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Abstract!

Phylogenetic comparative methods (PCMs), especially ones based on linear models, have played a 

central role in understanding species’ trait evolution. These methods, however, usually assume that 

phylogenetic trees are known without error or uncertainty, but this assumption is most likely 

incorrect. So far, Markov chain Monte Carlo, MCMC-based Bayesian methods have successfully 

been deployed to account for such phylogenetic uncertainty in PCMs. Yet, the use of these methods 

seems to have been limited, probably due to difficulties in their implementation. Here, we propose 

an approach with which phylogenetic uncertainty is incorporated in a simple, readily implementable 

and reliable manner. Our approach uses Rubin’s rules, which are an integral part of a standard 

multiple imputation procedure, often employed to recover missing data. In our case, we see the true 

phylogenetic tree as a missing piece of data, and apply Rubin’s rules to amalgamate parameter 

estimates from a number of models using a set of phylogenetic trees (e.g. a Bayesian posterior 

distribution of phylogenetic trees). Using a simulation study, we demonstrate that our approach 

using Rubin’s rules performs better in accounting for phylogenetic uncertainty than alternative 

methods such as MCMC-based Bayesian and Akaike information criterion, AIC-based model 

averaging approaches; that is, on average, our approach has the best 95% confidence/credible 

interval coverage among all. A unique property of the multiple imputation procedure is that the 

index, named ‘relative efficiency’, could be used to quantify the number of trees required for 

incorporating phylogenetic uncertainty. Thus, by using the relative efficiency, we show the required 

tree number is surprisingly small (~50 trees) at least in our simulation. In addition to these 

advantages above, our approach could be combined seamlessly with PCMs that utilize multiple 

imputation to recover missing data. Given the ubiquity of missing data, it is likely that the use of the 

multiple imputation procedure with Rubin’s rules will be popular to deal with phylogenetic 

uncertainty as well as missing data in comparative data.  

Keywords – Bayesian statistics; data augmentation; likelihood methods; phylogenetic comparative 

methods; missing data; model averaging, multiple imputation !  
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(Introduction)!

Phylogenetic comparative methods, PCMs, have been playing a central role in investigating trait 

evolution across species (reviewed in Garamszegi 2014). The most popular methods in comparative 

biology are based on linear regression such as independent contrasts (Felsenstein 1985), 

phylogenetic generalized least squares (PGLS; Grafen 1989), or phylogenetic (generalized) linear 

mixed models (Lynch 1991; Hadfield and Nakagawa 2010). When one phylogenetic tree is used in 

analysis, all these methods assume that the phylogeny of organisms is known without error. 

However, no phylogenetic trees (or hypotheses) are known without error. Errors come in the form 

of uncertainty in branch length, topology, and also in the model of assumed character evolution. 

Researchers have been investigating the impact of these types of uncertainty on statistical inference 

(e.g., Díaz-Uriarte & Garland 1996; Symonds 2002). These studies generally suggest the 

importance of incorporating ‘phylogenetic uncertainty’ in PCMs; note that by using one tree, point 

estimates (e.g. regression coefficients) are not necessarily biased (Stone 2011), but uncertainty 

estimates (e.g. standard error or confidence intervals) are not accurate. Therefore, a number of 

methods have been proposed to include phylogenetic uncertainty (e.g. Losos 1994; Martin 1996; 

Housworth & Martin 2001; Huelsenbeck et al. 2000). Among these methods, probably the best one 

is to use Bayesian Markov Chain Mote Carlo, MCMC (Huelsenbeck et al. 2000; Huelsenbeck and 

Rannala 2003; de Villemereuil et al. 2012); the Bayesian MCMC methods utilize phylogenetic trees 

sampled from posterior tree set obtained from Bayesian phylogenetic tree estimation programs such 

as BEAST (Brummond and Rambaut 2007) and MrBayes (Ronquist and Huelsenbeck 2003). 

Nonetheless, these methods are not always met with enthusiasm in the evolutionary biology 

community (cf. Pagel et al. 2004, Pagel and Meade 2006). Difficulties we see are two-fold: (i) 

currently, few easy-to-use implementations for such Bayesian MCMC methods are widely available, 

at least, for regression-based PCMs (but see Hadfield 2010, de Villemereuil et al. 2012); and (ii) 

even if implemented, Bayesian MCMC-based analysis may take a long time to process many 
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phylogenetic trees (e.g., see Figure 6 in de Villemereuil et al. 2012). Recently, Garamszegi and 

Mundry (2014) have proposed a frequentist solution, which employs model averaging with Akaike 

information criterion (AIC) in PGLS incorporating many phylogenetic trees (see also Mahler et al. 

2010). Such a method overcomes the aforementioned difficulties. However, Garamszegi and 

Mundry (2014) acknowledge the lack of theoretical basis for this proposal, and that theoretical or 

simulation-based confirmation of their method is necessary.   

Here, we propose another solution to account for phylogenetic uncertainty. Our method is simple, 

generally applicable, and, what is more, it is fairly reliable and readily implementable (see below). 

Also, it is firmly based on missing data theory (reviewed in Little and Rubin 2002), and utilizes 

Rubin’s rules, which have been proposed as a part of the multiple imputation procedure (Rubin 

1987). Evolutionary biologists and ecologists have just recently recognized the usefulness of 

techniques based on missing data theory (reviewed in Nakagawa and Freckleton 2008; Nakagawa 

2015). Also, the importance of these missing-data methods has been discussed in the phylogenetic 

comparative literature (e.g. Garamszegi and Møller, 2011; de Villemereuil and Nakagawa 2014). 

Especially, multiple imputation has been successfully employed in a number of comparative studies 

to recover missing data (e.g. Fisher et al. 2003; González-Suárez et al. 2012; Liker et al. 2014; 

Pollux et al. 2014). Yet, so far, nobody seems to have made a use of Rubin’s rules to deal with 

phylogenetic uncertainty, only to get correct estimates and standard errors for the regression 

parameters.  

Below, we first describe Rubin’s rules associated with multiple imputation, and explain the 

rationale and potential advantages of our proposed method. Then, we conduct a simulation study 

using PGLS with a Bayesian posterior tree set to compare the performance of our proposed method 

to other methods such as methods using only one phylogenetic tree and the AIC-based method. We 

finish with a discussion, focusing on how our method can be combined seamlessly with PCMs that 

use multiple imputation to recover missing data. 
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Multiple!imputation!and!Rubin’s!rules!

Multiple imputation is a three-step process: imputing data, analyzing imputed data and pooling 

results. In the first step, m copies of ‘complete’ data sets are generated from an incomplete original 

data set. Popular techniques for the imputation steps use EM/EMB (expectation maximization with 

bootstrap) and MCMC algorithms, both of which are implemented in R packages such as Amelia 

(Honaker et al. 2011), mice (van Buuren and Groothuis-Oudshoorn 2011) and mi (Su et al. 2011); 

for more details regarding the algorithms, see Schafer (1997), Enders (2010) and van Buuren (2012). 

In the second step (analysis), we run separate statistical analyses on m data sets. In the final step 

(pooling), we use Rubin’s rules (see below) to aggregate m sets of results to produce parameter 

estimates along with their uncertainty. 

As an example of applying this three-step process to PCMs, let us assume that we have complete 

data for species traits (see Discussion for cases where missing data exist). Then, what remains 

missing is the ‘true phylogenetic tree’; note that this is the central reason for us using (a part of) 

multiple imputation to account for phylogenetic uncertainty. Currently, a standard approach to 

creating candidate trees is to use Bayesian phylogenetic methods, as mentioned above, such as 

BEAST and MrBayes, which yield a posterior distribution of phylogenetic trees (for a guidance on 

building phylogenetic trees, see Garamszegi and Gonzalez-Voyer 2014). Alternatively, we can use 

published Bayesian tree sets as in Jetz et al. (2012) for birds, and Arnold et al. (2010) for primates. 

We consider this tree generation stage as our imputation step (the first step). The second step can be 

conducted using any frequentist or Bayesian statistical procedures including PCMs, such as 

independent contrasts, PGLS and phylogenetic mixed models. Say, we will run PGLS with m 

randomly sampled phylogenetic trees from a Bayesian posterior tree set, which will result in m sets 

of results. Then, by combining these result sets via Rubin’s rules (the final step), we will have 

integrated phylogenetic uncertainty in our estimates from PGLS.  
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Rubin’s rules are a set of formulas for combining multiple statistical results, and they are as follows 

(Rubin 1987). With m imputations, parameters can be estimated by: 

 ,         (1) 

where  is a k length vector and an average of bj, and bj is the jth set (of m) of k parameter 

estimates (e.g. regression coefficients). An overall variance-covariance matrix of  is obtained by:  

 ,        (2)

 ,        (3)

 ,      (4) 

where V is the overall (total) variance(-covariance) matrix for , the within-imputation variance(-

covariance) matrix,  is the average of the variance-covariance matrix, Wj for b, and B is the 

between-imputation variance(-covariance) matrix for bj; note that the standard error of the ith 

parameter (of k) is (subscript denotes the ith row and ith column, or ith diagonal element). 

Also, the term, (1+1/m) in Equation (2) can be seen as a correction for m not being infinite. An 

important concept in multiple imputation is called, ‘fraction of missing information’, usually 

denoted by γ and given by: 

 ,       (5) 

where is the initial estimate of the fraction of missing information, ranging from 0 to 1 (see 

below; cf. Equation (12)), and the term, tr(BV-1) denotes the trace of the resulting matrix from BV-1. 

We can appreciate why is termed ‘the fraction of missing information’ because it represents a 
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easier to see this in Equation (8) below). In other words, it represents the proportion of the 

parameter uncertainty due to using different trees. We can obtain statistical significance and 

confidence intervals based on t distributions with the degrees of freedom of the following: 

 ,        (6) 

where is the degrees of freedom to be used for t values ( ). However, since the 

parameters will not be influenced equally by the phylogenetic uncertainty, it is probably better to 

obtain a fraction of missing information value for each parameter ( ) rather than omnibus values 

as in Equations (5 and 6) (Lipsitz et al. 2002). Such separate values of the degree of freedom (νi) 

can be obtained by: 

 ,        (7) 

 .        (8) 

However, the formulation of νi or assumes a very large sample size, n (which is the length of data 

when no data are missing; Rubin and Schenker 1986; Rubin 1987). Barnard & Rubin (1986) 

proposed the following adjustment in the degrees of freedom (cf. Lipsitz et al. 2002): 

 ,        (9)

 ,      (10) 

          (11) 
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the complete degrees of freedom (i.e. the degrees of freedom for the complete data set assuming no 

missing data). In the next section, we will compare the performance of both νi (hereafter denoted 

“original df”) and (hereafter denoted “corrected df”). 

Once we have an estimate of the corrected degrees of freedom, we can obtain a refined estimate of 

the fraction of missing information, for each parameter: 

 .      (12) 

Then, we can use to find a very useful quantity called ‘relative efficiency’, which is given by: 

 ,        (13) 

where  is relative efficiency of the ith parameter and ranges from 0 to 1. Relative efficiency 

represents the efficacy of multiple imputation process, compared to the case of m being infinite. In 

other words, this number can be used to assess how many imputations (m) are needed to account for 
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uncertainty are chosen arbitrarily). Notably, to achieve fairly high relative efficiency, the required 

number of m is surprisingly low, even when the fraction of missing information is relatively large. 

For example, with γ= 0.5 and m = 5, relative efficiency is 90.91%, while it is 95.24% when γ = 0.5 

and m = 10. Rubin’s (1987) initial recommendation of m was low (3-10) probably due to 

computational limitation at that time, but current thinking is to use much larger m, aiming at over 

99% relative efficiency (e.g. Graham et al. 2007, von Hippel 2009, Nakagawa 2015). As you see in 

Equation (13), we obtain a relative efficiency value (εi) for every parameter and such values vary 

among parameters. For assessing efficiency of a model, we will use the relative efficiency (ε*) that 

ν i
*

γ i
*

γ i
* = 1+ 1

m
⎛
⎝⎜

⎞
⎠⎟
Bii

Vii
+ 2
(ν i

* + 3)Vii

γ i
*

ε i = 1+ γ i
*

m
⎛
⎝⎜

⎞
⎠⎟

−1

ε i

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



! 9!

is obtained from the largest value of the fraction of missing information, following McKnight et al. 

(2007); that is: 

 ,        (14) 

where  denotes the maximum (largest) value of ; the use of the maximum value of 

ensures all parameters will achieve at least a certain relative efficiency level or above. We can 

easily automate calculations involving the above formulae with currently available R packages for 

multiple imputation such as mice (reviewed in Nakagawa and Freckleton 2011; see also Penone et 

al. 2014).  

A!simulation!study!

In order to assess the overall quality of our new method and compare it to existing ones, we 

performed a simulation study using 100 trees estimated from a real data set, using BEAST (reduced 

species and tree samples from Wells et al., Submitted; see also de Villemereuil et al., 2012). We 

simulated data sets in which a variable y was linearly predicted from a variable x, with an intercept 

of 5 and a slope of 2. The error structure of this relationship was constrained by a phylogenetic tree 

among the 100 trees (hereafter called the ‘true tree’), following a Brownian motion model. We 

simulated the data sets either using a small sample size (10 species, chosen to keep a strong 

phylogenetic structure; Fig. S1) or a larger one (50 species, Fig. S2, which is the same as used in de 

Villemereuil et al. 2012) and different residual standard deviation (sigma, σ from 2 to 15). Hence 

the simulation scheme used here was exactly identical to the one used in de Villemereuil et al. 

(2012). We compared GLS using the true tree or two types of consensus trees (majority rule or 

consensus), with both multiple GLS with pooling of the results using AIC averaging (as in 

Garamszegi and Mundry 2014) and pooling with Rubin’s rules as described above (either using the 

original degrees of freedom, df, or the corrected df as in Equation (9)). We also compared the 
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present results with the simulation results on the Bayesian methods of de Villemereuil et al. (2012). 

We simulated 10,000 replicates for each condition. Note that in the case of the Bayesian methods, 

only the results based on 3,000 replicates of 50 species are available. 

As shown in Fig. 1, the estimation of the intercept and the slope was accurate for all methods, but 

the accuracy of the residual variance (σ², depicted as the residual standard deviation σ in Fig. 1) 

differed greatly between the methods. Especially, the two methods using consensus trees 

overestimated the residual variance (σ²), even more so as the sample size became larger. Regarding 

the precision (i.e. estimates sampling variance), it was lower for larger residual variances (σ²) and 

lower sample size, as expected. The precision of the estimates also differed between the methods: 

again the two methods using consensus trees yielded very imprecise estimates, whereas the 

precision of the other methods was comparable. All methods incorporating phylogenetic uncertainty 

were very similar in terms of precision. 

However, as shown in Fig. 2, the coverage of the confidence intervals, CIs (credible intervals for 

the Bayesian method) were very different between these methods. The CI coverage of the methods 

using consensus trees was very liberal (note that we focus on the slope as this is the parameter of 

prime interest). The CI coverage of the methods using Rubin’s rules depended strongly on the type 

of degrees of freedom used. Whereas the original df yielded anti-conservative confidence intervals 

for N=10 species and perfectly calibrated ones for N=50, the CIs obtained from the corrected df 

were always conservative, and especially so for N=10. The confidence interval coverage of the AIC 

model averaging method was much like those of Rubin’s rule with the original df, but were slightly 

more liberal. In particular, they were not perfectly calibrated for N=50 species. Note that the 

Bayesian method was even slightly more liberal (discrepancy from the 5% expectancy was less 

often significant for this method, as there were only 3,000 replicates). 

In order to assess the behavior of the proposed method using Rubin’s rules to account for 

phylogenetic uncertainty, we also conducted a study using different sample size for the trees (T=10, 
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20, 50 or 100, all sets including the true tree) and computed the relative efficiency as shown in 

Equation (14). This analysis revealed two interesting patterns (Fig. 3). First, no efficiency lower 

than 0.93 was recorded for a total of 80,000 simulated data sets, even for a sample size of trees as 

low as T=10. Accordingly, the number of trees used had little effect on the coverage of confidence 

intervals, even for T=10 (Fig. S3-4). Second, in order to reach a relative efficiency over 0.99, on 

average, only 50 trees were necessary. With 100 trees, the relative efficiency was always over 0.99. 

All the results above (both regarding efficiency and coverage) were not changed when we used 

random sets of trees excluding the true tree (Fig. S5-7). Hence, a relatively small number of trees 

are sufficient to account for the phylogenetic uncertainty very efficiently, at least, in our simulation 

scheme. 

Discussion!

The aim of this article is to introduce a simple and generally applicable method to account for 

phylogenetic uncertainty in phylogenetic comparative methods, PCMs. Via a simulation study using 

a simple PGLS, we compared the proposed method using Rubin’s rules with other existing methods, 

and we also assessed the number of trees required to accurately account for phylogenetic 

uncertainty. Two main results have emerged from our simulation study. 

First, all methods accounting for phylogenetic uncertainty performed fairly well although not 

perfectly. In contrast, methods ignoring phylogenetic uncertainty performed poorly. These findings 

are concordant with the previous work by de Villemereuil et al. (2012). Our proposed method using 

Rubin’s rules, and with the original degrees of freedom (df), provided the expected coverage of the 

confidence interval, CI, for the slope with N = 50. Thus, when sample sizes are fairly high, i.e. over 

50, we recommend the use of Rubin’s rules with the original df. However, with sample size less 

than 50, one may want to use Rubin’s rules with corrected df, bearing on mind that the CI coverage 

may be slightly wider than expected (i.e. conservative). 
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The second main result is that the number of phylogenetic trees needed to correct for phylogenetic 

uncertainty is surprisingly low. The required number of trees is far less than 1000 (as in Garamszegi 

and Mundry 2014), and probably less than 100 (as in de Villemereuil et al. 2012). It is likely to be a 

matter of dozens. In our simulation, regardless of the inclusion of the ‘true tree’, sets of 50 

randomly selected trees achieved, on average, over 99% relative efficiency; in other words, the 

using 50 trees should be almost as good as using an infinite number of trees. Thus, we recommend 

the use of over 50 phylogenetic trees in a PCM to account for phylogenetic uncertainty. However, 

for any given analysis and tree set, we recommend checking the number of trees needed to reach a 

relative efficiency of 99% (Nakagawa 2015). In practice, indeed, the required number of trees 

required to achieve high efficiency will strongly depend on the phenotypic data (e.g. phylogenetic 

signal), the complexity of the model and the variability in the tree estimates (e.g. strong topological 

and branch length uncertainty). We note that the statistical literature has discussed other criteria 

apart from the relative efficiency to determine how many imputations one requires (see Graham et 

al. 2007; White 2009).  

As mentioned, the MCMC-based Bayesian method (e.g. de Villemereuil et al. 2012) and AIC 

model averaging method (Garamszegi and Mundry 2014) accounted for phylogenetic uncertainty 

fairy well, although both produce slightly liberal credible/confidence intervals, CIs. The method 

based on Rubin’s rules (or multiple imputation) has the advantage of superior performance and 

simplicity over these two other methods at least in terms of incorporating phylogenetic uncertainty. 

This is, given that the imputation step is ‘proper’, which is the case here as long as the trees come 

from a Bayesian posterior distribution and the estimates are Maximum Likelihood Estimators (e.g. 

BEAST/PGLS combination, for example; for the definition on proper multiple imputation, see 

Rubin 1987 and Nielsen 2003). However, there is another clear benefit of using the proposed 

method. That is, multiple imputation can simultaneously handle missing data and phylogenetic 

uncertainty in a comparative data set. Given the pervasive nature of missing data, we suggest 
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multiple imputation may be useful for virtually every comparative data set (Nakagawa and 

Freckelton 2008; Garamszegi and Møller, 2011). 

Notably, implementing multiple imputation with comparative data is a technically complex affair, 

because the imputation process requires the inclusion of a correlation matrix based on phylogeny. 

Thus, it requires a special package like PhyloPars (Bruggeman et al. 2009), and multiple imputation 

of comparative data was not possible with other general-purpose multiple imputation packages, 

which provide more flexibility over the former. However, Penone et al. (2014) recently showed that 

phylogenetic information could be added to multiple imputation in the form of phylogenetic 

eigenvectors (Diniz et al. 1998; see also Guénard et al. 2003), which can be seen as additional 

predictor variables (for the imputation step not for the analysis step). This means that, to conduct 

multiple imputation for comparative data, one can use general and flexible packages such as mice 

(van Buuren and Groothuis-Oudshoorn 2011), as was used for our simulation. However, more work 

is necessary to confirm such multiple imputation using phylogenetic eigenvectors are actually 

comparable to ones including phylogenetic correlation matrices.  

The procedure known as ‘data augmentation’ can also be used for dealing with missing data. We 

note that the term data augmentation is used in a number of ways in the statistical literature, but 

here we follow the usage by McKnight et al. (2007); that is, in this procedure, uncertainty of 

missing data is incorporated in to parameter estimates during analysis, thus, including methods like 

the full information maximum likelihood (FIML) method (see Enders 2001; for the original usage 

of the term, data augmentation, see Tanner and Wong 1987). A data augmentation procedure is 

implemented, for instance, in MCMCglmm (Hadfield 2010). However, there is one disadvantage to 

data augmentation that does not affect multiple imputation. Data augmentation assumes the use of 

just identified or over-identified models (Enders 2001, 2010). That is, a particular model (for 

imputation) includes enough or more predictor variables, so that missing values can be recovered 

accurately from these predictors. 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



! 14!

In contrast, because multiple imputation separates the steps of data imputation and analysis, we do 

not need to clutter a statistical model for analysis (i.e. the analysis step) with many variables, which 

assist in recovering missing values (known as auxiliary variables; Enders 2010; Nakagawa 2015). 

Technically speaking, auxiliary variables are supported to make missing values to fulfill the 

assumption of ‘missing at random’ (Little and Rubin 2002; for an accessible account, see Nakagawa 

and Freckelton 2008). In a multiple imputation procedure, we need add auxiliary variables only to a 

statistical model for imputation (i.e. the imputation step). For example, known data on species body 

size can be used during the imputation step to help recover missing data on species longevity, given 

the strong correlation between the two. However and importantly, because multiple imputation 

separates imputation and analysis, body size does not need to be a part of the final model. The use 

of multiple imputation probably has wider applications over data augmentation. Most importantly, 

to integrate phylogenetic uncertainty in a comparative data set with missing data, one just needs to 

conduct extra imputations (e.g. more m as in Equation (1)) to include the adequate number of trees 

(e.g. 50). 

In conclusion, the method using Rubin’s rules is readily usable for all comparative biologists, and it 

can be integrated with both frequentist and Bayesian PCMs alike. Clearly, the use of multiple 

imputation is extremely useful not only for imputing missing data in PCMs, but also for integrating 

phylogenetic uncertainty, as we have shown above. As yet, we are unaware of any study combining 

the standard merits of multiple imputation with phylogenetic uncertainty in comparative analysis. 

However, we expect such a dual use to be common in the near future. 
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Figure 1. The distributions of estimates for the intercept, slope and residual standard deviation 

parameters for the different methods, different simulated standard deviation (σ) and different 

sample sizes (N=10, blue; N=50, red). The simulated intercept is 5 and the simulated slope is 2. The 

boxes depict the 50% inter-quantile interval, the whiskers depict the 95% inter-quantile interval and 

the horizontal bar is the average estimate. The number of replicates is 10,000, except for the 

Bayesian method with only 3,000 replicates. 

Figure 2. Complementary of the coverage (1 - coverage) for 95% confidence/credible intervals for 

the different methods, different simulated standard deviation (σ) and different sample sizes (N=10, 

blue; N=50, red). Expected values of 1 � coverage (5%) are depicted by a dashed line. Stars show 

significant discrepancy (binomial test) from 5% assuming 10,000 replicates (six-branch stars) or 

3,000 (five-branch stars, only for the Bayesian method). 

Figure 3. Relative efficiency distribution for different tree sample size (T), different simulated 

standard deviation (σ) and different sample sizes (N). The boxes depict the 50% inter-quantile 

interval, the whiskers depict the 95% inter-quantile interval and the horizontal bar is the average 

estimate. The red lower dot is the minimal relative efficiency yielded during the simulations. The 

number of replicates is 10,000. 

Figure S1. A visual representation of the ‘true tree’ for the 10 species used for the simulation study.  

Figure S2. A visual representation of the ‘true tree’ for the 50 species used for the simulation study. 

Figure S3. The distribution of estimates for the relative efficiency simulation, against different tree 

sample size (T), different simulated standard deviation (σ) and different sample size (N=10, blue; 

N=50, red). The simulated intercept is 5 and the simulated slope is 2. The boxes depict the 50% 

inter-quantile interval, the whiskers depict the 95% inter-quantile interval and the horizontal bar is 

the average estimate. The number of replicates is 10,000. 
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Figure S4. Complementary of the coverage (1 - coverage) for 95% confidence/credible intervals for 

the relative efficiency simulation, against different tree sample size (T), different simulated standard 

deviation (σ) and different sample sizes (N=10, blue; N=50, red). The number of replicates is 

10,000. 

Figure S5. Relative efficiency distribution for random tree sets excluding the true tree, against 

different tree sample size (T), different simulated standard deviation (σ) and different sample sizes 

(N). The boxes depict the 50% inter-quantile interval, the whiskers depict the 95% inter-quantile 

interval and the horizontal bar is the average estimate. The red lower dot is the minimal relative 

efficiency yielded during the simulations. The number of replicates is 10,000. 

Figure S6. The distribution of estimates for random tree sets excluding the true tree, against 

different tree sample size (T), different simulated standard deviation (σ) and different sample size 

(N=10, blue; N=50, red). The simulated intercept is 5 and the simulated slope is 2. The boxes depict 

the 50% inter-quantile interval, the whiskers depict the 95% inter-quantile interval and the 

horizontal bar is the average estimate. The number of replicates is 10,000. 

Figure S7. Complementary of the coverage (1 - coverage) for 95% confidence/credible intervals for 

random tree sets excluding the true tree, against different tree sample size (T), different simulated 

standard deviation (σ) and different sample sizes (N=10, blue; N=50, red). The number of replicates 

is 10,000. 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



 = 2  = 5  = 10  = 15

-20

-10

0

10

20

30

-2

0

2

4

6

0

10

20

30

40

Intercept
Slope

Resid. Stand. Dev.

Tr
ue

Co
ns

en
su

s
(s

tri
ct

)

Co
ns

en
su

s
(m

aj
or

ity
)

G
LS

 R
ub

in
's 

ru
le

(c
or

re
ct

ed
 d

f)

G
LS

 R
ub

in
's 

ru
le

(o
rig

in
al

 d
f)

M
od

el
 a

ve
ra

gi
ng

(A
IC

)

Ba
ye

sia
n

Tr
ue

Co
ns

en
su

s
(s

tri
ct

)

Co
ns

en
su

s
(m

aj
or

ity
)

G
LS

 R
ub

in
's 

ru
le

(c
or

re
ct

ed
 d

f)

G
LS

 R
ub

in
's 

ru
le

(o
rig

in
al

 d
f)

M
od

el
 a

ve
ra

gi
ng

(A
IC

)

Ba
ye

sia
n

Tr
ue

Co
ns

en
su

s
(s

tri
ct

)

Co
ns

en
su

s
(m

aj
or

ity
)

G
LS

 R
ub

in
's 

ru
le

(c
or

re
ct

ed
 d

f)

G
LS

 R
ub

in
's 

ru
le

(o
rig

in
al

 d
f)

M
od

el
 a

ve
ra

gi
ng

(A
IC

)

Ba
ye

sia
n

Tr
ue

Co
ns

en
su

s
(s

tri
ct

)

Co
ns

en
su

s
(m

aj
or

ity
)

G
LS

 R
ub

in
's 

ru
le

(c
or

re
ct

ed
 d

f)

G
LS

 R
ub

in
's 

ru
le

(o
rig

in
al

 d
f)

M
od

el
 a

ve
ra

gi
ng

(A
IC

)

Ba
ye

sia
n

Es
tim

at
es

 d
ist

rib
ut

io
n

Sample size
N = 10
N = 50

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



Intercept Slope

 
✱

✱ ✱

✱ ✱

 

✱ ✱

 ✱ ✱  

✱
✱

✱
✱

✱ ✱

 

✱ ✱

 ✱ ✱ ★

 
✱

✱ ✱

✱ ✱

 

✱ ✱

 ✱ ✱ ★

 
✱

✱ ✱

✱ ✱

 

✱ ✱

 ✱ ✱ ★

 

✱
✱

✱

✱ ✱
 

✱
✱

✱  ✱ ★

 

✱
✱

✱

✱ ✱

 

✱
✱

✱  ✱
★

 
✱

✱

✱

✱ ✱

✱

✱
✱

✱  ✱  

 

✱
✱

✱

✱ ✱
 

✱
✱

✱  ✱ ★

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

 = 2
 = 5

 = 10
 = 15

Tr
ue

Co
ns

en
su

s
(s

tri
ct

)

Co
ns

en
su

s
(m

aj
or

ity
)

G
LS

 R
ub

in
's 

ru
le

(c
or

re
ct

ed
 d

f)

G
LS

 R
ub

in
's 

ru
le

(o
rig

in
al

 d
f)

M
od

el
 a

ve
ra

gi
ng

(A
IC

)

Ba
ye

sia
n

Tr
ue

Co
ns

en
su

s
(s

tri
ct

)

Co
ns

en
su

s
(m

aj
or

ity
)

G
LS

 R
ub

in
's 

ru
le

(c
or

re
ct

ed
 d

f)

G
LS

 R
ub

in
's 

ru
le

(o
rig

in
al

 d
f)

M
od

el
 a

ve
ra

gi
ng

(A
IC

)

Ba
ye

sia
n

1 
– 

Co
ve

ra
ge Sample size

N = 10
N = 50

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



N = 10 N = 50

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 = 2
 = 10

T = 10 T = 20 T = 50 T = 100 T = 10 T = 20 T = 50 T = 100
Tree sample size

Re
la

tiv
e 

e
cie

nc
y

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



Neosepicaea jucunda

Embelia grayi

Sloanea macbrydei

Sloanea langii

Rhysotoechia robertsonii

Dysoxylum papuanum

Aglaia tomentosa

Aglaia sapindina

Stephania japonica

Darlingia darlingiana

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



Tetracera nordtiana

Tetrastigma nitens

Polyscias elegans
Citronella smythii

Randia tuberculosa
Tabernaemontana pandacaqui
Melodinus australis
Neosepicaea jucunda
Lantana camara
Faradaya splendida

Symplocos paucistaminea
Embelia grayi

Elaeocarpus grandis
Sloanea macbrydei
Sloanea langii
Pullea stutzeri

Connarus conchocarpus

Rockinghamia angustifolia
Macaranga involucrata

Dichapetalum papuanum

Xanthophyllum octandrum
Archidendron vaillantii

Sageretia hamosa

Rhysotoechia robertsonii
Harpullia rhyticarpa
Flindersia brayleyana
Melicope bonwickii

Dysoxylum parasiticum
Dysoxylum papuanum
Aglaia tomentosa
Aglaia sapindina

Chisocheton longistipitatus

Argyrodendron trifoliolatum
Syzygium cormiflorum
Rhodamnia sessiliflora

Haplostichanthus sp.
Desmos goezeanus
Melodorum sp.

Myristica globosa

Daphnandra repandula
Cryptocarya oblata
Endiandra palmerstonii
Beilschmiedia bancroftii
Litsea leefeana

Alpinia caerulea
Cordyline cannifolia
Freycinetia excelsa

Ripogonum album
Stephania japonica
Darlingia darlingiana

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



 = 2  = 10

0

10

1

2

3

Intercept
Slope

T = 10 T = 20 T = 50 T = 100 T = 10 T = 20 T = 50 T = 100

Es
tim

at
es

 d
ist

rib
ut

io
n

Sample size
N = 10
N = 50

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



 = 2  = 10

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.05

Intercept
Slope

T = 10 T = 20 T = 50 T = 100 T = 10 T = 20 T = 50 T = 100
Methods

1-
Co

ve
ra

ge Sample size
N = 10
N = 50

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



N = 10 N = 50

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 = 2
 = 10

T = 10 T = 20 T = 50 T = 100 T = 10 T = 20 T = 50 T = 100
Tree sample size

Re
la

tiv
e 

e
cie

nc
y

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts

Text



 = 2  = 10

0

10

1

2

3

Intercept
Slope

T = 10 T = 20 T = 50 T = 100 T = 10 T = 20 T = 50 T = 100

Es
tim

at
es

 d
ist

rib
ut

io
n

Sample size
N = 10
N = 50

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts



 = 2  = 10

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.05

Intercept
Slope

T = 10 T = 20 T = 50 T = 100 T = 10 T = 20 T = 50 T = 100
Methods

1-
Co

ve
ra

ge Sample size
N = 10
N = 50

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1216v1 | CC-BY 4.0 Open Access | rec: 6 Jul 2015, publ: 6 Jul 2015

P
re
P
rin

ts


