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Abstract 16	

Phylogenetic comparative methods (PCMs), especially ones based on linear models, have played a 17	

central role in understanding species’ trait evolution. These methods, however, usually assume that 18	

phylogenetic trees are known without error or uncertainty, but this assumption is most likely 19	

incorrect. So far, Markov chain Monte Carlo, MCMC-based Bayesian methods have mainly been 20	

deployed to account for such ‘phylogenetic uncertainty’ in PCMs. Here, we propose an approach 21	

with which phylogenetic uncertainty is incorporated in a simple, readily implementable and reliable 22	

manner. Our approach uses Rubin’s rules, which are an integral part of a standard multiple 23	

imputation procedure, often employed to recover missing data. We see true phylogenetic trees as 24	

missing data under this approach. Further, unmeasured species in comparative data (i.e. missing 25	

trait data) can be seen as another source of uncertainty in PCMs because arbitrary sampling of 26	

species in a given taxon or ‘species sampling uncertainty’ can affect estimation in PCMs. Using two 27	

simulation studies, we show our method can account for phylogenetic uncertainty under many 28	

different scenarios (e.g. uncertainty in branching and branch lengths) and, at the same time, it can 29	

handle missing trait data (i.e., species sampling uncertainty). A unique property of the multiple 30	

imputation procedure is that an index, named ‘relative efficiency’, could be used to quantify the 31	

number of trees required for incorporating phylogenetic uncertainty. Thus, by using the relative 32	

efficiency, we show the required tree number is surprisingly small (~50 trees). However, the most 33	

notable advantage of our method is that it could be combined seamlessly with PCMs that utilize 34	

multiple imputation to handle simultaneously phylogenetic uncertainty (i.e. missing true trees) and 35	

species sampling uncertainty (i.e., missing trait data) in PCMs.  36	

Keywords – Bayesian statistics; comparative analysis, data augmentation; information theory; 37	

model averaging, phylogenetics,   38	
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(Introduction) 39	

Phylogenetic comparative methods, PCMs, have been playing a central role in investigating trait 40	

evolution across species (reviewed in Garamszegi 2014). The most popular methods in comparative 41	

biology are based on linear regression such as independent contrasts (Felsenstein 1985), 42	

phylogenetic generalized least squares (PGLS; Grafen 1989), or phylogenetic (generalized) linear 43	

mixed models (Lynch 1991, Hadfield and Nakagawa 2010). When one phylogenetic tree is used in 44	

analysis, all these methods assume that the phylogeny of organisms is known without error. 45	

However, no phylogenetic trees (or hypotheses) are known without error. Errors come in the form 46	

of uncertainty in branch length, topology, and also in the model of assumed character evolution 47	

(Cooper, et al. 2016, Cornwell and Nakagawa 2017). Researchers have been investigating the 48	

impact of these types of uncertainty on statistical inference (e.g., Diaz-Uriarte and Garland 1996, 49	

Symonds 2002). These studies generally suggest the importance of incorporating ‘phylogenetic 50	

uncertainty’ in PCMs; note that by using one tree, point estimates (e.g. regression coefficients) are 51	

not necessarily biased (Stone 2011), but uncertainty estimates (e.g. standard error or confidence 52	

intervals) are not accurate. Therefore, a number of methods have been proposed to include 53	

phylogenetic uncertainty (e.g. Losos 1994, Martins 1996, Huelsenbeck, et al. 2000, Housworth and 54	

Martins 2001, Rangel, et al. 2015). Among these methods, probably the best one is to use Bayesian 55	

Markov Chain Mote Carlo, MCMC (Huelsenbeck, et al. 2000, Huelsenbeck and Rannala 2003, de 56	

Villemereuil, et al. 2012); the Bayesian MCMC methods utilize phylogenetic trees sampled from 57	

posterior tree set obtained from Bayesian phylogenetic tree estimation programs such as BEAST 58	

(Drummond and Rambaut 2007) and MrBayes (Ronquist and Huelsenbeck 2003). 59	

Nonetheless, these methods are not always met with enthusiasm in the evolutionary biology 60	

community (cf. Pagel, et al. 2004, Pagel and Meade 2006). Difficulties we see are two-fold: (i) 61	

currently, few easy-to-use implementations for such Bayesian MCMC methods are widely 62	

available, at least, for regression-based PCMs (but see Hadfield 2010, de Villemereuil, et al. 2012); 63	
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and (ii) even if implemented, Bayesian MCMC-based analysis may take a long time to process 64	

many phylogenetic trees (e.g., see Figure 6 in de Villemereuil, et al. 2012). More recently, 65	

Garamszegi and Mundry (2014) have proposed a readily implementable frequentist solution, which 66	

employs model averaging with Akaike information criterion (AIC) in PGLS incorporating many 67	

phylogenetic trees (see also Mahler et al. 2010). Such a method overcomes the aforementioned 68	

difficulties. However, Garamszegi and Mundry (2014) acknowledge the lack of theoretical basis for 69	

this proposal, and that theoretical or simulation-based confirmation of their method is necessary.   70	

Here, we propose another solution to account for phylogenetic uncertainty. Our method is simple, 71	

generally applicable, and, what is more, it is fairly reliable and readily implementable (see below). 72	

Also, it is firmly based on missing data theory (reviewed in Little and Rubin 2002), and utilizes 73	

Rubin’s rules, which have been proposed as a part of the multiple imputation procedure (Rubin 74	

1987). Evolutionary biologists and ecologists have just recently recognized the usefulness of 75	

techniques based on missing data theory (reviewed in Nakagawa and Freckleton 2008, Nakagawa 76	

2015). Also, the importance of these missing-data methods has been discussed in the phylogenetic 77	

comparative literature (e.g. Garamszegi and Moller 2011, de Villemereuil and Nakagawa 2014). 78	

Notably, multiple imputation has been successfully employed in a number of comparative studies to 79	

handle missing data (e.g. Fisher, et al. 2003, Gonzalez-Suarez, et al. 2012, Liker, et al. 2014, Pollux, 80	

et al. 2014). Yet, so far, nobody seems to have made a use of Rubin’s rules to deal with 81	

phylogenetic uncertainty. We note, however, that Martins’ work (1996) is conceptually and 82	

practically very similar, if not identical, to the proposed method (see also Rangel, et al. 2015).  83	

Paterno et al. (2018) recently discussed three main sources of uncertainty which affect PCMs: 1) 84	

phylogenetic uncertainty, 2) species sampling uncertainty, which can be seen as a missing-data 85	

problem (because one can see unsampled species as missing data; Nakagawa and Freckleton 2008), 86	

and 3) data uncertainty, which include measurement error and within-species variation (see also 87	

Rangel, et al. 2015, Cooper, et al. 2016, Cornwell and Nakagawa 2017). Once we could show 88	

Rubin’s rules can be used for accounting for phylogenetic uncertainty, there is a highly practical 89	
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possibility that we could seamlessly combine multiple imputation with PCMs to handle missing 90	

trait data, thus, addressing species sampling uncertainty simultaneously. There are two ways of 91	

imputing missing phenotypic data. The one is that we directly use a phylogenetic correlation 92	

(variance-covariance) matrix in the multiple imputation process (e.g., Bruggeman, et al. 2009, 93	

Goolsby, et al. 2017; see below for more details). The other is that we employ (phylogenetic) 94	

eigenvectors from a phylogenetic correlation (or variance-covariance) matrix (Penone, et al. 2014). 95	

These two approaches, surprisingly, have never been systematically compared in terms of 96	

performance in augmenting missing comparative data.  97	

Below, we first describe Rubin’s rules associated with multiple imputation, and explain the 98	

rationale and potential advantages of our proposed method. Then, we conduct two simulation 99	

studies: 1) using 12 phylogenetic trees covering different taxa, we compare the performance of our 100	

proposed method to other methods such as methods using only one phylogenetic tree and the AIC-101	

based method; and 2) we test how the proposed method can perform with different degrees and 102	

types of missing data, when used with the two types of multiple imputation methods (i.e., the one 103	

using a phylogenetic correlation matrix and the other phylogenetic eigenvectors).  104	

Multiple imputation and Rubin’s rules 105	

Multiple imputation is a three-step process: imputing data, analyzing imputed data and pooling 106	

results. In the first step, m copies of ‘complete’ data sets are generated from an incomplete original 107	

data set. Popular techniques for the imputation steps use EM/EMB (expectation maximization with 108	

bootstrap) and MCMC algorithms, both of which are implemented in R packages such as Amelia 109	

(Honaker, et al. 2011	), mice (van Buuren and Groothuis-Oudshoorn 2011) and mi (Su, et al. 2011); 110	

for more details regarding the algorithms, see Schafer (1997), Enders (2010) and van Buuren 111	

(2012). In the second step (analysis), we run separate statistical analyses on m data sets. In the final 112	

step (pooling), we use Rubin’s rules (see below) to aggregate m sets of results to produce parameter 113	

estimates along with their uncertainty. 114	
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As an example of applying this three-step process to PCMs, let us assume that we have complete 115	

data for species traits (see Discussion for cases where missing data exist). Then, what remains 116	

missing is the ‘true phylogenetic tree’; note that this is the central reason for us using (a part of) 117	

multiple imputation to account for phylogenetic uncertainty. Currently, a standard approach to 118	

creating candidate trees is to use Bayesian phylogenetic methods, as mentioned above, such as 119	

BEAST and MrBayes, which yield a posterior distribution of phylogenetic trees (for a guidance on 120	

building phylogenetic trees, see Garamszegi and Gonzalez-Voyer 2014). Alternatively, we can use 121	

published Bayesian tree sets as in Jetz et al. (2012) for birds, and Arnold et al. (2010) for primates. 122	

We consider this tree generation stage as our imputation step (the first step). The second step can be 123	

conducted using any frequentist or Bayesian statistical procedures including PCMs, such as 124	

independent contrasts, PGLS and phylogenetic mixed models. Say, we will run PGLS with m 125	

randomly sampled phylogenetic trees from a Bayesian posterior tree set, which will result in m sets 126	

of results. Then, by combining these result sets via Rubin’s rules (the final step), we will have 127	

integrated phylogenetic uncertainty in our estimates from PGLS.  128	

Rubin’s rules are a set of formulas for combining multiple statistical results, and they are as follows 129	

(Rubin 1987). With m imputations, parameters can be estimated by: 130	

 ,         (1) 131	

where  is a k length vector and an average of bj, and bj is the jth set (of m) of k parameter 132	

estimates (e.g. regression coefficients). An overall variance-covariance matrix of  is obtained by:  133	

 ,        (2) 134	

 ,        (3) 135	

b = 1
m

b j

j=1

m

∑

b

b

V =W + 1+ 1
m

⎛
⎝⎜

⎞
⎠⎟ B

W = 1
m

W j

j=1

m

∑
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 ,      (4) 136	

where V is the overall (total) variance(-covariance) matrix for , the within-imputation variance(-137	

covariance) matrix,  is the average of the variance-covariance matrix, Wj for b, and B is the 138	

between-imputation variance(-covariance) matrix for bj; note that the standard error of the ith 139	

parameter (of k) is (subscript denotes the ith row and ith column, or ith diagonal element). 140	

Also, the term, (1+1/m) in Equation (2) can be seen as a correction for m not being infinite. An 141	

important concept in multiple imputation is called, ‘fraction of missing information’, usually 142	

denoted by γ and given by: 143	

 ,       (5) 144	

where is the initial estimate of the fraction of missing information, ranging from 0 to 1 (see 145	

below; cf. Equation (12)), and the term, tr(BV-1) denotes the trace of the resulting matrix from BV-1. 146	

We can appreciate why is termed ‘the fraction of missing information’ because it represents a 147	

proportion of the between-imputation variance to the total (overall) variance (note that it may be 148	

easier to see this in Equation (8) below). In other words, it represents the proportion of the 149	

parameter uncertainty due to using different trees. We can obtain statistical significance and 150	

confidence intervals based on t distributions with the degrees of freedom of the following: 151	

 ,        (6) 152	

where is the degrees of freedom to be used for t values ( ). However, since the parameters 153	

will not be influenced equally by the phylogenetic uncertainty, it is probably better to obtain a 154	

fraction of missing information value for each parameter ( ) rather than omnibus values as in 155	

B = 1
m −1

(b j − b)(b j − b)T
j=1

m

∑

b

W

Vii

γ = 1+ 1
m

⎛
⎝⎜

⎞
⎠⎟ tr BV

−1( )1k

γ

γ

ν = (m −1) 1
γ 2

ν bi / Vii

bi
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Equations (5 and 6) (Lipsitz et al. 2002). Such separate values of the degree of freedom (νi) can be 156	

obtained by: 157	

 ,        (7) 158	

 .        (8) 159	

However, the formulation of νi or assumes a very large sample size, n (which is the length of data 160	

when no data are missing; Rubin and Schenker 1986, Rubin 1987). Barnard & Rubin (1999) 161	

proposed the following adjustment in the degrees of freedom (cf. Lipsitz, et al. 2002): 162	

 ,        (9) 163	

 ,      (10) 164	

          (11) 165	

where  is the degrees of freedom for ith parameter, especially suitable when sample size, n is 166	

small. The degrees of freedom, νobs denotes the observed degrees of freedom, whereas νcom denotes 167	

the complete degrees of freedom (i.e. the degrees of freedom for the complete data set assuming no 168	

missing data). In the next section, we will compare the performance of both νi (hereafter denoted 169	

“original df”) and (hereafter denoted “corrected df”). 170	

Once we have an estimate of the corrected degrees of freedom, we can obtain a refined estimate of 171	

the fraction of missing information, for each parameter: 172	

γ i = 1+ 1
m

⎛
⎝⎜

⎞
⎠⎟
Bii

Vii

⎛
⎝⎜

⎞
⎠⎟

ν i = (m −1) 1
γ i
2

ν

ν i
* = 1

ν i

+ 1
νobs(i )

⎛

⎝⎜
⎞

⎠⎟

−1

νobs(i) = (1−γ i )
νcom +1
νcom + 3

⎛
⎝⎜

⎞
⎠⎟
νcom

νcom = n − k

ν i
*

ν i
*

γ i
*
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 .      (12) 173	

Then, we can use to find a very useful quantity called ‘relative efficiency’, which is given by: 174	

 ,        (13) 175	

where  is relative efficiency of the ith parameter and ranges from 0 to 1. Relative efficiency 176	

represents the efficacy of multiple imputation process, compared to the case of m being infinite. In 177	

other words, this number can be used to assess how many imputations (m) are needed to account for 178	

uncertainty due to missing data. In our case, relative efficiency can indicate how many phylogenetic 179	

trees we should use for analysis (typically, the number of required trees to account for phylogenetic 180	

uncertainty are chosen arbitrarily). Notably, to achieve fairly high relative efficiency, the required 181	

number of m is surprisingly low, even when the fraction of missing information is relatively large. 182	

For example, with γ = 0.5 and m = 5, relative efficiency is 90.91%, while it is 95.24% when γ = 0.5 183	

and m = 10. Rubin’s (1987) initial recommendation of m was low (3-10) probably due to 184	

computational limitation at that time, but current thinking is to use much larger m, aiming at over 185	

99% relative efficiency (e.g.	Graham, et al. 2007, von Hippel 2009, Nakagawa 2015). As you see in 186	

Equation (13), we obtain a relative efficiency value (εi) for every parameter and such values vary 187	

among parameters. For assessing efficiency of a model, we will use the relative efficiency (ε*) that 188	

is obtained from the largest value of the fraction of missing information, following McKnight et al. 189	

(2007); that is: 190	

 ,        (14) 191	

where  denotes the maximum (largest) value of ; the use of the maximum value of 192	

ensures all parameters will achieve at least a certain relative efficiency level or above. We can 193	

γ i
* = 1+ 1

m
⎛
⎝⎜

⎞
⎠⎟
Bii

Vii
+ 2
(ν i

* + 3)Vii

γ i
*

ε i = 1+ γ i
*

m
⎛
⎝⎜

⎞
⎠⎟

−1

ε i

ε * = 1+ max(γ i
*)

m
⎛
⎝⎜

⎞
⎠⎟

−1

max(γ i
*) γ i

* γ i
*
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easily automate calculations involving the above formulae with currently available R packages for 194	

multiple imputation such as mice (reviewed in Nakagawa and Freckleton 2011; see also Penone, et 195	

al. 2014).  196	

Simulation studies 197	

Incorprating phylogenetic uncertainty as missing data 198	

In order to assess the overall quality of our new method and compare it to existing ones, we 199	

performed a simulation study using 12 trees extracted from TreeBase (the number of tips ranging 200	

from 67 to 174; www.treebase.org, see Supplementary Table 1). We simulated data sets in which a 201	

variable y was linearly predicted from a variable x, with an intercept of 5 and a slope of 2. The error 202	

structure of this relationship was constrained by the phylogenetic tree chosen among the 12 trees 203	

(hereafter called the ‘true tree’), following a Brownian motion model. Different residual standard 204	

deviations were used (sigma, σ = 2, 5, 10 or 15). From the true tree, a distribution of trees was 205	

created by altering branch lengths and topology. To alter branch lengths, random noise drawn from 206	

a uniform distribution centered around 0 was added to the true value. The maximum level of that 207	

noise varied between 0% (no branch length noise), 10%, 20%, 40%, 70% or 90% of the true branch 208	

length. To alter topology, we randomly “swapped” branches belonging to a focal clade to a sister 209	

clade. To choose the branch to swap, a tip was chosen at random, and a “threshold” was chosen 210	

from a uniform distribution with the thresholds of [0.1, 1]. The node just below this threshold in the 211	

path from the tip chosen to the root was swapped. We used several levels of topological noise (no 212	

swaps, i.e. no topological noise, or 1, 2, 5, 10, 20, 30 swaps in the tree). To construct the 213	

distribution of trees, the probability of each swap was set to 0.5. For each set of parameters (true 214	

tree, level of branch noise, level of topological noise), we constructed a distribution of 100 trees and 215	

replicated the analysis 100 times. This resulted in 2016 conditions, hence 201,600 different 216	

analyzes. Using the simulated phenotypes and tree distributions, we compared GLS using the true 217	

tree or two types of consensus trees (majority rule or consensus), with both multiple GLS with 218	
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pooling of the results using AIC averaging (as in Garamszegi and Mundry 2014) and pooling with 219	

Rubin’s rules as described above (either using the original degrees of freedom, df, or the corrected 220	

df as in Equation (9)).  221	

The accuracy of the intercept and slope were only slightly influenced by the different parameters 222	

(Table 1 and Fig. S1, S2 and S3). On the contrary, the estimation of the residual standard deviation 223	

depended strongly on the method used (as well as, trivially, the true parameter sigma, and to a far 224	

lesser extent, all of the other parameters, see Table 1). Notably, the estimation of residual standard 225	

deviation was biased upward for the two methods using consensus trees (strict or majority rule, see 226	

Fig. S1, S2 and S3). 227	

The coverage of the confidence interval for the slope was heavily influenced by the method used 228	

and more marginally by other parameters (except the true parameter sigma which had negligible 229	

influence, Table 1). The coverage was correctly calibrated when using the true tree (True GLS, Fig. 230	

1) and heavily mis-calibrated when using consensus trees (strict and majority rule consensus GLS, 231	

Fig. 1). Accounting for uncertainty yielded better-calibrated coverages. AIC averaging was the 232	

closest to correct calibration. It was, however, slightly but consistently too liberal (Fig. 1). Using 233	

Rubin’s rule yielded conservative coverages. Contrary to AIC averaging, the coverage was sensitive 234	

to the level of branch length and/or topological noise, decreasing when the noise increased (thus 235	

being even more conservative, Fig. 1). 236	

In order to assess the behavior of the proposed method using Rubin’s rules to account for 237	

phylogenetic uncertainty, we also conducted a study using different sample size for the trees (T = 238	

10, 20, 50 or 100) and computed the relative efficiency as shown in Equation (14). This analysis 239	

revealed two interesting patterns (Fig. 2). First, no efficiency lower than 0.90 was recorded for a 240	

total of 806,400 simulated data sets, even for a sample size of trees as low as T = 10. Second, the 241	

relative efficiency depended strongly on the number of trees used (Fig. 2 and Table 1). It also 242	

depended on the level of branch length noise, and to a lesser extent, on the level of topological noise 243	
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(Fig. 2 and Table 1), as well as, even more marginally, on the nature of the true tree (Table 1). 244	

Third, in order to reach a relative efficiency over 0.99, on average, only 50 trees were necessary 245	

even with high levels of branch length and topological noise. With 100 trees, the relative efficiency 246	

was always over 0.99.  247	

Incorporating both phylogenetic uncertainty and missing trait data 248	

We then investigated the possibility to combine the ability of multiple imputation to account 249	

simultaneously for phylogenetic uncertainty and missing phenotypic values. To do so, we 250	

conducted a study with parameters fixed to the following values: the residual standard deviation σ 251	

was set to 5, the branch length noise to 20% and topological noise to 2 swaps. For simulated data 252	

according to these parameters, we deleted records of phenotypic values at various proportions 253	

(10%, 30% and 50%) and according to three mechanisms inspired from Penone et al.(2014): values 254	

were missing completely at random (MCAR), missing at random according to the environmental 255	

variable (MARvar) or missing at random according to the phylogeny (MARphylo). For more details 256	

of missing data mechanisms (e.g. MCAR, MAR), see Little and Rubin (2002; see also Nakagawa 257	

and Freckleton 2008). The multiple imputation of the missing phenotypic values were handled 258	

using two different methods: on the one hand, we used an R implementation of the method 259	

PhyloPars (Bruggeman, et al. 2009), called Rphylopars (Goolsby, et al. 2017), to impute the 260	

missing values according to both the phylogeny and environmental (non-missing) data (hereafter, 261	

the matrix method). On the other hand, we used the method described in Penone et al. (2014) using 262	

the information contained in phylogenetic eigenvectors (Diniz, et al. 1998; see also Guenard, et al. 263	

2013) to impute the missing vales (hereafter, the eigenvector method).  264	

The results of our simulations show that the matrix method (RphyloPars) yielded estimates with 265	

little bias (Fig. 3A, especially when missing values are missing according to the phylogeny, 266	

MARphylo), while using eigenvectors resulted in a stronger bias, strongly increasing with the 267	

proportion of missing values. Overall, the level of bias strongly depended on the characteristics of 268	

the true tree and the method used, and only slightly on the rate of missing values (Table 2). 269	
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Coverage analysis of the confidence intervals (Fig. 3B) show that the matrix method is slightly too 270	

liberal when values are missing completely at random (MCAR) or missing at random according to 271	

the environmental variable (MARvar), but slightly conservative when they are missing at random 272	

according to the phylogeny (MARphylo). By contrast, the eigenvector method produced the 273	

coverage too liberal to be useful, although, interestingly, decreasing with the proportion of missing 274	

values. Overall, the coverage depended mostly the true tree and method used, and only marginally 275	

on the mechanism and rate of missing values (Table 2). The strong influence of the true tree on the 276	

estimate and its coverage is mainly driven by a strong instability of the eigenvector method 277	

regarding a particular tree (Tree #11 in Figure S4 and Table S1). Removing this tree from the 278	

analysis does not qualitatively impact the results shown in Fig. 3. However, this example makes an 279	

interesting point about the eigenvector method being potentially very sensitivity to the nature of a 280	

phylogenetic tree.   281	

Discussion 282	

The aim of this article is to introduce a simple and readily implementable method (i.e. Rubin’s 283	

rubles) to account for phylogenetic uncertainty in phylogenetic comparative methods, PCMs. More 284	

practically, we explored the use of Rubin’s rules simultaneously handling phylogenetic uncertainty 285	

and species sampling uncertainty (i.e. missing trait data; see Paterno, et al. 2018). Via a simulation 286	

study using a simple PGLS, we compared the proposed method using Rubin’s rules with other 287	

existing methods across different levels of branch length and topological noise, and we also 288	

assessed the number of trees required to accurately account for phylogenetic uncertainty. Further, 289	

we tested the practicality of our method to handle missing trait data under different imputation 290	

procedures and missing-data mechanisms. Four main results have emerged from our simulation 291	

study. 292	

First, in terms of error rate, methods ignoring phylogenetic uncertainty performed poorly and had a 293	

bad coverage for the slope confidence interval (CI). These findings are concordant with the 294	
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previous work by de Villemereuil et al. (2012) comparing different methods.  Both our proposed 295	

methods using Rubin's rule and the AIC-based method were much closer to the expected results 296	

using a PGLS with the true tree. Hence, using a consensus tree (either being a strict consensus or a 297	

majority rule based one) will yield too narrow CI, meaning that any test framework linked to it (e.g. 298	

slope significance testing) will yield an uncontrolled type I error rate. 299	

The second main result is that the behavior of the methods accounting for phylogenetic uncertainty 300	

differed between them and depends on the level of phylogenetic noise in the tree distribution. 301	

Whereas the AIC-based method was consistently slightly too liberal, our proposed method using 302	

Rubin's rule was, by contrast, slightly conservative. The method assuming infinite sample size 303	

("original df") was less conservative than the method correcting for small sample size ("corrected 304	

df"). This conservative behavior depended on the level of noise: our proposed method became more 305	

conservative as the level of phylogenetic noise increased. The AIC-based method was, on the 306	

contrary, less sensitive to the level of noise. 307	

The third main result is that the number of phylogenetic trees needed to correct for phylogenetic 308	

uncertainty is surprisingly low. The required number of trees is far less than 1000 (as in Garamszegi 309	

and Mundry 2014), and probably less than 100 (as in de Villemereuil, et al. 2012). It is likely to be a 310	

matter of dozens. In our simulation, sets of 50 randomly selected trees achieved almost always over 311	

99% relative efficiency; in other words, using 50 trees should be almost as good as using an infinite 312	

number of trees. For low to medium levels of noise, even a sample size as low as 10 trees almost 313	

always yielded over 99% relative efficiency. As a whole, we recommend the use of over 50 314	

phylogenetic trees in a PCM to account for phylogenetic uncertainty. However, for any given 315	

analysis and tree set, we recommend checking the number of trees needed to reach a relative 316	

efficiency of 99% (Nakagawa 2015). In practice, indeed, the required number of trees required to 317	

achieve high efficiency will strongly depend on the phenotypic data (e.g., phylogenetic signal), the 318	

complexity of the model and the variability in the tree estimates (e.g. strong topological and branch 319	

length uncertainty). We note that the statistical literature has discussed other criteria apart from the 320	
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relative efficiency to determine how many imputations one requires (see Graham, et al. 2007, 321	

White, et al. 2011).  322	

As mentioned, the AIC-based method (Garamszegi and Mundry 2014) accounted for phylogenetic 323	

uncertainty performed well, although with slightly liberal CIs. Therefore, the AIC-based method is 324	

definitely an option to correct for phylogenetic uncertainty. The method based on Rubin’s rules (or 325	

multiple imputation), despite being slightly conservative, has the advantage of being a theoretical 326	

founded, yet simple method (we note that being conservative is probably preferred to being slightly 327	

liberal). This is, given that the imputation step is ‘proper’, which is the case here as long as the trees 328	

come from a Bayesian posterior distribution and the estimates are Maximum Likelihood Estimators 329	

(e.g. BEAST/PGLS combination, for example; for the definition on proper multiple imputation, see 330	

Rubin 1987, Nielsen 2003). However, there is another clear benefit of using the proposed method.  331	

This leads to our fourth point, that is, multiple imputation can simultaneously handle missing trait 332	

data (species sampling uncertainty) and phylogenetic uncertainty in a comparative data set. 333	

Especially, using the matrix method (PhyloPars; Bruggeman, et al. 2009; implemented as 334	

Rphylopars by Goolsby, et al. 2017) to account for missing phenotypic values, while accounting for 335	

the phylogenetic uncertainty at the same time, yields estimate with little bias on the slope and 336	

almost calibrated coverage of the confidence interval. Using the eigenvector method, as suggested 337	

in Penone et al. (2014) does not seem to yield satisfying results, however. The sensitivity of the 338	

matrix method (Rphylopars) to the rate and mechanism of missing data was relatively small, 339	

suggesting that the method should perform fairly well in many different circumstances. An 340	

exception to this is that when missing values are missing at random according to the phylogeny, the 341	

matrix method is slightly too conservative, while it is slightly too liberal for the two other missing-342	

data mechanisms we tested here. Given the pervasive nature of missing data, we suggest multiple 343	

imputation may be useful for virtually every comparative data set (Nakagawa and Freckleton 2008, 344	

Garamszegi and Moller 2011). Note that Rphylopars is intended to produce point estimate of the 345	

missing phenotypic value with standard errors, which can be used to produce multiple imputation as 346	
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we did. However, this process might not conserve all the properties of the multiple imputation 347	

model (e.g., it might slightly decreased covariance between species in the multiple imputation). 348	

Work is being conducted on a more proper multiple imputation method using a matrix method for 349	

missing values in the context of phylogenetic comparative analysis (S. Blomberg, Pers. Comm., see 350	

also the package in development at https://github.com/pdrhlik/phylomice). We provide 351	

implementations of our method using R at GitHub repository 352	

(https://github.com/devillemereuil/SimulTrees). 353	

It is notable that the procedure known as ‘data augmentation’ can also be used for dealing with 354	

missing data instead of multiple imputation. The term, data augmentation is used in a number of 355	

ways in the statistical literature, but here we follow the usage by McKnight et al. (2007); that is, in 356	

this procedure, uncertainty of missing data is incorporated in to parameter estimates during analysis 357	

(see the original usage of this term as in Tanner and Wing 1987). A data augmentation procedure is 358	

implemented, for instance, in MCMCglmm (Hadfield 2010). However, there is one disadvantage to 359	

data augmentation, which does not affect multiple imputation. Data augmentation assumes the use 360	

of just identified or over-identified models (Enders and Bandalos 2001, Enders 2010). That is, a 361	

particular model (for imputation) includes enough or more predictor variables, so that missing 362	

values can be recovered accurately from these predictors. In contrast, because multiple imputation 363	

separates the steps of data imputation and analysis, we do not need to clutter a statistical model for 364	

analysis (i.e. the analysis step) with many variables, which assist in recovering missing values 365	

(known as auxiliary variables;	Enders 2010, Nakagawa 2015). Technically speaking, auxiliary 366	

variables are supported to make missing values to fulfill the assumption of missing at random, 367	

MAR (Little and Rubin 2002). In a multiple imputation procedure, we need add auxiliary variables 368	

only to a statistical model for imputation (i.e. the imputation step). For example, known data on 369	

species body size can be used during the imputation step to help recover missing data on species 370	

longevity, given the strong correlation between the two. However, because multiple imputation 371	

separates imputation and analysis, body size does not need to be a part of the final model. The use 372	
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of multiple imputation probably has wider applications over data augmentation. Most importantly, 373	

to integrate phylogenetic uncertainty in a comparative data set with missing data, one just needs to 374	

conduct extra imputations (e.g. more m as in Equation (1)) to include the adequate number of trees, 375	

which can be measured by the efficiency index as in Equation (13).  376	

In conclusion, the method using Rubin’s rules is readily usable for all comparative biologists. 377	

Clearly, the use of multiple imputation used with the matrix method is extremely useful not only for 378	

imputing missing trait data, but also for integrating phylogenetic uncertainty, even simultaneously, 379	

as we have shown above. We expect such a simultaneous use of these two aspects of multiple 380	

imputation to be common in phylogenetic comparative analyses in the near future. 381	
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 506	

Figure legends 507	

Figure 1.  Complementary of the coverage (1 - coverage) for 95% confidence intervals for the 508	

different estimation methods against the two types of noise (left: branch length noise, right: 509	

topological noise). Grey area is the zone of non-significance for a binomial test with a true 510	

probability of 0.05 (i.e. expected complementary coverage). 511	

Figure 2. Relative efficiency distribution for different tree sample size (T) and different levels of 512	

branch length noise (BLN) and topological noise (Nb. Swap).  513	

The boxes depict the 50% inter-quantile interval, the whiskers depict the 95% inter-quantile interval 514	

and the horizontal bar is the average estimate. The red lower dot is the minimal relative efficiency 515	

yielded during the simulations. 516	

Figure 3. Estimate of the slope (A) and complementary of the coverage (1 - coverage) of its 517	

associated confidence interval (B) for the two methods of multiple imputation of missing 518	

phenotypic values (PhyloPars and Eigenvectors) according to the proportion of missing values in 519	

the data and mechanism of missing values: MCAR, missing completely at random; MARvar, 520	

missing at random according to the environmental variable: MARphylo, missing at random 521	
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according the phylogeny. Grey area in B is the zone of non-significance for a binomial test with a 522	

true probability of 0.05 (i.e. expected complementary coverage). 523	

Figure S1. Average estimates of the intercept, slope and residual standard deviation for the 524	

different estimation methods and true vales for sigma, according to the level of branch length noise. 525	

The true value of the intercept is 5 and the true value for the slope is 2. 526	

Figure S2. Average estimates of the intercept, slope and residual standard deviation for the 527	

different estimation methods and true vales for sigma, according to the level of topological noise 528	

(i.e. number of swaps). The true value of the intercept is 5 and the true value for the slope is 2. 529	

Figure S3. Average estimates of the intercept, slope and residual standard deviation for the 530	

different estimation methods and true vales for sigma, according to the true tree used to construct 531	

the distribution of trees. The true value of the intercept is 5 and the true value for the slope is 2. 532	

Figure S4. Average estimates according to the true tree, methods (PhyloPars or Eigenvectors), 533	

mechanisms (MCAR, MARvar, MARphylo; see the main text) and proportion of missing values. 534	

The true value of the slope is 2. 535	

 536	
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Table 1. Variance partitioning using a linear model to model the distribution of the inferred parameters, confidence interval coverage and 
efficiency. The total R² of the linear model is given, followed by the relative contribution (i.e. relative Pratt's measure; Pratt 1987) from each 
parameter to the total R². Relative contributions sum up to 1. "Number of trees" was available only for the study of efficiency. 

Parameter 
Estimation Model R² 

Parameter contribution to R² 
 

True Tree Method Sigma 
Branch Length 
Noise 

Topology 
Noise 

Number of 
trees 

Intercept 0.0075  0.51  0.018  0.29  0.062  0.12  − 

Slope 0.007  0.8  0.041  0.027  0.11  0.026  − 

Residual St. 
Dev. 0.79  0.043  0.3  0.66  0.00015 0.0017  − 

CI Coverage        

Slope 0.66 0.013 0.98 3.4 x 10^-5 0.0019 0.0055 − 

Efficiency analysis       

Efficiency 0.71 0.023 − 1.9 x 10^-7 0.37 0.037 0.58 
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Table 2. Variance partitioning using a linear model to model the distribution of the inferred slope and confidence interval coverage in the 
simulation study on missing values. The total R² of the linear model is given, followed by the relative contribution (i.e. relative Pratt's measure; 
Pratt 1987) from each parameter to the total R². Relative contributions sum up to 1.  

Parameter Estimation Model R² 

Parameter contribution to R² 
 

True Tree Method Mechanism Proportion of missing 

Slope 0.39  0.41  0.43  0.0078 0.15  

CI Coverage      

Slope 0.65  0.33  0.59  0.026  0.056  
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Table S1. Information regarding the 12 TreeBase trees used in the simulation analysis. 

No. Tree No. Taxa Date Journal Taxon info First Author Title 

1 88 2010 Evolution Plants (Legume) Marazzi, Brigitte Large-Scale Patterns of Diversification in the Widespread Legume 
Genus Senna and the Evolutionary Role of Extrafloral Nectaries. 

2 102 2011 Fungal Biology Fungi Voglmayr, Hermann The diversity of ant-associated black yeasts: Insights into a newly 
discovered world of symbiotic interactions 

3 110 2011 BMC 
Evolutionary 
Biology 

Animals (Fishes) Nakatani, Masanori Evolutionary history of Otophysi (Teleostei), a major clade of the 
modern freshwater fishes: Pangaean origin and Mesozoic radiation 

4 67 2011 Taxon Fungi Justo, Alfredo Phylogenetic classification of Trametes (Basidiomycota, Polyporales) 
based on a five-marker dataset 

5 94 2011 Nature Animals 
(Lizards) 

Alfoldi, Jessica The genome of Anolis carolinensis, the green anole lizard, and a 
comparative analysis with birds and mammals 

6 146 2004 Proceedings of 
the National 
Academy of 
Sciences (PNAS) 

Animals (Birds) Barker, F. Keith Phylogeny and diversification of the largest avian radiation. 

7 147 2013 Annals of the 
Missouri 
Botanical Garden 

Plants (Asterids) Liede-Schumann, 
Sigrid 

The Orthosiinae revisited (Apocynaceae, Asclepiadoideae, Asclepiadeae) 

8 81 2011 Molecular 
Phylogenetics and 
Evolution 

Plants 
(Monocots) 

Nauheimer, Lars Giant taro and its relatives: A phylogeny of the large genus Alocasia 
(Araceae) sheds light on miocene floristic exchange in the malesian 
region 

9 93 2011 Zoologica Scripta Animals 
(Squamates) 

Heinicke, Matthew Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, 
Gehyra) supports a single early colonization of Australia 

10 75 2012 American 
Naturalist 

Animals (Birds) Claramunt, Santiago Ecological opportunity and diversification in a continental radiation of 
birds: Climbing adaptations and cladogenesis in the Furnariidae 
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11 139 2013 Molecular 
Phylogenetics and 
Evolution 

Animals (Fishes) Unmack, Peter Phylogeny and biogeography of rainbow fishes (Melanotaeniidae) from 
Australia and New Guinea 

12 102 2014 Journal of 
Biogeography 

Plants 
(Umbellifers) 

Spalik, Krzysztof Recurrent short-distance dispersal explains wide distributions of 
hydrophytic umbellifers (Apiaceae tribe Oenantheae) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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