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ABSTRACT 

Embodied awareness is the pervasive, multimodal self-awareness that is thought to form the 

foundation of emotion. This awareness was recently proposed to rely on the anterior insular cortex 

(AIC) comparing expected and actual bodily signals arising in prefrontal and sensory cortices. To 

investigate this possibility in the somatosensory domain, we measured brain activity using 

functional magnetic resonance imaging while healthy participants discriminated tactile stimuli in 

a roving oddball design. Dynamic Causal Modelling revealed that unexpected stimuli increased 

the strength of forward connections in a caudal to rostral ascending hierarchy from thalamic and 

somatosensory regions towards insula, cingulate and prefrontal cortices, consistent with 

hierarchical predictive coding. Within this feed-forward flow of neural coupling, the AIC 

increased both forwards and backwards connections with prefrontal and somatosensory cortex, 

supporting a comparator role. Further, we found that greater prefrontal to AIC connectivity 

predicted subjective ratings of stimulus discrimination difficulty. These results are interpreted in 

light of embodied predictive coding, suggesting that the AIC coordinates global cortical 

processing of tactile changes to support body awareness. 
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INTRODUCTION 

The sense of self and experience of emotion are known to rely on highly multimodal 

interactions between interoceptive, somatosensory and proprioceptive signals, as well as prior 

beliefs about the causes of these sensations (Gallagher 2005; Brown et al. 2013). Recently, 

predictive coding has been used to explain how these interactions produce embodied and 

emotional awareness (Apps and Tsakiris 2013; Seth 2013). One key prediction is that the anterior 

insula cortex (AIC) acts as a comparator between incoming bodily sensations and the brain's prior 

beliefs. In this paper we test this hypothesis in the somatosensory domain, using dynamic causal 

modelling (DCM). 

Somatosensation underlies the conscious body-image that underpins body-ownership and 

action agency (Serino and Haggard 2010) and has recently been shown to rely on hierarchical 

Bayesian inferences (Auksztulewicz et al. 2012; Ostwald et al. 2012). The AIC is richly 

interconnected with the posterior insula and somatosensory cortex (Cerliani et al. 2012; Chang et 

al. 2012), and  anticipates the sensory and affective consequences of touch (Lovero et al. 2009). 

Probabilistic hierarchical inferences involving the AIC and cingulate cortex are thought to support 

interoception (Seth et al. 2011), pain analgesia (Büchel et al. 2014), and somatosensation (Ostwald 

et al. 2012). The AIC in particular is thought to integrate these modalities to create a multimodal 

self-model (Apps and Tsakiris 2013; Gu et al. 2013) that underpins dynamic cognitive control 

(Ullsperger et al. 2010) and embodied self-awareness (Gallagher 2005). Further evidence comes 

from findings linking AIC activations to body-state prediction errors, for example in the case of 

gustatory conflict (O’Doherty et al. 2002), unexpected painful stimulation (Seymour et al. 2005; 

Keltner et al. 2006), or during false heart rate-feedback (Critchley et al. 2004). Little is currently 

known about how the AIC communicates tactile prediction errors throughout the cortical 

hierarchy. Delineating the impact of somatosensory changes on insula responses is thus critical for 

understanding embodied perception. 

To address these issues, we adapted a roving somatosensory oddball task (RSOT) for use 

during fMRI scanning. Sensory oddball or deviance responses in the brain have been strongly 

linked to prediction error minimization, and the RSOT has previously been shown to elicit 

prediction errors in somatosensory and cingulate cortex. An advantage of the RSOT over standard 

oddball designs is the ability to control for stimulus-specific effects, as all stimuli (e.g. high and 

low intensity) serves as both deviant and standard. We thus used DCM for fMRI to investigate 
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the causal impact of unexpected somatosensory stimuli on effective neural connectivity between 

the AIC and other structures. We reasoned that if the AIC acts as a bodily comparator, deviance 

should increase both ingoing connections from sensory and thalamic areas and outgoing 

connections to prefrontal and cingulate cortex. We further expected to observe an overall pattern 

of increased forward-driving connectivity throughout a hierarchy of subcortical and cortical 

regions in response to deviancy, consistent with a hierarchical predictive coding account of 

somatosensory awareness. Finally, if top-down expectations underlie bodily awareness (Seth et 

al. 2011; Apps and Tsakiris 2013), we predicted that participants with the strongest modulation 

of backwards connections from the prefrontal cortex to the AIC would rate somatosensory 

deviants as easier to detect.  

   

METHOD 

Participants 

Thirty-eight healthy participants (16 males) were recruited from Aarhus University and 

the surrounding community. Inclusion criteria specified that all participants were between the 

ages of 21-45 years, right handed, free from medications with contraindications for the BOLD 

signal (psychiatric, blood pressure or heart medication, etc.), physically and mentally healthy, and 

meeting standard MRI safety inclusion criteria (lack of claustrophobia, metallic implants, etc.). 

All participants gave verbal consent and visited the MRI laboratory at Aarhus University Hospital 

for approximately 2 hours in total, and received a 300 DKK (approx. €40) participation 

reimbursement. All experimental procedures were conducted with approval from the local ethics 

committee (De Videnskabsetiske Komitéer for Region Midtjylland) in accordance with the 

Declaration of Helsinki. 8 participants in total were excluded from preliminary data analysis - one 

for excessive motion during scanning, 6 for extremely poor behavioral performance (see Roving 

Somatosensory Oddball Task for further details), and one for failure to acquire pulse regressors. 

The final sample for the fMRI analysis included 30 participants (14 males) with a mean age of 

24.5 years (SD = 3.2). 

 

Roving Somatosensory Oddball Task 
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To manipulate tactile probability while controlling for stimulus intensity and attention, we 

utilized a Roving Somatosensory Oddball Task (RSOT) in which trains of stimuli randomly 

switch between high and low intensity after a variable number of repetitions (Garrido et al. 2008; 

Ostwald et al. 2012). In the present study, stimuli were delivered in trains of 3-7 repetitions. 

Stimuli consisted of single electrical pulses of 50 μs duration and 2000 ms interstimulus interval. 

Following each repetitive train, stimuli switched between low or high intensity trials, where low 

intensity trials corresponded to a single pulse at twice the perceptual threshold, and high intensity 

trials consisted of two pulses identical to the single delivered in rapid succession (100 ms inter-

stimulus interval). This paradigm has been repeatedly shown to elicit sensory prediction errors 

(Garrido et al. 2008, 2009; Lieder et al. 2013), with deviant trials selectively increasing the 

strength of forward-driving neural connectivity (Dietz et al. 2014) and eliciting Bayesian surprise 

in somatosensory and cingulate cortices (Ostwald et al. 2012). 

This stimulation protocol resulted in a sensation of a mild tickle or vibration that was not 

reported as painful by any participant. The first stimulus of each new train was modelled as the 

“deviant”, and the third repetition following the deviant as the “standard”. The number of 

repetitions between each switch was randomly sampled from a normal distribution over possible 

repetition numbers (i.e., between 3 and 7), generating an unpredictable uniform stimulus 

sequence. Participants received a total of 158 deviant and 640 repetition stimuli (of which 158 

stimuli were selected as standard). All stimuli were delivered to the median nerve of the left 

forearm using two MR-safe ECG electrodes placed approximately 2.5 cm apart and a constant 

current stimulator (DeMeTec, Langgoens, Germany). See Figure 1 for an overview of the 

experimental set-up and sample stimulus train. 

After placement in the scanner, participants’ individual perceptual thresholds were 

determined using an adaptive staircase procedure prior to scanning. The staircase consisted of a 

one-up/three-down procedure, where step size was reduced every two reversals until reaching a 

total of 8 reversals. The sensory threshold was thus calculated by averaging the stimulus 

intensities corresponding to the 8 reversals. Stimuli for the subsequent oddball task were then 

delivered at twice this sensory threshold, eliciting a mild touch sensation. After thresholding, 

participants completed a short practice version of the oddball task, and continued to the main 

experiment after indicating that the task instructions were fully understood. All participants 

completed approximately 30 minutes of the RSOT during fMRI acquisition. 
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Pilot investigation with this stimulation protocol revealed that as intended, the double 

stimulation was perceived as slightly more intense than single trials. To control attention, 

participants were instructed to silently count all stimuli switches throughout the entire task 

duration, in a standard ‘active’ counting task (Garrido et al. 2009). This manipulation ensures that 

participants must exert equivalent attentional effort to both deviant and standard trials, as the 

occurrence of deviants is unpredictable. Participant switch counts were then recorded at the end 

of the imaging session to ensure compliance. Six participants reporting switch counts 60% above 

or below the true total (i.e., poorer than chance performance) were excluded from data analyses. 

Overall switch count accuracy of the remaining participants was extremely high (mean accuracy 

99%), suggesting successful attentional control and task participation.  

Following the scan, participants completed a debriefing inquiring about the nature of the 

felt stimuli (e.g., painful or non-painful). Participants also rated the felt intensity of each stimulus 

type (i.e., low and high), and the difficulty detecting stimulus changes from low to high and from 

high to low, on visual analog scales with 0 marked as ‘not at all intense/difficult’ and 100 labeled 

as ‘very difficult/intense’. The adaptive staircase procedure, the RSOT and the post-scan ratings 

were implemented in Psychopy (v1.76.00) (Peirce 2007).  

  

Data acquisition and preprocessing 

  

All brain measurements were acquired on a Siemens Trio 3T scanner, using a 32-channel 

head coil. For fMRI, 31 slices were acquired in ascending order using a gradient echo planar 

sequence with echo time 30 ms, voxel size 3 × 3 × 3 mm in a 64 × 64 mm field of view, repetition 

time = 1.54 s. Slices were manually positioned to ensure full coverage of somatosensory cortex, 

anterior insula, prefrontal cortex, and thalamus, flip angle = 90°. A T1-weighted MPRAGE 

structural image was collected after the EPI sequence. B0 field maps were collected using a 

gradient echo field map sequence. To control for physiological BOLD-signal confounds, cardiac 

cycles were recorded in synchrony with EPI acquisition using an infrared pulse oximeter on the 

participant’s right index finger.  

  

fMRI Analysis 
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MRI data were analysed using Statistical Parametric Mapping (SPM8 for GLM analysis 

and SPM12b for DCM, http://www.fil.ion.ucl.ac.uk/spm). Each participant’s 1,109 EPI images 

were corrected for geometric distortions caused by susceptibility-induced field inhomogeneities.  

This was done using a combined correction for both static distortions and changes in those 

distortions caused by head motion (Andersson et al. 2001; Hutton et al. 2002). Static distortions 

were calculated using the FieldMap toolbox to process each participant’s B0 field map (Hutton et 

al. 2004). EPI images were then realigned, unwarped, and co-registered to the participant’s 

anatomical scan. The anatomical images were processed using the unified segmentation 

procedure implementing tissue segmentation, bias correction, and spatial normalization 

(Ashburner and Friston 2005); derived normalization parameters were then applied to the EPI 

images. Finally, the images were smoothed using a 6 mm full-width at half-maximum Gaussian 

kernel, and resampled to 3 × 3 × 3 mm voxels. 

To control for motion and physiological BOLD signal confounds,  

serial correlations were modelled using a nuisance variable regression approach thoroughly 

described in (Lund et al., 2006). In addition to the SPM8 standard discrete cosine set high 

pass filter (128 s cut off), this approach included 10 RETROICOR-derived regressors based on 

cardiac oscillations (Glover et al., 2000). We also included the full 12 parameter Volterra 

expansion of motion and motion history parameters to capture rigid body head movement related 

to subject motion and respiration (Friston et al., 1996). 

To examine BOLD responses to somatosensory oddballs, we modelled the EPI data in a 

fixed-effects general linear model (GLM) for individual participant BOLD timeseries. To doso 

we modelled Deviants (the first trial of a new stimulus intensity) and Standards (the third 

repetition following each Deviant) as separate event-related regressors convolved with the 

canonical hemodynamic response function. The remaining repetition trials were treated as 

implicit baseline. Mass-univariate statistical analysis was conducted using a hierarchical t-

contrasts; fixed effects within each participant were assessed using a Deviant > Standard 

unidirectional t-contrast. The resulting contrast images were then passed to a random-effects one 

sample t-test over all participants, contrasting for positive mean response. The resulting SPM was 

peak-corrected for multiple comparisons at a family-wise error rate PFWE < 0.05 using Gaussian 

random field theory (Nichols and Hayasaka 2003). 
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Dynamic Causal Modelling 

 

For our analysis of effective connectivity, we were interested in the overall impact of 

surprising tactile changes on effective connectivity within the right lateralized network identified 

by our mass-univariate analysis. Our connectivity hypotheses primarily concerned the pattern of 

modulations within a relatively large network of sub-cortical, cortical, and prefrontal areas rather 

than the intrinsic network architecture (e.g. the presence or absence of connections). To 

accommodate this, we utilized a recently developed data-driven approach to model selection that 

is optimised for large scale parameter estimates (Friston and Penny 2011; Friston et al. 2011). 

This allowed us to search within a "full" model, which contained all free and intrinsic parameters, 

for the best of all its possible sub-models. Within this best model, we applied classical parametric 

tests to the strength of specific connections. This approach is based on the high a priori plausibility 

of reciprocal mono- and polysynaptic connections (both of which are captured by directed 

connections in DCM for fMRI) existing between the majority of cortical and sub-cortical centres 

(Friston et al. 2011; Bastos et al. 2012; Markov et al. 2013) and thus prioritizes inferences over 

parameter strengths. We were  thus able to make robust inferences about the strength and 

directionality of connections within an inclusive model space while circumventing limitations 

regarding the combinatorial explosion of models in classical DCM approaches (Lohmann et al. 

2012). 

To do so, we first remodelled our design to include the deviance condition as a parametric 

connectivity modulator, recoding all trials into a single regressor parametrically modulated by the 

Deviant > Standard (D>S) contrast (Stephan et al., 2010). We then extracted BOLD time series 

for the main effect of D>S from each volume of interest (VOI), for use during the specification 

of our DCMs. This extraction was based on peak activations in the Deviant > Standard group 

contrast, with VOIs in the dorsal-posterior thalamus (TH) [MNIxyz = 12, -16, 10], somatosensory 

area 2 [MNIxyz = 48, -34, 49] (S1), anterior insula cortex (AIC) [MNIxyz = 36, 20, 1], anterior mid-

cingulate cortex (MCC) [MNIxyz = 3, 23, 43], and middle frontal gyrus (MFG) [MNIxyz = 36, 50, 

22]. All anatomical labels at extracted coordinates were confirmed using the SPM Probabilistic 

Anatomy Toolbox (Eickhoff et al. 2005).  

VOI time series were then extracted from the D > S contrast in each participant via an 

automated search procedure. To do so, time series were summarized as the principle eigenvariate 
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extracted from within a 6mm spherical VOI centred on each participant’s local maxima. The 

position of each local maximum was determined by searching within a 12 mm radius search 

sphere (i.e., twice our 6mm FWHM smoothing kernel), centred on the group coordinate for that 

region. Extracted peak coordinates were plotted on a standard brain and visually inspected to 

ensure all extracted time series were from the appropriate anatomical region of interest. For 

extraction, participant-level SPMs were thresholded at p < 0.05 uncorrected, voxel extent 

threshold k > 5 contiguous voxels. All time-series were corrected for the effects-of-interest F-

contrast. Given that we stimulated the left median nerve and were primarily interested in the right-

lateralized body-awareness network (Craig 2003), all VOIs were extracted from the right side of 

the brain. In five participants, regional VOIs from one or more regions could not be obtained, 

leaving 25 total participants for all DCM analyses. 

We chose a somewhat conservative approach to modelling the oddball effect by using the 

difference between deviants and standards as both a driving and modulatory input. This reflects 

the fact that, from the point of view of fMRI, the repeated presentation of stimuli every two 

seconds (as in our design) is effectively a steady state stimulus. Therefore, the only events 

inducing a haemodynamic response are the occasional deviants (relative to an arbitrary standard). 

We thus allowed for the deviant input to exert driving and modulatory effects. In other words, we 

allowed for a direct exogenous effect of deviants (mediated by unknown sources) and an effect 

mediated by a change in the sensitivity to extrinsic and intrinsic afferents from modelled sources 

(see Figure 3C for illustration of the full model).  The full model thus included the impact of 

deviants as a driving input to the thalamus, and modulatory deviance effects on all intrinsic and 

self-connections. The full model with extrinsic (fixed) connections between all nodes and 

deviance vs standard modulations (free parameters) for all connections was then estimated in each 

participant using the variational Bayesian expectation maximization algorithm implemented in 

SPM12. 

For model selection, we applied the post-hoc Bayesian model optimization procedure for 

network discovery (Friston et al. 2011). This technique estimates the evidence for all possible 

models by inverting the full model and applying a greedy search algorithm to find the probability 

of particular connections existing and whether a connection is modulated by an experimental 

condition (Friston and Penny 2011). The post-hoc model optimization routine thus furnished 

posterior model probabilities (i.e., the probability that a model is the best explanation for the data) 
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for all reduced models, including a null-model with no connections. The strength of evidence for 

the winning model was determined using the Bayes factor; i.e., the ratio of evidence for the best 

model vs. the second best model (Penny et al. 2004). The parameter estimates from the winning 

model for each participant were then subjected to conventional frequentist analyses to determine 

relative modulatory strengths for various connections and contrasts of connections. These tests 

were false discovery rate corrected at PFDR < 0.05 for multiple comparisons.  

We tested two connectivity hypotheses; first, we established the principal directionality of 

deviant-driven connectivity modulations in terms of the strength with which deviant vs. standard 

trials modulated each of the 25 intrinsic and self-connections.  This was accomplished using one-

sample t-tests over the 25 estimated modulatory (B-matrix) parameters, PFDR < 0.05. This 

approach enabled us to establish both the overall pattern of deviance-evoked changes in on 

effective connectivity within the somatosensory-oddball network, and to specifically evaluate the 

directionality of modulations to and from the AIC. Second, we assessed the relationship between 

individual differences in participants’ perceived difficulty detecting sensory changes (i.e., the 

averaged post-scan difficulty ratings) and deviance-driven modulation of each intrinsic 

connection (i.e., the 20 between-region B-matrix parameters). To do so, we conducted robust 

regression analyses using Tukey’s Biweight. This method was chosen over a least squares 

approach to protect against outlier values, which are a frequent issue in neuroimaging individual 

differences analyses (Poldrack 2012). Regression p-values were adjusted for multiple 

comparisons to a PFDR < 0.05. All ANOVA and one-sample t-test analyses were conducted in 

SPSS version 20 (IBM), and all FDR thresholds and robust regression analysis were calculated 

using MATLAB R2012b (Mathworks, Inc) and the FDR toolbox. 

 

Results 

 

Sample Characteristics and Nuisance Regression 

Minus the 6 participants excluded for extremely poor performance, the average number 

of counted deviants was 156 (SD = 17) out of 158 total, corresponding to an average count 

accuracy of 99%. This result indicates that the majority of participants were able to fully comply 

with the task instructions, precluding major differences in attentional effort between standard and 

deviant trials. In the post scan debriefing, all participants reported that the stimuli were perceived 
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as a non-painful mild touch sensation. The average sensory threshold across participants was 

12.22 mA (SD = 2.86). As a manipulation check, we compared participant’s intensity and 

difficulty ratings for low vs. high stimuli via paired-sample t-tests. Double stimuli (mean intensity 

rating = 57, SD = 21) were rated as significantly more intense than single stimuli (mean intensity 

rating = 46, SD = 16, mean difference = 11, SD = 19, t29 = 3.4, p = 0.002), validating our stimulus 

manipulation. As no significant difference was found for the self-rated difficulty of discriminating 

single-to-double (mean difficulty rating = 34, SD = 26) or double-to-single trials (mean difficulty 

rating = 36, SD = 23, mean difference = -1.5, SD =17.5, t29 = -0.5, p = .64), we averaged the two 

difficulty ratings from each participant to derive an index of change awareness. This index was 

then used as an independent variable in our regression analysis with DCM modulatory parameters. 

 

Mass-univariate results 

As expected, our fMRI GLM analysis of the Deviant > Standard contrast revealed 

extensive bilateral activations in primary somatosensory and parietal cortex. Within the right 

hemisphere, somatosensory activations covered 27.8% of area 2 and extended into areas of the 

intra-parietal cortex. The largest proportion of this activation was within area 2 (7.8% of cluster) 

followed by the IPC (6.1%). Consistent with previous oddball fMRI studies we additionally 

observed significant bilateral activations in the dorsal mid-cingulate, anterior insula, and middle 

frontal gyrus extending into dorsolateral prefrontal cortex (BA 45). In the midbrain, we observed 

bilateral activations in dorsal-posterior thalamus (identified as thalamus-prefrontal using the SPM 

anatomy toolbox), and caudate nucleus. All anatomical labels and percent activations were 

determined using the SPM probabilistic anatomy toolbox. See Table 1 and Figure 2 for a complete 

overview of these results.  

 

DCM Results 

Post-hoc model optimization found that the full model (M255, shown in Figure 4B), with 

all intrinsic connections and modulations, had the highest posterior probability (pP = 0.79). The 

next most probable model was M128 with a posterior probability of 0.06; the Bayes factor 

discriminating these two models (pPM255/pPM128) was 13.17, corresponding to positive evidence 

for model 255 being the best explanation for the data (Penny et al. 2004). See Figure 3 for an 
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overview of the model selection results and plots illustrating fixed and modulatory connectivity 

strengths for the winning model.  

One sample t-tests over all 25 modulatory parameters revealed a general pattern of 

increased modulation by somatosensory deviants in a forward driving caudal to rostral hierarchy, 

with significant increases in connections from TH to AIC and S1, from S1 to AIC, MCC, and 

MFG, from AIC to MCC and MFG, and from MCC to MFG (Figure 4). In line with the hypothesis 

that AIC acts as a body-state comparator, the AIC increased both backwards connectivity towards 

S1 and forwards connectivity to the MCC and MFG. The AIC and S1 were the only regions to 

show increases in reciprocal connectivity. Additionally, significant modulations of the TH, AIC, 

and S1 self-connections were found, suggesting that somatosensory oddballs induce strong dis-

inhibition of these regions. Finally, our robust regression analyses found three modulatory effects 

significantly predicting subjective difficulty ratings (Figure 5B), all on backwards connections 

(MFG to TH, MFG to MCC, and MFG to AIC). Only the MFG to AIC relationship survived FDR 

correction, with the Deviant > Standard modulation predicting 38% of the variance in subjective 

difficulty; t(1, 25) = -3.47, pFDR = 0.0015, R2 = 38.04 (Figure 5A). 

  

 

 

Discussion 

 In the present study we demonstrated that BOLD responses to surprising tactile stimuli 

are produced by a pattern of increased forward-driving effective connectivity within a caudal-to-

rostral ascending hierarchy of somatosensory, limbic, and prefrontal areas. Most relevant to 

embodied predictive coding, we found that within this overall feed-forward flow of causal 

influences, insula responses to deviants were driven by increases in the strength of both ascending 

connectivity with prefrontal and cingulate cortex and backwards connectivity with the primary 

somatosensory area. Importantly, individual differences in the strength of these connectivity 

modulations predicted participants subjectively rated ease in detecting stimulus changes. This 
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pattern of connections is consistent with the anterior insula acting as core comparator underlying 

bodily awareness and provides support for core hypothesis of embodied predictive coding. 

 Previous fMRI studies of oddball responses in the visual, auditory, and tactile modalities 

report bilateral increases in BOLD activity in the thalamus (TH), primary sensory areas (e.g., 

S1/V1/A1), anterior insula (AIC), dorso-medial cingulate (MCC), and inferior and middle frontal 

gyrus (IFG, MFG), all implicated in the present study (See for review: Downar et al. 2002; 

Garrido et al. 2009). Our mass-univariate results are thus highly consistent with a canonical 

oddball response in the tactile domain, confirming that unexpected touch is processed in the brain 

by a coordinated hierarchy of both modality-specific areas (posterior thalamus, S1) and a more 

cross-modal network of regions likely involved in orienting to salient events (AIC, MCC) and 

coordinating attention and cognitive control (IFG, MFG).  

 Deviance responses have been extensively studied using electrophysiological measures 

which capture the well-characterized mismatch negativity scalp component (Garrido et al. 2009). 

Studies in the tactile domain have previously demonstrated mismatch responses to sudden 

changes in stimulus location (Huang et al. 2005), intensity (Chen et al. 2008), and frequency 

(Kekoni et al. 1997). One previous study using the RSOT modelled the tactile mismatch 

negativity as encoding Bayesian surprise, a computational marker of prediction error. 

Interestingly that study found that primary and secondary somatosensory cortices strongly 

encoded an early (140ms) stimulus-locked rise in Bayesian surprise whereas fronto-insular and 

cingulate sources showed a later response more associated with the representation of stimulus 

changes; i.e., salience.  

Here we observed strong activation of both S1 and AIC to tactile oddballs, which was 

mediated by a robust modulation of thalamic afferents to both areas. Both areas were in turn found 
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to directly influence cingulate and prefrontal cortex. A plausible interpretation of both Ostwald’s 

and our own results is that the AIC and MCC jointly monitor the precision or inverse-variance of 

S1 responses encoding automatic perceptual learning. Precision has been linked computationally 

to perceptual salience and attention and more specifically to contextual learning via 

neuromodulatory regulation of post-synaptic cortical gain (Moran et al. 2013). Indeed, the AIC 

and MCC have been shown to encode to expected precision or volatility (Iglesias et al. 2013; 

Schwartenbeck et al. 2014) and are generally thought to form part of the ‘salience network’, 

facilitating rapid orienting responses to important stimuli. Under predictive coding, salience (i.e. 

the selection of behaviourally relevant stimuli) can be operationalized as the precision-weighting 

of prediction errors by post-synaptic modulatory gain (Feldman and Friston 2010; Friston et al. 

2012). Consistent with the interpretation that the anterior insula monitors and regulates precision, 

we found that deviancy signals bypassed S1 to directly modulate the AIC via thalamic afferents, 

in addition to an indirect route via S1. Thalamic cells are capable of firing in both tonic and ‘burst’ 

modes with the latter being important for the processing of salient events (Sherman 2005). Our 

finding that deviancy directly modulated the AIC, which in turn regulated down-stream S1 

responses suggests that the region may monitor the precision of thalamic inputs directly in order 

to enable fast awareness and responding to critical events (e.g. pain, unexpected touch). This 

recurrent insular-thalamic-somatosensory loop may be crucial for conscious awareness of tactile 

changes.  

Indeed, recurrent neural activity in the somatosensory hierarchy has previously been 

shown to be important for conscious somatosensory awareness (Auksztulewicz et al. 2012); in 

general such cortical-subcortical loops are thought to be critical for conscious awareness 

(Dehaene et al. 2014). Here we found that strong recurrent connectivity between the AIC and 
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somatosensory cortex supports the processing of tactile oddballs, and that individual differences 

in the strength of backwards influences from the PFC to AIC predicted the self-rated ease of 

detecting subtle stimulus changes. These findings together suggest that the AIC coordinates the 

global cortical processing of surprising bodily stimuli by linking lower-level sensory regions to 

more attention and salience-related areas in the prefrontal and cingulate cortex during the 

processing of unexpected tactile changes. As discussed above, an interesting possible 

interpretation is that the AIC supports the emergence of a global workspace by directly monitoring 

and modulating the precision of these top-down and bottom-up inputs (Friston and Kiebel 2009; 

Bastos et al. 2012). Future studies will benefit from directly manipulating tactile precision and 

deviancy in conjunction with computational modelling to address this question.  

Finally, we observed a significant relationship between backwards connection strengths 

and difficulty ratings, wherein participants whose AIC was most strongly influenced by the PFC 

also reported the easiest time detecting stimulus changes. As predictive coding postulates that 

model updates or predictions should be most specifically encoded by top-down connections, this 

result links top-down effective connectivity or inference to awareness as hypothesized (Bastos et 

al. 2012). This result thus establishes an essential link between top-down inference, the anterior 

insula, and embodied awareness, providing criterion validity for our dynamic causal modelling 

results (Pennington 2003).  It is also worth noting that in participants reporting the lowest 

difficulty discriminating stimulus changes, the presence of strong DLPFC to AIC connectivity 

effectively completed a cortical-subcortical recurrent loop between somatosensory and prefrontal 

cortex (compare Figure 4 and 5), in line with a role for the AIC in coordinating a global workspace 

(Dehaene et al. 2014). However, given that participants merely provided offline ratings which can 

be subject to a variety of biases, an alternative interpretation may be that participants rated factors 
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unrelated to level of sensory awareness, such as general cognitive effort. We find this 

interpretation unlikely however; although one previous study did find that DLPFC activations to 

oddball stimuli are eliminated during a passive oddball task (Clark et al. 2001), the counting task 

helps to ensure that participants dedicate equivalent attentional effort to deviants and standards, 

as switches are inherently unpredictable (Garrido et al. 2009). Furthermore, overall switch counts 

were extremely accurate (mean accuracy = 99%) and participants did not rate either condition as 

significantly more difficult to detect. These observations make it unlikely that the result is purely 

confounded by attentional effort, and likely relates to the subjective awareness of intensity 

differences. Indeed, even with a high level of detection performance and equivalent difficulty 

ratings across conditions, we observed considerable variability in self-rated difficulty to detect 

stimulus changes, suggesting that some participants experienced switches more vividly than 

others. However, to better elucidate the role of attentional control or metacognitive report bias 

(Fleming and Lau 2014) in this result, it remains an important step for future research to 

manipulating stimulus probability in the context of a tactile detection task with intensity and 

perhaps confidence ratings on every trial. Future investigations will help to dissociate the role of 

executive function and metacognitive awareness in the response to embodied prediction error. 

 

Conclusion  

 

This study demonstrates how tactile awareness recruits a hierarchical mixture of sensory, salience, 

and attention-related cortical areas to support bodily awareness. Collectively our results illustrate 

hierarchical processing of surprising tactile stimuli and suggest a critical role for the anterior 

insula in coordinating global cortical processing and possibly bodily self-awareness. If the AIC 
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does coordinate dynamic interactions between these disparate neural processes via precision 

modulation, such a mechanism would be crucial for establishing the “global workspace” argued 

to be necessary for consciousness (Dehaene et al. 2014). Embodied predictive coding may thus 

provide a framework for understanding how particular predictive codes integrating internal states 

and external sensory inputs give rise to self-awareness. Understanding how the insula coordinates 

this complex interaction, and how various sensory channels are integrated and precision-weighted 

by contextual factors (Feldman and Friston 2010) is likely to yield important future insights into 

consciousness, emotion, and disruptions thereof. In particular future research may find that hyper- 

or hypo- connectivity of prefrontal to insula connections plays a critical role in common disorders 

of bodily awareness, e.g. Ekbom’s syndrome (chronic tactile hallucination) and phantom limb 

phenomenon.  
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Tables and Figures Legends 

 

Tables  
 

Table 1 

Label k PFWE T MNIXYZ 

R Anterior Insula 403 <0.001 11.16 36 20 1 

R Caudate   <0.001 8.74 12 8 4 

R Inferior Frontal Gyrus (Area 44)   <0.001 8.15 54 8 19 

R Primary Somatosensory Cortex (Area 2) 344 <0.001 10.06 48 -37 46 

R Intraparietal Sulcus (hIP1-2)   <0.001 9.65 39 -43 43 

R Intraparietal Sulcus (hIP2)   <0.001 9.18 39 -52 52 

L Intraparietal Sulcus (hIP1-2) 493 <0.001 9.91 -39 -49 43 

L Primary Somatosensory Cortex (Area 2)   <0.001 9.58 -45 -43 49 

L Intraparietal Sulcus (hIP1-3)   <0.001 9.13 -33 -55 49 

L Pallidum 521 <0.001 9.35 -15 5 4 

L Inferior Frontal Gyrus (Area 44)   <0.001 9.10 -48 8 22 

L Middle Insula  <0.001 8.08 -42,11,-2 

L Anterior Insula  <0.001 8.27 -30,23,-2 

L Temporal Gyrus   <0.001 8.49 -48 8 -2 

R Middle Frontal Gyrus 160 <0.001 8.45 36 50 22 

R Middle Frontal Gyrus   <0.001 7.76 42 44 25 

R Middle Frontal Gyrus (DLPFC)   <0.001 7.57 48 32 34 

L Anterior Mid-Cingulate 141 <0.001 8.45 -3 20 40 

R Anterior Cingulate   0.006 6.62 9 17 25 

L Supplementary Motor Area (Area 6)   0.006 6.58 0 14 52 

L Thalamus (Th-Prefrontal) 25 <0.001 8.25 -12 -19 10 

R  Superior Temporal Gyrus 54 <0.001 8.14 48 -22 -5 

R  Superior Temporal Gyrus   0.002 7.04 48 -31 -5 

R Middle Temporal Gyrus   0.012 6.35 57 -37 -5 

R Thalamus (Th-Prefrontal) 51 <0.001 8.10 12 -16 10 

R Thalamus (Th-Prefrontal)   <0.001 7.49 6 -16 4 

L Inferior Parietal Cortex (PF) 35 <0.001 7.86 -57 -43 25 

L Middle Temporal Gyrus   <0.001 7.41 -60 -52 16 

L Inferior Frontal Gyrus (Area 44) 73 <0.001 7.78 -39 26 28 

L Inferior Frontal Gyrus (Area 45)   0.003 6.88 -51 29 28 

L Middle Frontal Gyrus   0.008 6.50 -48 38 28 

L Inferior Parietal Cortex (PFt, PFop) 33 <0.001 7.59 -57 -22 34 

R Middle Frontal Gyrus 39 <0.001 7.36 27 11 58 

R Middle Frontal Gyrus   0.010 6.42 39 5 55 

L Middle Frontal Gyrus 58 <0.001 7.32 -36 41 22 

L Middle Frontal Gyrus   0.002 6.94 -36 50 16 

L Prefrontal Gyrus 17 0.002 7.11 -45 2 52 

R  Superior Temporal Gyrus 32 0.002 7.05 48 -40 13 

R Inferior Parietal Cortex (PFcm)   0.012 6.33 57 -40 25 

R Inferior Frontal Gyrus (Area 44) 12 0.005 6.67 51 14 40 
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Figures and Figure Legends 

 

 

 

Figure 1. Schematic depicting experimental setup and example stimulus train. Participants 

received mild somatosensory electrical stimulation (50 μs pulse) at twice sensory threshold on 

median nerve of the left forearm. Subjective intensity was manipulated by switching between 

single pulse (bottom-row) and double pulse (top-row) trials. Double pulses were identical to the 

single pulses, with a 100 ms interstimulus interval. Repetitions varied randomly from 3-7 before 

switching to the alternate stimulus type, with repetition counts sampled from a random normal 

distribution. The first stimulus of each train corresponded to a deviant (D), whereas the following 

repetitions were defined as standards (S1, S2, …, S6). For our fMRI analysis, only the deviant 

trials and the third standard in each train were modelled (see Methods for more details). 
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Figure 2. Significant BOLD activations for the deviant > standard contrast. From left to right, 

images are centred on the peak voxel extracted for each region modelled in the DCM; dorso-

posterior thalamus (panels A and B), anterior insula (C), middle cingulate (D), primary 

somatosensory cortex (E), and the middle frontal gyrus extending into DLPFC (F). Statistical 

parametric maps, family-wise error corrected for multiple comparisons PFWE < 0.05, shown on 

average of 152 1mm-resolution anatomical scans, normalized to MNI space. Corresponding in-

plane MNI coordinate are shown below each image. 
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Figure 3. Post-hoc Bayesian model selection (panels A and B), winning model (panel C), and 

mean coupling parameter plots (panel D). (A) Top left panel depicts the range of log-posterior 

probability among all models examined. The top middle panel (B) shows the posterior probability 

for all tested models. Model 255 had the highest probability of 0.79. Model 128 was the next most 

probable with a posterior probability of 0.06, resulting in a Bayes factor of 13.17 for the full 

versus reduced model, corresponding to positive evidence that the full model was the best 

explanation for the measured data within the tested model space. (C) Depiction of the winning 

full model (Model 255, far right peak in Figure 3B), gray circles indicate modulation by the 

Deviant > Standard contrast. (D) Bar plot depicting mean posterior parameter estimates for all 

modulatory (DCM.Ep.B) parameters across subjects, indicating the strength in Hertz with which 

each connection was modulated by deviant > standard stimuli. Error bars depict standard error. 

Modulations of inhibitory self-connections are shown at the right hand side of the graph. 
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Figure 4. Full model and results of one-sample t-tests over estimated modulatory parameters. Red 

arrows depict results of one-sample t-tests over all 25 modulation parameters (inhibitory self-

connections indicated by circular arrow around each region label). A general caudal to rostral 

flow increased effectivity connectivity in response to tactile deviants can be observed from 

thalamus (TH), and primary somatosensory cortex (S1), to anterior insula (AIC) and mid-

cingulate (MCC), before reaching prefrontal cortex (middle frontal gyrus, MFG). In contrast to 

this feed-forward flow of modulatory influences, the AIC shows significant increases in both 

‘forwards’ connections to cingulate and prefrontal cortex and ‘backwards’ connections with S1, 

indicative of error comparison. Interestingly, TH, AIC, and S1 self-connections are strongly 

disinhibited by tactile deviants. All p-values false discovery rate corrected for multiple 

comparisons, PFDR < 0.05.  
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Figure 5. Robust Regression analysis with self-reported difficulty for detecting stimulus changes 

predicting the strength of deviance-driven modulation of effective connectivity. Left panel A, 

participants with enhanced modulation of the backwards MFG to AIC connection by surprising 

touch stimuli reported easier discrimination of stimulus changes. Data points depict individual 

participants; points shaded gray indicate those receiving down weights > 2 SD from the mean 

weighting (leverage points). These results suggest that top-down prefrontal to AIC connectivity 

underlies awareness of unexpected tactile changes, as predicted by embodied predictive coding. 

Right panel B depicts results of robust regressions (Tukey’s biweight) over 20 intrinsic connection 

modulation parameters each predicting subjective difficulty, PFDR threshold < 0.05.  
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