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ABSTRACT 20 

1. The use of species distribution models’ (SDM) is limited by its performance in 21 

terms of accuracy, precision, or the spatial distribution of model errors. Despite 22 

the wide acceptance of some standard statistics used to evaluate SDM, there is 23 

currently a strong on-going debate as to their use. The “area under the curve” 24 

(AUC) is a popular measure used to evaluate SDMs; however, it does not provide 25 

complete information about model accuracy. The maximum True Skill Statistic 26 

(TSS) is another statistic that is gaining acceptance. However, evaluations of a 27 

model’s accuracy solely based on this statistic may also be misleading. We 28 

investigate the use of alternative methods to evaluate the performance of SDMs, 29 

to objectively compare among different modelling approaches. 30 

2. We evaluate the performance of SDMs fitted to simulated and real data by 31 

contrasting model predictions to additional validation datasets. We propose 32 

visualising TSS scores over the whole detection threshold range (TSS profile).  33 

3. We show how models with similarly good performance according to AUC, 34 

present very different results and may serve to different purposes. Also, a high 35 

maximum TSS may not guarantee accurate predictions and should be 36 

accompanied by the threshold where the maximum is reached (t* ). We observe 37 

that the higher t* the better predicted observations correlate with confirmed 38 

observations. Also, SDM predictions should be accompanied with the 39 

corresponding uncertainty map to avoid misleading conclusions. Too high or too 40 

widely spread uncertainty on such maps would question the overall accuracy of 41 

the model. 42 

4. Whether the model is intended to detect all potential observation sites (sensitive 43 

model) or to accurately predict where confirmed observations could be found 44 

(specific model) sets a different performance targets to be achieved by the model. 45 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

3 
 

The approach proposed helps to discern which SDM may best suit the intended 46 

goals. Furthermore, the TSS profile helps i) to evaluate the overall performance of 47 

SDMs and compare among them, ii) to identify the main source of error, and iii) 48 

to select a detection threshold depending on the maps intended use.  49 

 50 

Keywords: AUC, Bayesian inference, Chelonoidis chilensis, MaxEnt, presence-only data, 51 

sensitivity, specificity, TSS.  52 
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INTRODUCTION 53 

Species distribution models (SDMs) have been widely used to test biogeographic 54 

hypotheses (Mourrelle & Ezcurra 1996; Leathwick 1998), for species delimitation 55 

(Raxworthy et al. 2007), to assess the impact of global climatic changes on species 56 

(Araújo & New 2007; Coetzee et al. 2009), to establish conservation priorities (Margules 57 

& Pressey 2000; Nori et al. 2011), and to predict the impact and distribution of invasive 58 

species (Nori et al. 2011). According to its use we may choose a modelling approach that 59 

better suits the goal of the study as different modelling approaches involve different 60 

trade-offs between accuracy and generality (Guisan & Zimmermann 2000; Guisan & 61 

Thuiller 2005).  62 

SDMs’ performance, i.e. accuracy and precision of model predictions, depends on 63 

the quality of the observation data, the model formulation and assumptions, and the set of 64 

explanatory variables included. Based on the uncertainty arising from the many 65 

modelling approaches available, ensembles of models are used to improve prediction 66 

accuracy by reporting only the agreement among models (Araújo & New 2007). 67 

Although model ensembles are increasingly favoured in different disciplines (Collins 68 

2007; Araújo & New 2007), there are suggestions that not every model is accurate 69 

enough to be included in an ensemble (Knutti 2010). 70 

Evaluation of individual model accuracy is therefore still crucial, and objective 71 

statistics are required for comparison between alternative modelling approaches (Hirzel et 72 

al. 2006; Liu et al. 2011; Cheaib et al. 2012; Jiménez-Valverde 2012). Despite the wide 73 

acceptance of some standard statistics, there is currently a strong on-going debate as to 74 

their use (Allouche et al. 2006; Lobo et al. 2008; Jiménez-Valverde 2012).The “area 75 

under the receiver operating characteristic curve” (AUC; Hanley & McNeil 1982) is a 76 

statistic currently considered to be the standard method to assess the accuracy of 77 

predictive distribution models (Jiménez-Valverde 2012). It is used for evaluating both 78 
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binary and continuous probability maps. AUC scores range from 0 to 1, where models 79 

with scores higher than 0.5 predict better than random draws. However, the AUC statistic 80 

was designed to evaluate only the sensitivity of detection methods, e.g. radar signals or 81 

X-ray images (Green & Swets 1966; Hanley & McNeil 1982), not specificity (i.e. 82 

predicted absences). It does not give information about the spatial distribution of model 83 

errors (Lobo et al. 2008). The AUC provides information about the generalist or 84 

restricted distribution of a species along the range of predictor conditions in the study 85 

area, but it does not provide information about the performance of the model in terms of 86 

accuracy and precision (Lobo et al. 2008).  87 

An alternative to AUC is the True Skill Statistic (TSS; Allouche et al. 2006): a 88 

simple and intuitive measure for the accuracy of species distribution models. Predictions 89 

are contrasted to a validation dataset to derive the model’s sensitivity (i.e. proportion of 90 

presences accurately predicted) and specificity (i.e. proportion of absences accurately 91 

predicted). Sensitivity and specificity are independent of each other when compared 92 

between models, and are also independent of prevalence – i.e. the proportion of observed 93 

sites in which the species was recorded as present (Allouche et al. 2006). The TSS is 94 

defined as sensitivity + specificity – 1, and ranges from −1 to +1, where +1 indicates 95 

perfect agreement and values of zero or less indicate a performance no better than 96 

random. However, this statistic is restricted to binary (presence-absence) maps requiring 97 

an arbitrary detection threshold, and TSS varies significantly depending on that threshold. 98 

There is a detection threshold at which TSS is maximized (max(TSS)). This maximum 99 

value has been used as a threshold independent-accuracy statistic (Liu et al. 2011), and 100 

even as a criterion for including models in ensembles (Diniz-Filho et al. 2009). However, 101 

as we will discuss, model selection based solely on max(TSS) can be misleading.  102 
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Model precision is also critical when evaluating SDM predictions. Particularly 103 

with low quality data (e.g. presence-only data), SDM’s precision will depend on how the 104 

model accounts for data uncertainty (Congdon 2003). A direct way to evaluate SDMs’ 105 

precision is to observe the spatial distribution of the models’ confidence (or credible) 106 

interval on ‘uncertainty maps’. Uncertainty maps show the precision of predicted 107 

continuous probabilities, augmenting the information contained on prediction maps based 108 

on point estimates. However, even with the advances in modelling techniques that 109 

account for different sources of uncertainty (Congdon 2003; Argáez et al. 2005; Clark & 110 

Gelfand 2006; Soberon & Nakamura 2009) few studies report or explore uncertainty 111 

maps for single SDMs (but see e.g. Argáez et al. 2005).  112 

The goals of any study will influence whether: (i) continuous probability maps or 113 

binary presence-absence maps assuming a detection threshold are used (Liu et al. 2005; 114 

Jiménez-Valverde & Lobo 2007), (ii) accurate point estimates of predictions are enough 115 

or high precision on predictions are also needed, and (iii) it is needed to compromise the 116 

models’ ability to detect true absences (model specificity) by the models’ ability to detect 117 

true presences (model sensitivity). Thus, our aim is to show how different modelling 118 

approaches may best suit different goals depending on their performance, and therefore 119 

should not necessarily be contrasted with each other in an ensemble. We offer to 120 

researchers and practitioners tools to discern which models may best suit these goals. We 121 

first compare AUC scores and explore the usefulness of visualising TSS scores over the 122 

whole detection threshold range (TSS profile), for five simulated SDMs with known 123 

accuracy and precision, based on simulated data. We show how the TSS profile allows an 124 

evaluation of general model accuracy and precision, and to perform a goal-oriented 125 

selection of a detection threshold. Then, we fit SDMs to real presence-only data using 126 

two different modelling approaches to assess the utility of each approach based on the 127 
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models TSS profile. We base the following study on presence-only data to highlight and 128 

overcome some of the problems associated with low quality data, and the consequential 129 

model evaluation; however, these evaluation methodologies are also applicable for 130 

presence-absence data.   131 

 132 

METHODS 133 

Simulated data exercise 134 

To control for the response of the statistical measures of model performance (AUC and 135 

TSS scores) to different amount of accuracy and precision we created a set of five 136 

simulated SDM with known accuracy and prediction around the simulated observed data. 137 

In total we generated 1000 presence-absence data points consisting in 94 presences and 138 

906 absences (Fig. 1a), over a grid of 100x100 pixels (10000 prediction values). 139 

Specifically, we generated an overlap between two 2D Gaussian kernels from normal 140 

distributions x1 = Normal(0,0.2), y1= Normal(0,0.5) and x2 = Normal(-0.5,0.2), y2 = 141 

Normal(1,0.5), normalized the distribution values and placed the 1000 simulated 142 

observations points randomly over the kernel. Points overlapping probabilities of 143 

observation ≥ 0.8 where set as presence. Model 1 was then set as a normalized Gaussian 144 

kernel such that observations overlap with observation probabilities p ≥ 0.8 (Fig. 1). 145 

Model 2 is the same as Model 1 where we added to each pixel a random value (noise) 146 

drawn from a Normal distribution with mean = 0 and standard deviation = 0.05, and then 147 

normalized (0-1). Model 3 is as Model 1, but observation probabilities where 148 

homogeneously reduced by 40%. Model 3 then predicts consistently low observation 149 

probabilities, as if e.g. the data was not enough to properly inform the model. Model 4 is 150 

as Model 1, but adding to each pixel noise drawn from a Normal distribution with mean = 151 

0 and standard deviation = 1, and then normalized (0-1). That is, Model 4 is close to a 152 
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totally imperfect prediction.  Model 5 predicts a different core area for the species, as if 153 

the model predictions are inaccurate for certain areas. That is, Model 5 systematically 154 

predicts observations in regions where there were no presence data, and fails to predict 155 

observations where there were presence data.  156 

We calculated the AUC score for each simulated SDM with the SDMtools 157 

package for R (VanDerWal et al. 2012) using the complete dataset (n = 1000). We also 158 

calculated for each simulated SDM the True Skill Statistic (TSS; Allouche et al. 2006) 159 

for every detection thresholds (i.e. 0 ≤ t ≤ 1) describing the TSS profile with a resolution 160 

of 0.01 units. A model performs accurately at a certain detection threshold if it scores a 161 

TSS higher than 0.5 (Allouche et al. 2006; Liu et al. 2011). The TSS profile comparing 162 

observations with themselves (instead of with predictions) serve as a reference profile for 163 

a model with perfect fit to the data (perfect-fit TSS profile henceforth, Fig. 1b). The TSS 164 

profile for each simulated SDMs was calculated contrasting 50, 100 and 1000 prediction 165 

values (pixels) with observation data points (used as validation data). 166 

 167 

Real data exercise 168 

The study species 169 

The common Chaco tortoise, Chelonoidis chilensis (Testudinidae, Gray 1870), is found 170 

mainly in the ecoregions of Monte and Chaco (Fig. 2) in Argentina, Bolivia and Paraguay 171 

(Cei 1993; Cabrera 1998). It is a burrow-nesting species, found on sandy soils in 172 

scrublands or dry forests (Cei 1993; Cabrera 1998) up to 1200 m.a.s.l. (Cerro Nevado, 173 

Mendoza; Richard 1988). In Argentina, the species is mainly threatened by habitat 174 

degradation and poaching (Chebez 2009); thus is categorized as Vulnerable by the IUCN 175 

(Tortoise & Freshwater Turtle Specialist Group 2010) and is CITES listed. In the current 176 

study the species is defined after Fritz et al. (2012), who concluded that Chelonoidis 177 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

9 
 

chilensis (Gray, 1870), C. donosobarrosi (Freiberg, 1973) and C. petersi (Freiberg 1973) 178 

are the same species (i.e. C. chilensis).   179 

 180 

Data collection 181 

We collected confirmed observations of the Chaco tortoise dated 1950-2012 from the 182 

EMYSystem World Turtle Database (http://emys.geo.orst.edu/), and from scientific 183 

literature (Waller 1986; Buskirk 1993; Ergueta & Morales 1996; Cabrera 1998; Ernst 184 

1998; Richard 1999; Gonzales et al. 2006; Fritz et al. 2012). We merged in a GIS vector 185 

layer all reported observations using QuantumGIS 1.8 (Quantum GIS Development Team 186 

2012). In case of overlap within 5 km we kept only the latest observation. For a complete 187 

list of the 244 observations and corresponding sources see Table S1 in Supporting 188 

Information. We arbitrarily defined the study area (Fig. 2) larger than the observed 189 

species distribution to include surrounding areas where the species is known to be absent. 190 

We excluded Chile from the study area because the Andean Mountain Range is a 191 

physical barrier the species cannot pass. 192 

We obtained geographic and bioclimatic data from raster layers with 5 km 193 

resolution from world databases (WorldClim, Hijmans et al. 2005; WorldMaps, Hengl 194 

2009). The complete list of variables included in the study is presented in Table S2. We 195 

did not included in the analysis land-use variables because the data collected covers a 196 

wide temporal range (1950-2012), and the landscape has changed dramatically over this 197 

time period. 198 

 199 

Modelling the species distribution 200 

We developed a Bayesian spatially expanded logistic (BSEL) model (Casetti 1997; 201 

Congdon 2003) to obtain the probability of observation at non-visited locations. Non-202 
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visited locations were randomly located with the same density as the observed locations 203 

(~0.0004/km2). Given the nature of presence-only data, predicted probabilities combine 204 

the probability of the species being at the location, the probability of an observer being at 205 

the same location, and the probability of the observer finding the species (Lobo et al. 206 

2010). The Bayesian approach allows us accounting for all three uncertainty sources on 207 

each observation, and displaying the model uncertainties on an uncertainty map. We 208 

assume that observations at every non-visited location i are distributed according to a 209 

Bernoulli distribution Obsi ~ Bernoulli(p*
i), where p*

i is an a priori probability 210 

distribution generated from confirmed observations (Fig. 2b). We generated the a priori 211 

probability distribution as a quadratic density kernel raster layer using the R package 212 

“splancs” (Rowlingson et al. 2013). By generating a prior distribution from the 213 

observations, we assume that the entire study region has been sampled with the same 214 

intensity.  215 

We then modelled observations Obsi according to a logistic model, Obsi ~ 216 

Bernoulli(pi), The spatially expanded model (Casetti 1997; Congdon 2003) assumes that 217 

the effect of an explanatory variable on the response variable pi can vary among the 218 

observed locations. This assumption is particularly convenient when fitting species 219 

distribution model along large ranges, where the species can be locally adapted to e.g. 220 

temperature ranges (Turchin & Hanski 1997; Nilsson-Örtman et al. 2013). For further 221 

details on the modelling approach see Appendix S1. 222 

The final model presented (Table 1) is the result of a forward stepwise selection 223 

procedure based on the deviance information criterion (DIC), an information-theoretic 224 

criterion similar to Akaike’s information criterion (AIC; Burnham & Anderson 2002), 225 

that is appropriate for Bayesian hierarchical modelling (Spiegelhalter et al. 2002). For 226 

further details on the selection procedure and all tested variables see Appendix S1 and 227 

Table S2. 228 
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Once the final model was obtained, we generated maps for the observation 229 

probability. We predicted observation probabilities for regularly distributed locations 230 

with the same resolution as the raster images for environmental variables (i.e. 5 km). We 231 

generated raster layers for the mode and for the length of the 95% credible interval (95% 232 

CI). The length of the 95% CI is a measure of precision ranging from 0 (precise) to 1 233 

(imprecise). 234 

For comparison, we generated a map with MaxEnt (Elith et al. 2011) using the 235 

same sets of variables as the final BSEL model. MaxEnt is a widely used free program 236 

for species distribution models based on machine learning algorithms and maximum 237 

entropy (Elith et al. 2011). We are aware that better performance may have been obtained 238 

with MaxEnt adding more variables, however, for the comparison purpose we used the 239 

same selection of variables than those chosen for BSEL.  240 

 241 

Model evaluation 242 

We calculated the AUC index for both models (i.e. BSEL and MaxEnt) with the 243 

SDMtools package for R (VanDerWal et al. 2012), contrasting predictions against data 244 

generated from the a priori observation probability distribution. Then, to calculate the 245 

TSS profiles, we contrasted model predictions with two independent data sets of 246 

observations of Chaco tortoises in Argentinean and in Bolivian protected areas (a 247 

Paraguay dataset was not available). The first data set is mainly based on park rangers 248 

reports, and includes 144 Argentinean protected areas in the study area (Sistema de 249 

Información de Biodiversidad, SIB; Administración de Parques Nacionales 2012). The 250 

second data set was put together in the framework of a doctoral thesis (Embert 2007), and 251 

includes museum and field systematic collections for 38 Bolivian protected areas in the 252 

study area. The species were reported in 12 Argentinean and 3 Bolivian protected areas 253 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

12 
 

(Table S3). With these independent observations as a validation, we calculated the TSS 254 

profile for both the BSEL and MaxEnt predictions. 255 

 256 

RESULTS 257 

Simulated data exercise 258 

Only a nearly imperfect prediction (Model 4) could be separated from accurate models 259 

using AUC scores. An inaccurate model (Model 5) scored an AUC of 0.92, but this is still 260 

a very high AUC score. Alternatively, the more accurate and precise a model is, the more 261 

similar a model’s TSS profile is to the perfect-fit TSS profile. We observe that the 262 

detection threshold where the maximum TSS score is obtained (t*  henceforth) is the 263 

threshold at which the best compromise between sensitivity and specificity is reached 264 

(Fig. S1). Except for the TSS profile of a perfectly fitting model, in which t*  is infinitely 265 

close to 1 from below, t*  is always lower than 1. For accurate models (Models 1, 2 and 266 

3), regardless of their precision, we observe an abrupt decrease in TSS scores at detection 267 

thresholds higher that t* , indicating a drastic loss of sensitivity. TSS scores at detection 268 

thresholds lower than t*  decreases because of loss of model specificity. Models that only 269 

provide weak signals (low probabilities; e.g. Model 3) could score high max(TSS) at 270 

lower t*  that more precise models do. Inaccurate models (Model 5) show a general 271 

decrease in both max(TSS) and t* , reflecting a serious compromise between sensitivity 272 

and specificity to acquire the best information from the model.  273 

Regarding the sample size of validation data points, it is important to be aware 274 

about how small validation sample size could affect the estimate of t* . However, this 275 

problem seems more relevant to inaccurate models than to imprecise ones.  276 

  277 

 278 
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

13 
 

Real data exercise 279 

The species distribution predicted with the Bayesian spatially expanded logistic (BSEL) 280 

model for Chelonoidis chilensis was mainly driven by temperature related variables, but 281 

included water availability in the reproductive period (Table 1). From this we generated 282 

probability and uncertainty maps for the species’ distribution (Fig. 3). Both BSEL and 283 

MaxEnt predictions suggest that the fundamental niche (i.e. potential suitable sites) of the 284 

species is continuous across Argentina, West Paraguay and South Bolivia, in 285 

consideration of the variables, scale and resolution used. In general terms, temperature 286 

related variables constrain the latitudinal and altitudinal range of the species, while 287 

precipitation related variables constrain it in longitude.  288 

The uncertainty of the BSEL model (the opposite of its precision) was generally 289 

low (i.e. 95% CI length < 0.5, Fig. 3b) and is lower in areas where the observation 290 

probability is close to either 0 or 1 (Fig. S2). However, uncertainty is highest in poorly 291 

sampled areas. 292 

According to the AUC the performance of both BSEL and MaxEnt predictions is 293 

high and equally good in terms of accuracy (AUC = 0.92). Despite this, there are major 294 

differences between the predicted distribution maps of these two approaches at the north 295 

and east of the species’ distribution (Fig. 3). Both models perform better describing the 296 

species distribution in Argentina than in Bolivia. In Argentina max(TSS) is higher for the 297 

BSEL than for MaxEnt. In other words, with this particular set-up, BSEL is more 298 

accurate predicting observations than MaxEnt. However both models performed 299 

accurately, i.e. max(TSS) > 0.5 (Fig. 4a). Maximum TSS was 0.88 at t* = 0.45 for BSEL 300 

and 0.73 at t* = 0.25 for MaxEnt. However, the TSS scores for BSEL are higher than 0.8 301 

for thresholds of up to 0.6. That is the model’s sensitivity is very high up to t = 0.6; Fig. 302 

4a). Both models’ predictions generally overlaps with published distribution maps for the 303 
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species (Waller 1986; Ernst 1998; Richard 1999; Administración de Parques Nacionales 304 

2012; Fritz et al. 2012) and with the ecoregions where the species has been described 305 

(Fig. 2a). The main difference between the models’ predictions is that MaxEnt predicted 306 

higher observation probabilities for protected areas in the Espinal and to the east (Fig. 3c) 307 

where the species has not been observed. On the other hand, comparing to confirmed 308 

observations in Bolivian protected areas both models’ TSS profiles were very different 309 

than the perfect-fit TSS profile (Fig. 4b). Maximum TSS was 0.77 at t* = 0.02 for BSEL 310 

and 0.97 at t* = 0.04 for MaxEnt. Both models are very imprecise, but MaxEnt is more 311 

sensitive than BSEL at low detection thresholds.  312 

 313 

DISCUSSION 314 

We put forward alternative methods to evaluate and compare the performance of species 315 

distribution models (SDMs). We show how models with similarly good performance 316 

according to AUC and max(TSS) present very different results and may serve different 317 

purposes. Therefore, we suggest analysing the complete TSS profile to evaluate and 318 

compare the overall quality of SDM results. Uncertainty maps and TSS profiles can help 319 

to objectively evaluate and compare the performance of SDMs, to select a detection 320 

threshold depending on the intended use of the map, and to identify the main source of 321 

error of a continuous probability map. In general we now understand that model 322 

uncertainty, i.e. lack of precision to distinguish between presence and absences reduces 323 

the model specificity (high commission error). In other words, high max(TSS) scores 324 

reached at low detection thresholds (t* ) are a sign of low model precision. Lack of 325 

accuracy in predictions, however, reduces both max(TSS) and t* . 326 

 327 

 328 
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Model precision and accuracy 329 

An honest display of model uncertainties (i.e. as the opposite of model precision) is 330 

crucial to evaluate and validate model predictions, no matter if continuous or binary maps 331 

are used. In general, probabilities obtained for each pixel on the map have uncertainties 332 

associated to the observation events (Lobo et al. 2010), as well as to the model that 333 

generated those probabilities (Congdon 2003; Clark & Gelfand 2006). Model uncertainty 334 

complements the information contained on point estimate predictions, and should be 335 

displayed as yet another SDM result. However, uncertainties are generally lacking from 336 

most SDM reports (Congdon 2003; Clark & Gelfand 2006), even if the approach used 337 

can produce them. Species distribution maps generated with low quality data (e.g. 338 

presence-only data) could be dangerously misleading if not accompanied with the 339 

corresponding uncertainty map. Too high or too widely spread uncertainty would also 340 

question the accuracy of the model, suggesting that more observations or alternative 341 

explanatory variables should be considered in the study. On the real data exercise we 342 

observe that higher uncertainty is expected on transition areas between high and low 343 

estimated probabilities or on poorly sampled areas (Figs. 3b and S2). Uncertainty maps 344 

can be a valuable tool for designing field work efficiently. The researcher can then decide 345 

to focus future sampling effort either on areas with high uncertainty to validate the model 346 

or on areas with high probabilities of observation and low error to sample more 347 

efficiently.  348 

Adding models into an ensemble could increase precision in SDM predictions 349 

(Araújo & New 2007; Garcia et al. 2012). However, not all models should be included on 350 

the same ensemble or average (Knutti 2010), especially when any of the models is 351 

particularly inaccurate. It is therefore crucial to evaluate individual models’ accuracy. 352 

The AUC score is not a good measure of model accuracy (Lobo et al. 2008; Jiménez-353 
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Valverde 2012). Different models (or even modelling approaches) with similarly high 354 

AUC can return significantly different results. As discussed before, high max(TSS) 355 

scores alone may not guarantee good performance either, as high TSS scores at low t*  are 356 

a sign for imprecise models (Fig. 4 comparing TSS profiles for Argentina and Bolivia). 357 

However, max(TSS) scores are sometimes reported without specifying the detection 358 

threshold at which it is reached (e.g. Soininen et al. 2012; Comte & Grenouillet 2013).  359 

We argue that t*  is also necessary to evaluate the accuracy of a SDM. The TSS 360 

profile shows TSS scores as the detection threshold (t) change from 0 to 1. If we think of 361 

a hypothetical perfectly-fitting model that can separate presences from absences, one 362 

would expect a “flat” TSS profile (i.e. TSS = 1 for 0 ≤ t < 1; Fig. 1b). That is, the only 363 

predicted values would be 0 or 1, and the model would perform equally at any t lower 364 

than 1. For any other model, we observe that the higher t* the better the correlation 365 

between predicted high probabilities of observations and confirmed observations are. 366 

That is, the higher t* the better the model explains the variability along the species niche 367 

dimensions. In that case, any thresholds lower than t* implies higher sensitivity (less 368 

omissions) but lower specificity (more commissions).   369 

The TSS profile can also help to determine whether the model is suited to the 370 

intended goal of the study. As stated above, the higher t* the more accurately our 371 

predictions can discard unsuitable sites for the species, without losing sensitivity for sites 372 

where the species can be. In general, algorithmic models like MaxEnt are expected to 373 

present low omission error (high sensitivity) but high commission error (low specificity) 374 

(Guisan & Zimmermann 2000). For example, we observe that MaxEnt predictions have a 375 

lower max(TSS) and t*  than BSEL predictions, because of the higher commission error 376 

in the Espinal ecorregion and the higher omission in the High Monte ecoregion (Figs. 2 377 

and 3). The lower t* the larger the assumed distribution area needs to be not to miss sites 378 
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where the species could be (i.e. high commission error). That is, as we observe for 379 

predictions in Bolivia, one should assume that any probability higher than 0.04 could be a 380 

confirmed observation. Such models are good for detecting low signals of species 381 

presences, identifying most of the potential suitable sites for the species, but do not help 382 

to understand the relationship of the species with the environment.  383 

 384 

Selection of detection threshold  385 

For many practical applications it is necessary to transform continuous maps to binary 386 

presence-absence maps assuming a (more or less) objective detection threshold (Liu et al. 387 

2005; Jiménez-Valverde & Lobo 2007). Liu et al. (2005) and Jiménez-Valverde and 388 

Lobo (2007) previously discussed that a threshold of 0.5 is not always the best option, 389 

although it is often used. Theoretically, in a perfectly-fitting model, predicted 390 

probabilities could be interpreted as the expectancy of a Bernoulli probability 391 

distribution, where pi = 0.5 describes a site on which an observation would be a purely 392 

random event. In such a case, a threshold of 0.5 separates sites where it is likely to find 393 

the species from those where it is not. However, the further away the model is from the 394 

perfect fit the less the model predictions reflect the true probability of observation. 395 

Alternatively, max(TSS) has been used as a criteria to select detection thresholds (Albouy 396 

et al. 2012; Cheaib et al. 2012). From our results, we conclude that it would be unfair to 397 

convert continuous predictions to binary at an arbitrary t = 0.5. Basically, when the 398 

detection threshold changes from 0 to 1, the rate of well-predicted presences decreases 399 

while the rate of well-predicted absences increases. The best compromise between 400 

sensitivity and specificity is reached at t* . Therefore, we may select different t for each 401 

model, reducing comparability. 402 
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Here is how the complete TSS profile can help to determine one detection 403 

threshold for all models being compared. Despite BSEL max(TSS) is scored at t = 0.45, 404 

the model’s sensitivity and specificity are still very high for t = 0.25 - 0.6 (Fig. 4a). That 405 

is, accurate niche description are also obtained without big losses in sensitivity at t = 0.6. 406 

Similarly for MaxEnt predictions, max(TSS) is scored at t = 0.25, while TSS is not much 407 

lower at t = 0.4. Therefore, we could compare both model’s predictions using t = 0.4.  408 

It is the researcher’s task to decide (depending on the study’s goal) whether it is 409 

needed not to miss potential observations, or if it is preferable to be conservative with 410 

predictions. If t is selected below t*  predictions are less specific, but probably captures 411 

more observations. Inversely, if t is selected above t*  predictions may be more specific 412 

but the loss of sensitivity may be much greater than any gain in specificity. 413 

It is also the researcher’s task to decide on which side of the detection threshold 414 

he/she wants the most of the model’s uncertainty. We observed that a non-perfectly 415 

fitting model has the highest uncertainty (length of 95% CI) on regions where predicted 416 

observation probabilities are close to 50% (Fig. S2). As previously discussed, using the 417 

BSEL model in Argentina, either 0.4 or 0.6 may be good thresholds alternatives for 418 

respectively detecting the species or for predicting its presence (Fig. 4). Choosing t = 0.4 419 

would leave higher uncertainties on values interpreted as presences (Fig. S2). The 420 

opposite is also true for t = 0.6. 421 

 422 

Further practical applications and consideration 423 

The sources of commission error (i.e. false positives) can be identified by 424 

contrasting different evaluation approaches, i.e. uncertainty maps, previous distribution 425 

maps and TSS profile. Commission errors could be caused by i) overestimation of 426 

probability of observation, ii) incomplete validation dataset (i.e. lack of complete surveys 427 
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or reports for some protected areas), or iii) local extinction of the species by the time of 428 

the validation data is collected. High probabilities of observation (beyond a set threshold) 429 

with high uncertainty on areas where the species has never been described before, is 430 

likely to be due to bad performance of the model (i). Alternatively, high probabilities of 431 

observation with low uncertainty on protected areas where the species was not reported, 432 

but that overlaps previous delimitations of the species distribution are likely to be due to 433 

lack of information on single protected areas (ii) or local extinction (iii). When using 434 

protected areas as the set up for independent data, it is important to consider the possible 435 

bias present on their distribution, and how it affects commission error. For example, 436 

because of heavily unbalanced distribution of protected areas, commission error on the 437 

east of the species distribution is underestimated (Espinal and Pampas ecoregions, <1% 438 

protected) if compared to the cover on the core distribution area (Monte and Chaco 439 

ecoregions, 3.7% protected)(Chebez 2009).  440 

It is important to note that TSS is not sensitive to variations in prevalence in the 441 

validation dataset (Allouche et al. 2006), but it is to validation sample size. TSS profiles 442 

are rougher the smaller the validation dataset (Fig. 1). However, poor model performance 443 

in localized areas due to low number of samples cannot be detected with subsamples of 444 

the original dataset. Therefore independent validation datasets are needed.  445 
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ACKNOWLEDMENTS 447 

Thanks to M. Low for valuable comments on the manuscript. 448 

 449 

LITERATURE CITED 450 

Administración de Parques Nacionales. (2012). Sistema de información de biodiversidad. 451 
www.sib.gov.ar. Retrieved from 452 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

20 
 

http://www.sib.gov.ar/busqueda.php?qry=Chelonoidis&qrydo.x=-453 
1067&qrydo.y=-145 454 

Albouy, C., Guilhaumon, F., Araújo, M.B., Mouillot, D. & Leprieur, F. (2012). 455 
Combining projected changes in species richness and composition reveals climate 456 
change impacts on coastal Mediterranean fish assemblages. Global Change 457 
Biology, 18, 2995–3003. Retrieved August 22, 2013,  458 

Allouche, O., Tsoar, A. & Kadmon, R. (2006). Assessing the accuracy of species 459 
distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of 460 
Applied Ecology, 43, 1223–1232. Retrieved May 20, 2013,  461 

Araújo, M.B. & New, M. (2007). Ensemble forecasting of species distributions. Trends in 462 
Ecology & Evolution, 22, 42–47. Retrieved December 2, 2010,  463 

Argáez, J.A., Andrés Christen, J., Nakamura, M. & Soberón, J. (2005). Prediction of 464 
potential areas of species distributions based on presence-only data. 465 
Environmental and Ecological Statistics, 12, 27–44. Retrieved August 9, 2012,  466 

Buskirk, J.R. (1993). Distribution, status and biology of the tortoise, Geochelone 467 
chilensis, in Río Negro Province, Argentina. Studies on Neotropical Fauna and 468 
Environment, 28, 233–249. Retrieved October 2, 2012,  469 

Cabrera, M. (1998). Las tortugas continentales de Sudamérica austral. Consejo Nacional 470 
de Investigaciones Científicas y Técnicas, Argentina. 471 

Casetti, E. (1997). The expansion method, mathematical modeling, and spatial 472 
econometrics. International Regional Science Review, 20, 9–33. Retrieved August 473 
18, 2012,  474 

Cei, J.M. (1993). Reptiles del noroeste, nordeste y este de Argentina. Herpetofauna de las 475 
Selvas Subtropicales, Puna y Pampas. Museo Regionale di Scienze Naturali, 476 
Torino. 477 

Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E., François, C., Gritti, 478 
E.S., Legay, M., Pagé, C., Thuiller, W., Viovy, N. & Leadley, P. (2012). Climate 479 
change impacts on tree ranges: model intercomparison facilitates understanding 480 
and quantification of uncertainty. Ecology Letters, 15, 533–544. Retrieved August 481 
22, 2013,  482 

Chebez, J. (2009). Los que se van: Fauna Argentina amenazada. Albatros, Argentina. 483 

Clark, J.S. & Gelfand, A. (2006). Hierarchical Modelling for the Environmental 484 
Sciences: Statistical Methods and Applications. Oxford University Press, USA. 485 

Coetzee, B.W.T., Robertson, M.P., Erasmus, B.F.N., Van Rensburg, B.J. & Thuiller, W. 486 
(2009). Ensemble models predict Important Bird Areas in southern Africa will 487 
become less effective for conserving endemic birds under climate change. Global 488 
Ecology and Biogeography, 18, 701–710. Retrieved August 22, 2013,  489 

Collins, M. (2007). Ensembles and probabilities: a new era in the prediction of climate 490 
change. Philosophical Transactions of the Royal Society A: Mathematical, 491 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

21 
 

Physical and Engineering Sciences, 365, 1957 –1970. Retrieved September 18, 492 
2010,  493 

Comte, L. & Grenouillet, G. (2013). Species distribution modelling and imperfect 494 
detection: comparing occupancy versus consensus methods. Diversity and 495 
Distributions, 19, 996–1007. Retrieved August 22, 2013,  496 

Congdon, P. (2003). Applied Bayesian modelling. John Wiley and Sons, West Sussex, 497 
England. 498 

Diniz-Filho, J.A.F., Mauricio Bini, L., Fernando Rangel, T., Loyola, R.D., Hof, C., 499 
Nogués-Bravo, D. & Araújo, M.B. (2009). Partitioning and mapping uncertainties 500 
in ensembles of forecasts of species turnover under climate change. Ecography, 501 
32, 897–906. Retrieved August 22, 2013,  502 

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011). A 503 
statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 504 
43–57. Retrieved April 24, 2013,  505 

Embert, D. (2007). Distribution, diversity and conservation status of Bolivian reptiles. 506 
Doctoral Thesis thesis, Boon University, Bonn. Retrieved from http://hss.ulb.uni-507 
bonn.de/2008/1441/1441-engl.htm 508 

Ergueta, P.S. & Morales, C.B. de. (1996). Libro rojo de los vertebrados de Bolivia. 509 
Asociación para la Biología de la Conservación - Bolivia, La Paz, Bolivia. 510 

Ernst, C.H. (1998). Geochelone chilensis. Catalogue of American Amphibians and 511 
Reptiles, 668, 1–4. 512 

Fritz, U., Alcalde, L., Vargas‐Ramírez, M., Goode, E.V., Fabius‐Turoblin, D.U. & 513 
Praschag, P. (2012). Northern genetic richness and southern purity, but just one 514 
species in the Chelonoidis chilensis complex. Zoologica Scripta, 41, 220–232. 515 
Retrieved April 23, 2012,  516 

Garcia, R.A., Burgess, N.D., Cabeza, M., Rahbek, C. & Araújo, M.B. (2012). Exploring 517 
consensus in 21st century projections of climatically suitable areas for African 518 
vertebrates. Global Change Biology, 18, 1253–1269. Retrieved February 15, 519 
2012,  520 

Gonzales, L., Muñoz, A. & Cortéz, E. (2006). Primer reporte sobre la herpetofauna de la 521 
reserva natural ‘El Corbalán’, Tarija, Bolivia. Kempffiana, 2, 72–94. 522 

Green, D.M. & Swets, J.A. (1966). Signal Detection Theory and Psychophysics. John 523 
Wiley and Sons. 524 

Guisan, A. & Thuiller, W. (2005). Predicting species distribution: offering more than 525 
simple habitat models. Ecology Letters, 8, 993–1009. Retrieved March 13, 2012,  526 

Guisan, A. & Zimmermann, N.E. (2000). Predictive habitat distribution models in 527 
ecology. Ecological Modelling, 135, 147–186. Retrieved December 8, 2010,  528 

Hanley, J.A. & McNeil, B.J. (1982). The meaning and use of the area under a receiver 529 
operating characteristic (ROC) curve. Radiology, 143, 29–36. 530 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

22 
 

Hengl, T. (2009). A Practical Guide to Geostatistical Mapping. University of 531 
Amsterdam, Amterdam, The Netherlands. Retrieved from http://spatial-532 
analyst.net/book/About 533 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high 534 
resolution interpolated climate surfaces for global land areas. International 535 
Journal of Climatology, 25, 1965–1978. Retrieved October 20, 2010,  536 

Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. (2006). Evaluating the 537 
ability of habitat suitability models to predict species presences. Ecological 538 
Modelling, 199, 142–152. Retrieved August 18, 2011,  539 

Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating 540 
characteristic curve (AUC) as a discrimination measure in species distribution 541 
modelling. Global Ecology and Biogeography, 21, 498–507. Retrieved August 542 
22, 2013,  543 

Jiménez-Valverde, A. & Lobo, J.M. (2007). Threshold criteria for conversion of 544 
probability of species presence to either–or presence–absence. Acta Oecologica, 545 
31, 361–369. Retrieved August 22, 2013,  546 

Knutti, R. (2010). The end of model democracy? Climatic Change, 102, 395–404. 547 
Retrieved February 21, 2012,  548 

Leathwick, J.R. (1998). Are New Zealand’s Nothofagus species in equilibrium with their 549 
environment? Journal of Vegetation Science, 9, 719–732. 550 

Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005). Selecting thresholds of 551 
occurrence in the prediction of species distributions. Ecography, 28, 385–393. 552 
Retrieved June 13, 2013,  553 

Liu, C., White, M. & Newell, G. (2011). Measuring and comparing the accuracy of 554 
species distribution models with presence–absence data. Ecography, 34, 232–243. 555 
Retrieved August 22, 2013,  556 

Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010). The uncertain nature of absences 557 
and their importance in species distribution modelling. Ecography, 33, 103–114. 558 
Retrieved September 23, 2013,  559 

Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008). AUC: a misleading measure of the 560 
performance of predictive distribution models. Global Ecology and 561 
Biogeography, 17, 145–151. Retrieved June 13, 2013,  562 

Margules, C.R. & Pressey, R.L. (2000). Systematic conservation planning. Nature, 405, 563 
243–253. Retrieved August 18, 2011,  564 

Mourrelle, C. & Ezcurra, E. (1996). Species richness of Argentine cacti: A test of 565 
biogeographic hypotheses. Journal of Vegetation Science, 7, 667–680. 566 

Nilsson-Örtman, V., Stoks, R., De Block, M., Johansson, H. & Johansson, F. (2013). 567 
Latitudinally structured variation in the temperature dependence of damselfly 568 
growth rates. Ecology Letters, 16, 64–71. Retrieved March 15, 2013,  569 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

23 
 

Nori, J., Akmentins, M.S., Ghirardi, R., Frutos, N. & Leynaud, G.C. (2011). American 570 
bullfrog invasion in Argentina: where should we take urgent measures? 571 
Biodiversity and Conservation, 20, 1125–1132. Retrieved October 4, 2011,  572 

Quantum GIS Development Team. (2012). Quantum GIS Geographic Information 573 
System. Open Source Geospatial Foundation Project. Retrieved from 574 
http://qgis.osgeo.org 575 

Raxworthy, C.J., Ingram, C.M., Rabibisoa, N. & Pearson, R.G. (2007). Applications of 576 
ecological niche modeling for species delimitation: a review and empirical 577 
evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology, 578 
56, 907–923. Retrieved September 8, 2012,  579 

Richard, E. (1988). Las Yataché (Chelonoidis donosobarrosis: Chelonii, Testudine) de la 580 
región del Nevado (Mendoza, Argentina). Apuntes sobre la hitoria natural. 581 
Amphibia y Reptilia, 1, 79–92. 582 

Richard, E. (1999). Tortugas de las regiones aridas de Argentina. L.O.L.A., Buenos 583 
Aires Argentina. 584 

Rowlingson, B., Diggle, P., Bivand, R., Petris, G. & Eglen, S. (2013). splancs: Spatial 585 
and space-time point pattern analysis. Retrieved from http://CRAN.R-586 
project.org/package=splancs 587 

Soberon, J. & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, 588 
and assumptions. Proceedings of the National Academy of Sciences, 106, 19644–589 
19650. Retrieved August 9, 2012,  590 

Soininen, J., Korhonen, J.J. & Luoto, M. (2012). Stochastic species distributions are 591 
driven by organism size. Ecology, 94, 660–670. Retrieved August 22, 2013,  592 

Tortoise & Freshwater Turtle Specialist Group. (2010). Chelonoidis chilensis. IUCN 593 
2010. IUCN Red List of Threatened Species. Retrieved December 21, 2010, from 594 
http://www.iucnredlist.org/apps/redlist/details/9007/0 595 

Turchin, P. & Hanski, I. (1997). An empirically based model for latitudinal gradient in 596 
vole population dynamics. The American Naturalist, 149, 842–874. Retrieved 597 
May 23, 2012,  598 

VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. & Storlie, C. (2012). SDMTools: 599 
Tools for processing data associated with species distribution modelling 600 
exercises. Retrieved from http://CRAN.R-project.org/package=SDMTools 601 

Waller, T. (1986). Distribucion, habitat y registro de localidades para Geochelone 602 
chilensis (Gray , 1870) (Syn donosobarrosi, petersi) (Testudines, Testudinidae). 603 
Amphibia & Reptilia, 1, 10. 604 

 605 
 606 
 607 
 608 
 609 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1208v1 | CC-BY 4.0 Open Access | rec: 3 Jul 2015, publ: 3 Jul 2015

P
re
P
rin

ts



 

24 
 

SUPPORTING INFORMATION 610 
Additional Supporting Information may be found in the online version of this article: 611 

Fig. S1. Sensitivity and specificity of simulated SDM 612 

Fig. S2. BSEL model uncertainty  613 

Appendix S1. Bayesian spatially expanded logistic (BSEL) model and model selection 614 

procedure 615 

Table S1. Complete list of observations and sources.  616 

Table S2. Explanatory variables and model selection.  617 

Table S3. Presence of Chelonoidis chilensis on protected areas in Argentina and Bolivia.  618 

  619 
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TABLES 620 
 621 
Table 1: Explanatory variables included in the final model. 622 
 623 

 624 
 625 
 626 
 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 

 639 
  640 

 DICa �̅
b �̅ 95% CI 

Mean annual temperature 930.4 0.56 -4.68 5.14 

Max. temperature of warmest month 869.4 1.61 -2.05 5.86 

Temperature annual range 853.7 0.03 -2.25 2.12 

Precipitation of warmest quarter 824.5 -1.57 -2.35 -0.80 

a:  Deviance Information Criterion (progressive)  

b: mode of the effect parameter. 
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FIGURES 641 

 642 
Figure 1: left panels: simulated observations (open circles = 1; filled circles = 0) and 643 

species distribution models 1 to 5 (probabilities in linear scale black = 0 to white = 1).  644 

Simulated models assume varying accuracy and precision. Right panels: TSS profiles 645 

calculated with different sizes of validation dataset. Vertical dashed lines indicate t* .  646 

 647 

 648 
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 649 

Figure 2: Map of austral South America, showing a) sites of confirmed observations of 650 

Chelonoidis chilensis (blue dots) and ecoregions where the species has been observed 651 

(coloured polygons); b) a priori  probabilities of observation (colour scale) estimated from 652 

observation densities. 653 

 654 
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Figure 3: Maps showing a) mode and b) length of the 95% Credible Interval (CI) of 656 

probabilities of observation generated with the Bayesian Spatially Expanded Logistic 657 

model (BSEL), and c) probabilities of observation generated with MaxEnt. Both models 658 

were fitted to the same set of variables detailed in Table 1. Blue lines show ecoregions 659 

delimitation for comparison with Figure 2a. 660 

 661 

 662 

  663 

Figure 4: True Skill Statistic (TSS) profile over different detection thresholds, for the 664 

Bayesian Spatially Expanded Logistic model (BSEL; solid) and MaxEnt (dashed) 665 

predictions compared to independent data sets of confirmed observation on protected 666 

areas in Argentina and Bolivia. Perfect fit profile is shown with dot-dashed line. 667 
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