CAUSA 2.0: accurate and consistent evolutionary analysis of
proteins using codon and amino acid unified sequence
alignments

Xiaolong Wang, Chao Yang

Multiple sequence alignment (MSA) is widely used to reveal structural and functional
changes leading to genetic differences among species, and to reconstruct evolutionary
histories of related genes, proteins and genomes. Traditionally, proteins and their coding
sequences (CDSs) are aligned and analyzed separately, but often drastically different
conclusions were drawn on a same set of data. Here we present a new alignment strategy,
Codon and Amino Acid Unified Sequence Alignment (CAUSA) 2.0, which aligns proteins and
their coding sequences simultaneously. CAUSA 2.0 optimizes the alignment of CDSs at
both codon and amino acid level efficiently. Theoretical analysis showed that CAUSA 2.0
enhances the entropy information content of MSA. Empirical data analysis demonstrated
that CAUSA 2.0 is more accurate and consistent than nucleotide, protein or codon level
alignments. CAUSA 2.0 locates in-frame indels more accurately, makes the alignment of
coding sequences biologically more significant, and reveals several novel mutation
mechanisms that relate to some genetic diseases. CAUSA 2.0 is available in website
www.DNAPlusPro.com .
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Introduction

In recent years, with increasingly wider availability of sequence data, it has been able to
reveal structural and functional changes leading to genetic differences among species, and allows
reconstruction of evolutionary histories of related genes, proteins and genomes. These studies
require multiple sequence alignment (MSA) for accurate identification of homologous residues
and positioning of gaps indicating insertions and deletions (indels). At present, there are quite
some MSA tools, such as Clustal W 2, MAFFT 3, MUSCLE ¢, T-coffee > and PRANK .
However, different programs often give drastically different alignments on a same set of data,
and support entirely different mechanisms driven evolutionary changes. In fact, MSAs are
sometimes so inaccurate that they could lead to misinterpretation of evolutionary information 7.

Due to the small size of the alphabet of DNA bases, it is difficult to distinguish true
homology from random similarities, and thus the alignment of DNA sequences is inherently
inaccurate 8. Proteins are built from 20 amino acids, so that the ‘signal-to-noise ratio’ in protein
sequence alignments is better than that of DNA sequences. Besides this advantage in
information-content, protein alignments also benefit from a series of AA substitution matrices,
such as PAM °, BLOSUM !° and Gonnet !, which contain empirically derived scores for each
possible AA substitution and provide a rational basis for aligning AAs.

Particularly, the problem of aligning the coding sequences (CDSs) for a certain family of
proteins has been studied fairly in depth. Various methods have been developed to solve this
problem: The first is to construct a codon alignment by back-translating a protein alignment,
such as RevTrans 8, PAL2NAL 2 and TranslatorX '3; The second, Hein’s COMBAT 415, is to
construct a combined alignment by combining a DNA alignment and a protein alignment;
Unfortunately, it has been applied only in pairwise alignment, but not in MSA; The third is to
construct a codon alignment by using an empirical codon substitution scoring matrix 6. In
addition, many codon-based models !"-?! has been developed to produce more reliable estimates
of certain biologically important measures, such as the transition/transversion rate ratio and the

synonymous/nonsynonymous substitution rate ratio, than can nucleotide-based models.
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Owing to the complexities of the alignment of CDSs, it has been rather difficult to choose an
appropriate tool, method and parameters for MSA and the subsequent evolutionary analysis.
Moreover, traditionally protein sequences and their CDSs have been aligned and analyzed
separately, in nucleotide, amino acid (AA) or codon level. It is well known that they often give
incongruent conclusions, in practice, however, usually only one kind of alignment is selected for
the subsequent phylogenetic and evolutionary analysis, while the others are dismissed to avoid
the problem of inconsistency in different (nucleotide, AA or codon) alignment methods. Here we
present an alternative alignment strategy, Codon and Amino Acid Unified Sequence Alignment
(CAUSA 2.0), which aligns protein sequences and their CDSs simultaneously. We demonstrated
that CAUSA 2.0 is evolutionarily accurate and consistent, computationally efficient, and it

reveals some novel mutation mechanisms.

Materials and Methods

Protein coding sequences
Different strains of human and simian immunodeficiency virus were derived from the seed
alignment of Pfam family pf00516. The coding sequences (CDSs) of their Envelope glycoprotein
gp120 (Env) and core (Gag) proteins were retrieved from the HIV sequence database ??. Thirty
protein families and their standard phylogenetic trees in human and mammalian animals were

arbitrarily selected from TreeFam-A (http://www.treefam.org/).

Data analysis
The flowchart of data analysis is shown in Fig 1, DNA or protein alignments were aligned

by the multiple sequence alignment tools at EBI (http://www.ebi.ac.uk/), including ClustalW,

MAFFT, MUSCLE, T-COFFEE and PRANK. Codon alignments were aligned by PRANK using
“align translated codons” option (PRANK-CA), and a codon alignment tool (CAT) provided by

the HIV database at the Los Alamos National Laboratory (http://www.hiv.lanl.gov/). All

programs were run with their default settings. The principle and implementation of CAUSA 2.0,

and the methodologies for the construction of sequence alignments, phylogenetic trees,
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evolutionary analysis and structure modeling, were described in details in the Supplementary

Material.

Results

CAUSA 2.0 improves the accuracy of the alignment of CDSs

It has been reported that traditional nucleotide or protein level alignment methods
incorrectly squeeze distinct, but similar, inserted sequences between two conserved blocks, thus
overestimate the number of substitutions and underestimate that of indels 23. Using the Pfam seed
alignment of Env (PF00516) as a model example, as shown in Fig 2A and Fig S1A, they
demonstrated that a traditional ClustalW protein alignment of Env suggested a high rate of
substitutions in a variable (V2) region. Alignments of the same region given by MAFFT (Fig
S1B), MUSCLE (Fig S1C) and T-coffee (Fig S1D), are basically the same to that of ClustalW.
They also pointed out that the problem is caused by repeated penalizing gap-opening 23, but
cannot be avoided by reducing gap-opening penalties, since it will result in ‘gappy’ alignments.
In order to solve this problem, they developed PRANK 672326 a phylogeny-aware alignment
tool, which “flags™ gaps introduced in earlier steps, so that distinct insertions are kept separate
even when they occur at a same position 2. As shown in Fig 2B, PRANK identified several
distinct insertions.

Using the same set of Env CDSs, we compared CAUSA 2.0 with protein alignments aligned
by ClustalW, MAFFT, MUSCLE, T-COFFEE and PRANK, and codon alignments aligned by
PRANK-Codon and CAT. As shown in Fig S1A-S1D, all different kinds of protein alignments
show a lot of AA substitutions in the V2 region of Env, while in PRANK (Fig 2B, S1E) and
PRANK-Codon (Fig 2C, S1F), they are identified as distinct insertions, and thus, many more
gaps were inserted.

In CAUSA 2.0 non-synonymous substitutions (NSSs) are displayed in obviously different
colors; and synonymous substitutions (SSs) are shown in similar but slightly different colors,

makes it much easier for a user to distinguish an SS from a NSS. As indicated by the red boxes
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in Fig 2, in all of the other alignments, a row of highly conserved Y residues were misaligned.
While in CAUSA 2.0 the alignment of this row is obviously more accurate. It is more clearly
shown in Fig S1H, the CAUSA 2.0 alignment is visually highly ordered, since the number of
substitutions was minimized both in codon and AA level. Similar results could not be obtained
with the other MSA by changing their gap penalties. Alignments created by the other programs
often require fine adjustments made by human visual inspection before phylogeny analysis,
which is cumbersome and a potential source of errors. Using CAUSA 2.0, the need of visual
control or manual editing of MSAs is eliminated.
CAUSA 2.0 better interprets molecular evolution

Frequently, CAUSA 2.0 inserts one or more gaps within a codon-AA 4-tuple. In the
previous version (CAUSA 1.0), we took them as errors, and had to fix the alignments a posteriori
by moving the gaps inserted out of the tuple 27. However, later we found that gap-moving is
totally unnecessary. In the present version (CAUSA 2.0), the gapped codon-AA tuples are kept
and called split codons. Actually, the split codons are very informative and useful, as they allow
CAUSA 2.0 locates in-frame indels more accurately, and reveals some novel mutation
mechanisms.

An in-frame indel is an indel in a CDS with a length of a multiple of 3bp, and thus,
maintained the open reading frame (ORF). It has been reported that more than half of the
functionally important coding indels in human genome were in-frame, but they often do not
coincide perfectly with codon boundaries ?%. However, in a traditional protein or codon
alignment, every codon is indivisible, and thus, an in-frame indel has to be forced to start from
the first base of a codon, leads to an inaccurate alignment of the CDSs involved. By allowing the
split codons, CAUSA 2.0 locates in-frame and non-in-frame indels more accurately, and reveals
several new mutation mechanisms by which new codons could be generated:

(1) Codon splitting: when an in-frame insertion was inserted into an internal location
(between 1-2 or 2-3) of a codon, the codon was split into two parts, and fused with the bases in

the two ends of the inserted sequence, respectively, forming two new codons.
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(2) Codon fusion: when an in-frame deletion started from the second or third base of a
codon, the remaining one or two bases of this codon fused with the bases in the other side of the
deletion, forming a new codon.

(3) Substitution induced deletion (siDel): when a non-synonymous substitution occurred in
a codon, if the encoded AA became similar to another AA nearby in the same sequence, it may
allow the deletion of a fragment between them.

(4) indel-induced partial frame shift (ipFS): when two or more non-in-frame indels
neighbored, there will be one or more partial frame shifts occurred within or nearby the indels, if
it does not change the whole reading frame of the CDSs.

For an example of codon splitting, as shown in Fig 3A and 3B, ClustalW suggested a lot of
independent substitutions between the two groups of virus (HIV1 and HIV2/SIV), PRANK-
Codon shows only a few indels and substitutions. However, as shown in Fig 3C, CAUSA 2.0
split codon 670 (Ggg-g) and located the 6-nt insertion (a gca ct) between the 2nd and the 3rd
base of this codon. Comparing the three alignments, CAUSA 2.0 might have the highest
probability of correctness, since it has the highest number of matches, and requires the least
number of mutation events.

In all HIV strains, HIV-1 subtypes are the most common form, they are the most infectious
and pathogenic to human, and among the most genetically diverse. During viral penetration into
host cell, the fusion peptide region involves in the merging of the virus envelop with host
endosomal membrane. The inserted motif is highly conserved in all HIV-1 strains, and is the
only difference located within the fusion peptide region compared with the other strains.
Therefore, we postulate that the insertion might be a key event lead to the origin of HIV-1, and a
critical motif in the interaction of the virus with human cell during the infection process.

For an example of codon fusion, as shown in Fig 3D, ClustalW shows a lot of substitutions,
PRANK-Codon shows that there are several indels (Fig 3E). CAUSA 2.0 (Fig 3F), however,
identified some smaller, but more accurate, indels. In addition, in different strains the codons

between 864 and 867 were deleted and mutated in different ways, however, the amino acid
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encoded by codon 864 (V or C), is highly conserved among all strains, so it might probably be
functionally important.

Note that although a codon spitting could be distinguished easily from a codon fusion
according to a phylogenetic tree, it is hard to distinguish an ipFS from a siDel if their ancestral
sequence is not available. For example, as shown in Fig 3G and 3H, in ClustalW there are so
many base and AA substitutions that PRANK-Codon suggested long indels instead. CAUSA 2.0,
however, revealed multiple mutational events, including codon fusion/splitting, siDel and/or
ipFS, and gave a different while more accurate alignment for this region (Fig 3I). These
evolutionary events bring additional variability, in together with those by the traditional mutation
mechanisms, help the HIV to evolve rapidly and develop the ability of drug resistance.

By analyzing the CDSs of thirty protein families in human and mammalian arbitrarily
selected from TreeFam-A (Table S3), we found that these new mutation events are not rare, but
happened rather frequently not only in virus, but also in human and animals. We postulate that
these newly discovered mutation mechanisms may play an important role in the acquisition of
new genetic information and provide a potentially powerful way to optimize the protein
sequences and structures.

CAUSA 2.0 better explains certain genetic diseases

Over the past decade, millions of small indels have been discovered in human populations
and personal genomes %%. Most of the indels found in protein coding sequences were codon-
sized, in-frame indels, and thus maintained the ORF of these proteins. Numerous indels map to
functionally important sites within human genes, and are related to human traits and genetic
diseases 2934,

For example, in-frame indels have been identified as one of the main causes for the Wolfram
syndrome, an autosomal recessive disorder 3°. Table 1 lists some in-frame indels related to
Wolfram syndrome and other genetic diseases, which were deposit in the Human Gene Mutation
Database. For example (CD031549), in the coding sequence ...Ka™ag Agca Ag'cc..., after the

deletion of the six nucleotides (in bold), the remaining three nucleotides (in italic) fused into a
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new codon, Tacc, in which an amino acid substitution occurred without any base substitution. As
shown in Fig 4, such kind of disease-related codon splitting/fusion phenomenon is visualized
clearly in CAUSA 2.0, but not in the other alignment software, although a nucleotide alignment
may sometimes result in the same alignment. Therefore, CAUSA 2.0 would be useful in
discovering, recognizing and investigation of this kind of genetic diseases

CAUSA 2.0 improves molecular phylogenetic analyses in virus

For several reasons ranging from methodological issues or bona fide biological phenomena,
the phylogenetic trees of different genes for a set of certain genomes are often incongruent
topologically. In order to tackle the topological conflicts in different gene trees, phylogenomic
studies couple concatenation with practices such as rogue taxon removal, or the use of slowly
evolving genes. Recently, however, Salichos and Rokas questioned the exclusive reliance on
concatenation and associated practices. In a phylogenomic analysis of 1,070 orthologues from 23
yeast genomes, surprisingly, they identified 1,070 distinct gene trees, which were all incongruent
with the phylogeny inferred by concatenation 3.

As shown in Fig S2, when the trees were drawn using neighbor joining (NJ) methods, the
phylogenetic trees of Env inferred from ClustalW, MAFFT, T-coffee, MUSCLE and PRANK
alignments are all varied, and CAUSA 2.0 suggested another different evolutionary process.
Using MSA aligned by Clustal W, when trees are inferred by maximum likelihood (ML) method
in “complete deletion” (CD) mode, as shown in Fig 5A-5F, the DNA tree, the back-translate
codon tree and the protein tree are slightly inconsistent; however, when the ML trees were drawn
in “using all sites” (AS) mode, the AS trees are more inconsistent with each other, and differ
greatly with the CD trees (strain HVIMA was clustered in different clade with a very high
Bootstrap value), suggesting that in ClustalW the alignment of the variable region is inconsistent
with that of the conserved region; In PRANK, as shown in Fig 5G-5L, the DNA tree, the codon
tree and the protein tree are more consistent in CD mode, but the CD trees also differ greatly

from the AS trees (HVIMA was classified in different clade with a very high Bootstrap value).
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In CAUSA 2.0, as shown in Fig 5SM-5P, however, the DNA tree and the protein tree are
fully consistent in either CD or AS mode, and almost fully consistent between CD and AS mode:
the only two inconsistent branches, HV1C4 and HV1A2, stays within a same clade, suggesting
that in CAUSA 2.0 the variable region is aligned consistently with the conserved region.

In order to further evaluate the accuracy of different alignments and phylogenetic trees in
HIV, we build alignments and trees for two genes, env and gag, respectively using ClustalW,
PRANK and CAUSA 2.0. As shown in Fig 6A and 6B, phylogenetic trees for gag protein
constructed from ClustalW alignment are inconsistent in different mode, but those from
PRANK-Codon (Fig 6C, 6D) and CAUSA 2.0 (Fig 6E, 6F) are all fully consistent with each
other in different mode. Moreover, the Clustal W protein trees are different between env (Fig 5A)
and gag (Fig 6A), suggesting that in some of these HIV genomes, such as HV1JRFL, HV1J3,
HVI1B1 and HV1C4, the two genes derived from different strains. However, the PRANK CD
trees (Fig 5G, 6C) and CAUSA 2.0 CD trees (Fig 5M, 6E) are basically consistent with each
other, and suggest that in most of these virus genomes the two different genes underwent a same
evolutionary process, except that strain HV1MA might be the only recombinant virus.

As described above, CAUSA 2.0 trees are consistent in different tree drawing mode in both
of the two HIV genes, Env (Fig 5SM-5P) and Gag (Fig 6E, 6F), suggesting that CAUSA 2.0
improves the phylogenetic analyses in virus. The trees inferred from PRANK and CAUSA 2.0
might be more accurate than the ClustalW trees, because they are more consistent not only in
different tree drawing mode, but in different genes. Because of the underlying phylogeny-aware
algorithm, PRANK is by far the best alignment method for phylogenetic analysis. CAUSA 2.0
might be equivalent to or sometimes even better than PRANK in phylogenetic analysis.

CAUSA 2.0 improves phylogenetic analyses in human and animals

The CAUSA 1.0 algorithm has been applied in POMAGO %7, a multiple genome-wide
alignment tool for bacteria. To test the performance of CAUSA 2.0 in human and animals, a set
of orthologous proteins families were arbitrarily selected from TreeFam-A, a manually curated

database of molecular phylogenetic trees. Firstly, we aligned their CDSs with ClustalW, PRANK
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and CAUSA 2.0, respectively in DNA, back-translate, codon or unified mode, and then
constructed phylogenetic trees using ML method, respectively in “complete deletion” (CD) mode
and “using all sites” (AS) mode. Highly conserved protein families without a variable region
were excluded, as we observed that different alignments and trees inferred from different
methods are basically consistent with each other in those highly conserved proteins. In the
variable proteins, which have at least one variable region, we observed that different MSAs and
phylogenetic trees differed greatly from each other (Table S3).

As shown in Table S3, the topologies of PRANK trees are basically consistent with those of
the ClustalW trees, while their bootstrap percentages are better in AS mode. Overall, in these
variable protein families tested, CAUSA 2.0 trees are more consistent with the TreeFam
reference trees: both the average number of consistent branches (NCBs) and bootstrap
percentages (BSPs) are significantly higher than those of the other trees, including protein trees
and codon trees. When all sites are used, the CAUSA 2.0-AS trees are the most consistent with
the TreeFam reference trees, suggesting that the alignments aligned using CAUSA 2.0 are the
most consistent between the variable region and the conserved region.

In order to avoid possible biases in human assessment, we further compared the trees with
the TreeFam reference trees using TOPD/FMTS 38, a software for the evaluation of similarities
between phylogenetic trees. As shown in Table S3, the TOPD/FMTS split distances (SD) are
mostly consistent with the number of consistent branches counted. As shown in Table 2, CAUSA
2.0 trees shows the lowest SD in AS mode and are significantly better than those of the other
alignment methods, implies that CAUSA 2.0 gives more accurate alignments, and brings a
higher confidence in the downstream evolutionary analysis of the proteins and their CDSs.

Testing CAUSA 2.0 on simulated CDSs

As demonstrated in above, CAUSA 2.0 improves the alignment and evolutionary analysis of
proteins in real biological data mainly due to the more accurate localization of in-frame indels
which is not coincide perfectly with the codon boundaries. In nature, non-in-frame indels, or in-

frame indels containing one or more stop codons, are prone to be eliminated in the struggle for
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existence. Therefore, they might be less frequent in real biological data than predicted. Actually,
CAUSA 2.0 simulates such an evolution process by adapting indels to be in-frame as far as
possible, thus makes the alignment of coding sequences biologically more significant.

We tried to quantify the accuracy of CAUSA 2.0 on simulated CDSs and compare it with
those of the other alignment methods. At present, there are only a few programs, such as indel-
seq-gen %4 can simulate CDSs with an adjustable indels probability (Id). Unfortunately,
however, they does not distinguish in-frame indels from non-in-frame ones. As shown in Fig S3,
in the CDSs simulated with low level of indels (Id = 0.01), stop codons were often generated,
and all indels coincide perfectly with the codon boundaries; while in the CDSs simulated with
high level of indels (Id = 0.05), a lot of non-in-frame indels and frameshift mutations were
generated, makes the alignment becomes largely meaningless. In order to test the accuracy of
CAUSA 2.0 and the other methods in locating in-frame and non-in-frame indels, a new DNA
sequence simulator that can simulate CDSs with a controllable level of in-frame/non-in-frame
indels must be developed in future studies.

Testing CAUSA 2.0 on BAliBASE

We further compared CAUSA 2.0 with the other MSA algorithm on BAIiBASE, a hand-
curated alignment benchmark 443, As shown in Table S4, the Baliscore for the different protein
alignments of BaliBase BB11001 (the high mobility group protein, HMG1) aligned by PRANK,
PRANK-codon and CAUSA 2.0 are both lower than those of the other protein alignments. It has
been reported that an alignment is not necessarily evolutionarily correct even if it is structurally
accurate’. Therefore, BAIIBASE, which is based on structure alignments, might not be suitable
for the assessment of alignment methods aimed at creating evolutionarily correct alignments,
such as PRANK, codon alignment or CAUSA 2.0.

The information contents of different alignments

The information content (IC) for DNA and protein sequences were given by Shannon

entropy 44, For unaligned DNA or protein sequences, IC is computed by the frequencies of

different states occurred in the sequences (4 bases, 20 amino acids or 64 codons).
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4
Sp=-2,_,Pilog »,(P) [1]
20
S,=- ijlpj log ,(P)) [2]
Given a triplet codon, let P;, P, P,, be the frequencies of the three bases,
4 4 4
Se=-X,_ 121 12m _ PePPrlog ,(PePiPy) (3]
The information contents of DNA and protein sequences reach their upper limits when

different states occur in equal frequencies:

1
Max(S,) = log Z(Z) = 2.0000

1
Max(Sg) = log 2(%) =4.3219

1
Max(S.) = log 2(@) = 6.0000

After the sequences were aligned, the entropy of the aligned sequences will change, as an
additional state (the gap-state) is introduced. Let S be the increased IC comes from the gaps

inserted during the alignment process, we have:

Sg=-P,log,(P,) [4]
Spase =SB+ S [5]
Saa=S4+5¢ [6]
Scodon =S¢+ S¢ [7]

Where P;, P, P, P, is the frequencies of amino acids (A), bases (B), codons (C) and gaps
(G) in the aligned sequences, respectively. Given a set of random sequences, in theory the IC of
protein sequences is higher than that of DNA sequences, and that of coding sequences is even
higher. Therefore, a protein alignment would be better than the DNA alignment, and the

corresponding codon alignment could be even better.
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In DNA, protein, codon or back translated protein alignments, there is only one gap-state
because codons are indivisible; however, there are many more gap-states in CAUSA 2.0, because
every base of a codon can be replaced by a gap. Given a triplet codon, let P, P, P, be the

frequencies of the three bases, and P, be the frequency of a base to be replaced by a gap. Then,

Py=PPP,(1-P)° 8]
Py =P P PP (1-P,)° [9]
P, =P PP, Pi(1-P) [10]
P3=PP\P,P’ [11]

Where P, P,, P; is the probability of a codon contains 1, 2 and 3 gaps, respectively. The

total probability of split codons (the codons contain at least one gaps) is,
2
P,=Py + P,+P3=PPPP, P (1-P +P2) [12]

The information content of a unified alignment is given by,
4 4 4
Su=Sc-Zi 1, T, Ploga(P) [13]

In an unified alignment: (1) If P, = 0, then P; = 0, S;= Scodon, there is no split codon, and
thus the information content of the unified alignment equals to that of a codon alignment; In
other words, codon alignment could be considered as a special case of the unified alignment,
where no split codon is present. (2) If P, > 0, then Py > 0, S, > Scodon, the split codons enhance
the information content of the unified alignment, and makes it greater than those of the DNA,
protein or codon alignments, thus explains why a unified alignment could be more accurate than

the other level of alignments.
The computational efficiency of CAUSA 2.0

Among all the programs tested, as shown in Table S5, MAFFT is the fastest, especially
when the number of sequences and the total length increases; MUSCLE, an iterative method, is

faster than ClustalW. T-Coffee is even faster as it adopted a multiple-threading paralleled
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computation. PRANK, however, is very time-consuming: even in moderate-sized datasets (20 ~
50KB in total length), while other software finished aligning in a few minutes, it takes PRANK
several hours to align them. PRANK codon alignment is even more time-consuming, probably
due to its adopting of a large (61x61) scoring matrix. In contrast, using a small (24x24) scoring
matrix, CAUSA 2.0 is computationally very efficient. The computation time of CAUSA 2.0 is
similar to that of ClustalW. However, since CAUSA 2.0 outputs both protein and codon

alignment in a single run, it is considered more efficient than most of the other programs.

Discussion and conclusion

Multiple sequence alignment is widely useful in bioinformatics, molecular evolution,
genetics and genomics, such as reconstruction of phylogenetic history, structure and functional
analyses. Moreover, phylogenetic trees inferred from DNA, protein and codon alignments are
often inconsistent. It has been believed that the phylogenetic signal disappears more rapidly from
DNA sequences than from their encoded proteins, and therefore it has been preferable to align
protein and their CDSs at AA level 8. However, some important information carried by CDSs,
including synonymous substitutions, codon splitting/fusion, siDel and ipFS, get lost when they
were translated into AAs, and makes the alignments and phylogenetic trees sometimes inaccurate.
CAUSA 2.0 performs a two level dynamic programming alignment algorithm at codon and AA
level. CAUSA 2.0 minimizes the total amount of mutations at both codon and AA level
efficiently, locates the in-frame indels precisely and better interprets their role in the molecular
evolution. In CAUSA 2.0, the boundary of every triplet codon is defined by their encoded amino
acid without forcing them into indivisible units. Thanks to the position constraint inherent in the
codon-aa 4-tuples, CAUSA 2.0 aligns codons while keeps the corresponding AAs staying in
frame without using post-alignment adjustments.

In the previous study 27, we have evaluated CAUSA 1.0 for the phylogenetic analysis in
virus, bacteria and mammalian animals. However, we used the combined alignments directly for

the construction of the phylogenetic trees, and the trees were inferred based on p-distances as
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input to neighbor joining (NJ) method. It has been pointed out that there are several defects in
that study, mainly including: (1) Although CAUSA does improve the alignment of CDSs, there
is no model to support using combined alignment directly for the construction of phylogenetic
trees; (2) The phylogenetic trees were constructed using Neighbor Joining (NJ) method, but the
use of p-distances for phylogenetic analysis has been shown to be systematically biased, because
the p-distances are known to undercount the number of substitutions between a pair of sequences,
and perform particularly poorly for distantly related sequences; (3) CAUSA is compared only
with protein and DNA level alignments, but not with codon level alignments.

CAUSA 2.0 is an major update of the CAUSA algorithm, and the present study differs from
the previous one mainly in the following aspects: (1) Instead of using a combined alignment
directly for the construction of phylogenetic trees, the combined alignment was separated into a
protein alignment and a codon alignment, and used to construct the phylogenetic trees, therefore
any existing model can still apply in the subsequent evolutionary analysis; (2) The phylogenetic
trees were inferred using a Maximum Likelihood (ML) method in the MEGA software; (3)
CAUSA 2.0 was compared not only with protein and DNA alignments, but also with codon
alignments aligned by PRANK. (4) A mathematical model based on entropy information content
was developed, which explains why CAUSA 2.0 works better than DNA, protein and codon
level alignments; (5) Several newly discovered mutation mechanisms linked to certain kind of
genetic diseases were discussed; (6) It was showed that the computational efficiency of the
approach is higher than the other methods.

Based on the above analysis, it is concluded that CAUSA 2.0 gives more accurate alignment
for proteins and their CDSs, as well as more confident predictions in the phylogenetic and
evolutionary analysis. The main benefit of this method is the ability to detect in-frame, as well as
non in-frame indels, while keeping the respective amino acids aligned. CAUSA 2.0 is also
superior in computational efficiency when compared with the other approaches.

Finally, CAUSA 2.0 programs run in Microsoft Windows and Linux, written respectively in

Microsoft Visual C# and Java, are available for free in the website www.DNAPlusPro.com.
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Table 1(on next page)

Some disease-related indels with codon splitting/fusion events derived from Human
Gene Mutation Database.
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Accession Deletion
Disease Reference
Number (~codon number)
CD031549 GCC GTG"M'CGC Aag gca gCC CTG GTC AT ws Colosimo (2003) Hum Mutat 21,622
CD011664 CTG GTC***ATC Ttc tAC CTG TCCTT WS Khanim (2001) Hum Mutat 17,357
CD058021 TTC GTCM*ATC Ttc tCC TTC CCC AT WS Fang (2005) Zhonghua Yi Xue Za Zhi 85,2468
CD050485 CC GCCM*GGC CTg ctA TCG CTG CTG WS Giuliano (2005) Hum Mutat 25,99
CD021029 CCC TGCN™CAC Atc aAG AAG TTC GA WS Cryns (2002) Hum Genet 110,389
GC GTC™CCG TG ctg ctc tat gtc taC
CD983013 WS Inoue (1998) Nat Genet 20,143
CTG CTC TAT
CD983491 GG GCCN*CTG GCc acc gag gtC ACC GCC GGC WS Strom (1998) Hum Mol Genet 7,2021
CD031551 GC TTCM®ATG TGg tgT GAG CTC TCC WS Colosimo (2003) Hum Mutat 21,622
CD962054 GTG GTGM®TTC Ttcg GGA CGG AGT A LQTS Wang (1996) Nat Genet 12,17
CD076814 GGC CTCN"ATC Ttc tCC TCG TACTT LQTS Aizawa (2007) J CaRdiovasc ElectrOphysiol 18,972
CD044136 TC ATCM™TTC TCc tcG TAC TTT GTG LQTS Gouas (2004) Cardiovasc Res 63,60
CD097252 AC CGAM®GTA GAa gaC AAG GTA GGC LQTS Kapplinger (2009) Heart Rhythm 6,1297
CD097261 AC ATG"™CTT CAc caG CTG CTC TCC LQTS Kapplinger (2009) Heart Rhythm 6,1297
CD033996 GC ATTA*AAC CCa att gct ctG TAT TTG GTG HD Garcia-Barcelo (2003) Clin Chem 50,93
C1031592 GAG GACN'GAC Gga cTC ACC AAG GA WS Colosimo (2003) Hum Mutat 21,622
Cl087227 AC GCG*CCC ATc geg ccc atC GCG CCC GGC LQTS Berge (2008) Scand J Clin Lab Invest 68,362
C1013349 GG CAGNAAG Cag aag caC TTC AAC CGG LQTS Kapplinger (2009) Heart Rhythm 6,1297
C1983230 GCC ACGM®GCT Tcg get tCC ATT GAC AT HI Nestorowicz (1998) Hum Mol Genet 7,1119

Note: WS - Wolfram Syndrome

disease; HI — Hyperinsulinism.
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Table 2(on next page)

Comparing the phylogenetic trees of 30 protein families with their TreeFam reference
trees by human eyes and using TOPD/FMTS.
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Gap or Average Average

Alignment o T-Test
Software Missing data NCB SD o
Method Significance
treatment (Human) (TOPD/FMTS)
CD 11.37 0.1777 el
ClustalW-DNA
AS 11.67 0.1498 *
ClustalW
ClustalW-codon CD 11.67 0.1512 *
(Back translate) AS 11.83 0.1332 *
CD 11.33 0.1869 il
PRANK-DNA
AS 11.37 0.1719 **
PRANK
CD 10.47 0.3031 el
PRANK-codon
AS 11.40 0.1865 il
CAUSA cD 11.47 0.1832 ™
CAUSA 2.0-DNA
20 AS 11.97 0.1156

Note: NCB - Number of Consistent Branches; SD —TOPD/FMTS Split Distance;
CD - Complete deletion; AS - Use all sites; “*” - Significant difference (P<0.05); “**”

—Extreme significant difference (P<0.01).
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Figure 1(on next page)

The working flowchart of different strategies for aligning proteins and their coding DNA
sequences.
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Figure 2(on next page)

The protein views of different alignments of a variable region (V2) of Env. HIV or SIV
strains were derived from the seed alignment of Pfam gp120 protein family (pf00516).
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Figure 3(on next page)

Localization of in-frame indels in different alignment programs. (A, B, C) Codon splitting;
(D, E, G) Codon fusion; (G, H, I) siDel and ipFS.
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Figure 4 (on next page)

The CAUSA 2.0 view of an in-frame deletion related to Wolfram Syndrome (CD031549),
showing a codon fusion event.
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Figure 5(on next page)

The maximum likelihood trees for HIV Env protein inferred from different alignments
and by different gap/missing data treatment (CD-complete deletion; AS-Use all sites).
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Figure 6(on next page)

The maximum likelihood trees for HIV GAG protein inferred from different alignments
and by different gap/missing data treatment.
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