SI 5, Fig. S3). 

Accordingly, occurrence information differed more 

strongly among geographical realms (Fig. 2 G-I) than 

among mammal orders (Fig. 2 D-F, SI 2, Tables S1, 

S2 B). Most mammal assemblages in the Nearctic, 

northern Neotropical, western and northern Palaearctic 

and Australasian realms were characterized by species 

with above-average record counts, whereas 

Madagascar and the south-eastern Palaearctic and 

Indomalayan realms had mostly species with below-

average record counts (Fig. 2G). High record counts 

often coincided with high geographical bias and 

range coverage scores. However, high record counts 

did not coincide with high range coverage in the 

Palaearctic realm, where records were extremely 

biased towards Europe and therefore covered most 

species’ ranges only poorly (Fig. 2 G-I). Species 

without GBIF-facilitated records had highest 

concentrations in Southern China and South-East Asia 

(Fig. S2). 

Range coverage was strongly positively correlated 

with record count, negatively with geographical bias 

and furthermore strongly constrained by range 

geometry (Fig. 3, Table S3). These effects appeared 

general across global and realm-scale models (Fig. 3) 

and together accounted for 73-89% of inter-specific 

variation in range coverage (Table S3). Furthermore, 

record count was strongly positively correlated with 

geographical bias (rS=0.62, P<0.001). 

Predictors of occurrence information 

Record count and range coverage were well-predicted 

by a combination of species attributes, range geometry 

and socio-economic factors. Together, these variables 

explained 62% and 71%, respectively, of the variation 

in record count and range coverage in the global 

model, and between 44% and 86% in realm-scale 

models (Fig. 4). All 13 predictor variables showed at 

least weak effects in some of the models (Fig. 4, Table 

S4). Numbers of variables retained in minimum 

adequate models varied between 5 (record count and 

range coverage in the Palaearctic model) and 12 

(range coverage in the global model). Also, the 

variation in species-level geographical bias explained 

by range size and within-range variation in socio-
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economic factors varied substantially with 

geographical focus (Fig. 5, Table S5, SI 3); most 

variation in geographical bias was explained in 

zoogeographical realms with large numbers of 

mobilized records (partial R²adj: Nearctic: 0.24, 

Palaearctic: 0.24, Australasian: 0.44). 

Of the three major groups of tested variables, range 

geometry and socio-economic factors emerged as the 

most important factors driving record count and range 

coverage (Fig. 4, Tables S3). Variation partitioning 

confirmed that more variation in either metric was 

uniquely explained by range geometry and socio-

economic factors than by species attributes (except for 

record count in the Neotropical model, Fig. S4). The 

bulk of modeled variation in record count and range 

coverage potentially explained by species attributes 

was also explained by either range geometry or both 

range geometry and socio-economic factors (Fig. S4 

B). 

Overall, most species attributes showed only weak yet 

often significant effects on record count and range 

coverage (Fig. 4, Tables S3). Body mass and time 

since description showed relatively consistent 

negative and positive effects, respectively, across 

global and realm-scale models. Positive effects of 

public interest emerged as relatively important based 

on sums of QAIC/AIC weights. Threat status, 

diurnality, dietary level and foraging stratum showed 

inconsistent effects. Strong effects for these factors 

only emerged, respectively, in the Afrotropical, 

Australasian, Neotropical, and global and Neotropical 

models (Fig. 4). 

Range geometry showed very strong effects on 

occurrence information. Range size consistently 

emerged as an important factor, with strong positive 

effects on record count and negative effects on range 

coverage (Fig. 4) and on geographical bias in the 

global and Neotropical models (Fig. 5). Range size 

alone explained 7-38% of the variation in record 

count, and 26-64% of variation in range coverage 

(inferred from simple regressions). Range shape 

irregularity was an important constraint of range 

coverage, but only had minor positive effects on 

record count in the global and Australasian models 

(Fig. 4, Table S4). 

Socio-economic factors showed strong positive 

effects, particularly for range coverage, both from 

sums of QAIC/AIC weights and standardized 

coefficients (Fig. 4). However, the strength of effects 

differed substantially between global and realm-scale 

models and some noteworthy discrepancies emerged 

between effects on record count and range coverage. 

For instance, in the Nearctic and Palaearctic realms, 

GBIF participation greatly limited range coverage but 

not record count. Some unexpected negative effects 

emerged. For instance, higher record counts were 

associated with lower area appeal and financial 

resources in the Australasian, and with lower 

proximity to institutions in the Palaearctic model, and 

range coverage was negatively associated with GBIF 

participation in the Afrotropical model. Relatively 

strong positive effects on geographical bias emerged 

for within-range variation in proximity to institutions 

in the Palaearctic and Australasian, for GBIF 

participation in the Palaearctic, and for financial 

resources in the Neotropical realm (Fig. 5).  

Discussion  

Our analyses revealed strong species-level differences 

in the quantity and quality of globally mobilized 

mammal occurrence information, with record counts, 

range coverage, and geographical bias scores 

differing among species by four to five orders of 

magnitude. A substantial proportion of mammal 

species (28%) had no mobilized records, and large 

parts of most mammal ranges were several hundred 

kilometers away from the closest record that provides 

direct evidence of occurrence, revealing considerable 

uncertainty regarding fine-scale species distributions.  

Global species-level differences appear to largely 

result from geographical data bias towards well-

sampled North America, Australia and Western 

Europe (Meyer et al. 2015). As expected, range 

coverage was primarily a function of record count 

relative to range size (Fig. 3). However, even very 

high record counts only yield low range coverage 

scores if those records are geographically biased 

towards one range part, as is the case in many 

widespread Palaearctic species. Unsurprisingly, given 

the geographically clustered and highly duplicated 

fashion in which occurrence information is collected 

and mobilized (Meyer et al. 2015), record count itself 

was strongly positively correlated with geographical 

bias, and regions and mammal orders with well-

sampled species often coincided with high 

geographical bias scores.  

Species attributes 

Surprisingly, multiple regression and variation 

partitioning analyses revealed a minor role of species 

attributes in shaping occurrence information, although 

all variables that captured species attributes received 

some limited support from multi-model inference. The 

most important species attribute was body mass, with 

relatively consistent negative effects on record count 
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and range coverage. The poorer representation of 

large-bodied species, including charismatic groups 

like primates and carnivores, might contradict such 

species’ prominence in the scientific literature 

(Brooke et al. 2014) and monitoring data (Burton 

2012). As most mammal records in GBIF are from 

biocollections, a plausible explanation may be the 

greater logistic difficulties of collecting and storing 

large specimens. Improving the accessibility of 

occurrence datasets based on less-invasive field 

research, such as visual or auditory observations 

(Hoffmann et al. 2010), may effectively complement 

currently-mobilized information for these 

underrepresented species. Other species attributes 

associated with collection probabilities consistently 

emerged as weaker but significant determinants of 

record count and range coverage. For instance, more 

mobilized records exist for early-described species 

and for species of public interest (Tyler et al. 2012). 

Against our expectation, current threat status had little 

effects on record count or range coverage, possibly 

because greater scientific interest in threatened species 

(Tyler et al. 2012) is counter-balanced by legal or 

ethical impediments to specimen collection and data 

sharing (Whitlock et al. 2010). 

It is often assumed that more records are available for 

species that are better detectable due to their higher 

abundances or higher conspicuousness (Iknayan et al. 

2014). Accordingly, the negative effects of body mass 

might also be due to higher abundances of small-

bodied mammals. However, a strong role of 

abundance is otherwise not supported: dietary level, 

which covaries with abundance particularly when 

controlling for body mass and habitat (Robinson & 

Redford 1986), consistently showed weak effects on 

record count and range coverage (see also SI 4). 

Similarly, population density only had a weak positive 

relationship with record count and no relationship 

with range coverage (see SI 4). Other traits associated 

with conspicuousness also failed to support the 

detectability hypothesis, as both diurnality and 

foraging stratum showed only weak effects, 

contrasting results from regional studies (Burton 2012; 

Chutipong et al. 2014). While we cannot rule out a 

stronger role of species attributes at smaller spatial 

scales, they are clearly not a major driver of species-

level variation in range-wide mammal occurrence 

information.  

Range geometry 

In contrast to species attributes, range geometry had 

very strong effects on occurrence information. Range 

size was the single most important predictor, with a 

strong positive effect on record count and a strong 

negative effect on range coverage. At the global scale 

and in the Neotropics, range size was also an 

important predictor of geographical bias. Range shape 

irregularity was another important constraint to range 

coverage. These results support the notion that while 

large ranges are bound to overlap with more sampling 

locations (compare Garamszegi & Møller (2012)), 

large, irregular-shaped ranges are severely constrained 

in the detail with which a given number of records 

could cover them. In contrast, a few well-placed 

records can provide a high degree of range coverage 

for small-ranged species that is hardly attainable for 

large-ranged species. However, with a mean range 

coverage of -102km (median=-55km), even the lower 

range-size quartile of species did not achieve the 

spatial detail needed for most conservation 

applications (typically sub-25km; Boitani et al. 2011). 

Furthermore, occurrence records that could potentially 

be used in models to refine information were 

disproportionately scarcer for species in the lower 

range-size quartile (mean record count=23, 

median=0) compared to all species (mean record 

count=563, median=13). Most small ranges appeared 

better-covered not because of a truly detailed 

representation with records, but simply because any 

record within the range was automatically closer to 

any other point within the range. 

Socio-economic factors 

Most key socio-economic drivers of assemblage-level 

occurrence information (Meyer et al. 2015) also drive 

species-level information, reinforcing the need to 

address these factors to create an effective global 

information basis of species distributions. Mean 

endemism richness, used as a proxy for area appeal 

(Soria-Auza & Kessler 2008), had the most consistent 

effects. In conjunction with clear positive effects of 

range size on record count, this demonstrates that 

despite increased collection activity in endemism-rich 

areas, sampling to date has not resulted in better 

representation of range-restricted species in those 

regions. Consistent with previous suggestions, 

proximity to research institutions (Dennis & Thomas 

2000), GBIF participation (Yesson et al. 2007), and 

locally available financial resources (Soberón & 

Peterson 2004) strongly limit species-level occurrence 

information. 

However, we found that the importance of these 

factors differed substantially among realms. Such 

realm-specific model differences demonstrate that 

different factors influence occurrence information in 

different regional contexts. For instance, the negative 

effect of area appeal on record count in Australasia 

was contrary to our expectation but has a plausible 

explanation: data collection and mobilization in 

endemism-rich northern Australasian countries (e.g., 
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Solomon Islands, Papua New Guinea, East Timor) is 

in its infancy, whereas Australia has mobilized large 

numbers of records for most mammals, including 

those living in comparatively endemism-poor regions 

(Meyer et al. 2015). As another example, most 

Palaearctic species have ranges that cover both non-

GBIF-participating Asian countries and extremely 

data-rich Western or Northern European countries, 

causing strong effects of GBIF participation on range 

coverage and geographical bias but not on record 

count. Similarly, geographical bias in the Palaearctic 

realm is mainly driven by strong variation in the 

proximity of different parts of species’ ranges to data-

contributing institutions (Fig. 5). Together, these 

results show that the spatial extent and geographical 

focus of analyses is crucial for understanding the 

causes of bias in occurrence information. 

Implications and conclusions 

Our results have three main implications: First, 

species without mobilized records are not randomly 

distributed across orders and regions, nor is quality of 

available occurrence information constant across 

species. Without careful consideration of these biases, 

ecological models that compare among species and 

include occurrence information as a predictor variable 

(e.g., range size as a predictor of extinction risk) 

violate statistical assumptions and increase the 

potential for biased inference (Garamszegi & Møller 

2011). Second, information gaps are particularly 

severe for range-restricted species, for which detailed 

information would be urgently needed to confront 

future extinction risk (Fritz et al. 2009; Boitani et al. 

2011) and for which commonly-used range map 

information most strongly overestimates fine-scale 

occurrences (Jetz et al. 2008). Third, conventional 

species distribution modelling (Guisan & Thuiller 

2005) cannot provide a general remedy for 

overcoming data limitations, due to high spatial 

pseudo-replication of records combined with poor 

spatial coverage. Even the 37% of represented 

mammals that had between 50 and 200 records, an 

often-cited range of minimum model requirements 

(Boitani et al. 2011; Feeley & Silman 2011), typically 

had much fewer unique sampling locations 

(median=17), and a relatively low range coverage 

(median=-207 km). Modern hierarchical models can 

address problems of biased records, by explicitly 

incorporating models of site-specific survey effort or 

species-specific detectability (Dorazio 2014; Iknayan 

et al. 2014). As biases in mobilized occurrence 

information are mainly driven by geographical rather 

than species-specific factors, controlling for these 

biases by incorporating their site-specific socio-

economic drivers may offer the most promising 

avenue for improving models.  

In summary, global point records on mammal 

distributions are rife with large-scale geographical and 

taxonomic gaps and biases, hampering species 

distribution modeling, conservation prioritization, and 

other basic and applied research. To improve the data 

basis for such applications, the key socio-economic 

impediments to data availability need to be addressed, 

e.g., by prioritizing data mobilization in institutions 

near data gaps and fostering cooperation with data-

sharing networks (compare discussion in Meyer et al. 

(2015)). Researchers and institutions collecting or 

mobilizing new occurrence information should 

consider possible synergies with global data priorities, 

e.g., through focusing on threatened, range-restricted, 

or understudied species. Information metrics such as 

those developed in this study could be incorporated 

into online tools that allow researchers and funding 

agencies to identify priority species for improving 

information. Meanwhile, ecological models that 

account for present data limitations by explicitly 

incorporating the socio-economic drivers of data 

collection and mobilization could be a way of drawing 

less biased inference from accessible occurrence 

information. 
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