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Application of Graph Theory to the elaboration of personal

genomic data for genealogical research

Vincenzo Palleschi, Luca Pagani, Stefano Pagnotta, Giuseppe Amato, Sergio Tofanelli

In this communication a representation of the links between DNA-relatives based on Graph

Theory is applied to the analysis of personal genomic data to obtain genealogical

information. The method is tested on real data and discussed its applicability to the field of

genealogical research. We envisage the proposed approach as a valid tool for a

streamlined application to the publicly available data generated by many online personal

genomic companies. By this way, anonymized matrices of pairwise genome sharing counts

will enable to improve the retrieval of genetic relationship between customers who

provided explicit consent to the treatment of their data .
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27 ABSTRACT

28 In this communication a representation of the links between DNA-relatives based on Graph 

29 Theory is applied to the analysis of personal genomic data to obtain genealogical information. 

30 The method is tested on real data and discussed its applicability to the field of genealogical 

31 research. We envisage the proposed approach as a valid tool for a streamlined application to 

32 the publicly available data generated by many online personal genomic companies. By this way, 

33 anonymized matrices of pairwise genome sharing counts will enable to improve the retrieval of 

34 genetic relationship between customers who provided explicit consent to the treatment of their 

35 data.
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40 1. Introduction

41 In recent years, a number of companies started offering commercial services based on DNA 

42 analysis for genealogical research[1-3]. The informatic tools available to interpret such results, 

43 usually provided by the same companies or by external services[4], are mainly focused on 

44 general population studies (Paternal and Maternal lineages based on Y chromosome and 

45 mitochondrial haplogroups, Ancestry Composition/Admixture, etc.). On the other hand, very 

46 few tools are provided to investigate the links of one�s DNA profile with the relatives made 

47 recognizable through personal genomic data. Notably, these pre-compiled tools are often the 

48 only way to access the data provided by the DNA testing companies for a panel of hundreds or 

49 thousands of individuals. Therefore, the starting point of any downstream analysis based on 

50 this kind of data can only rely on the semi-processed input provided by the aforementioned 

51 tools. The introduction by the genetic service providers of a wrapped application tool would 

52 facilitate users� interpretations and unearth hidden genealogical information. Such tool should 

53 enable to implement the mass of data each single DNA test makes available in an easy-to-grasp 

54 graphical form. This would be particularly useful to detect the provenience of distant autosomic 

55 DNA-relatives from either the paternal or the maternal lineage. In fact this task is often made 

56 difficult by the links that might exist between the two parental genealogies due to the custom 

57 in closed communities to marry between relatives, especially in the past.

58 Here we describe and annotate an artificial intelligence tool that helps exploiting the 

59 information provided to customers by genealogical genetic services. The original approach of 

60 this work is the use of cross-information about the links between the living DNA-relatives of the 

61 test user (TU) for obtaining hints about the possible connections with other individuals, in the 

62 absence of a-priori genetic or genealogic evidence. 

63
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64 2. Data

65 The data, consensually provided and anonymously treated, are derived from the results 

66 obtained by a test-user (TU) from the personal genomic service 23andMe[2]. Such results 

67 typically consist of summary statistics on about one million single nucleotide polymorphisms 

68 (SNPs)[5]. 

69 A total of 120 anonymized individuals (progressively numbered with an ID from 1 to 120) were 

70 considered in the analyses. All of them are �DNA-relatives� of the TU according to the 23andMe 

71 criteria and accepted the invitation to share their DNA information (excluding data related to 

72 health conditions). The raw data is available as an Excel online matrix. Since this is a secondary 

73 analysis of pre-existing data and the samples are treated in an anonymised version we did not 

74 apply for an ethical clearance.

75 As reference parameter we considered the total amount of autosomal DNA in common 

76 between pairs of individuals, calculated as the total length of shared SNP haplotype blocks in 

77 mega base-pairs (Mbp) units. This amount, once converted into proportion of shared genome, 

78 provides a rough estimate of the number of generations separating any two individuals, under a 

79 simple model of �infinite number of ancestors� (Supplementary Table 1). Information either on 

80 the relevant chromosomes where the match occurs, or on the number of segments in common 

81 was not used. This choice is justified by the fact that only a minimum percentage of the 

82 individuals considered shows DNA matches on more than one chromosome. Furthermore, the 

83 information about the specific segment of the chromosome where such match occurs is not 

84 easily obtainable from the data made available to the users by  23andMe.

85 Using the Genome-Wide Comparison option in the 23andMe �Family Traits� feature, the input 

86 data were prepared in the form of a symmetric square matrix C, whose C(i,j) elements 

87 correspond to the total length of shared SNP haplotype blocks between the individual i and the 

88 individual j, expressed in Mbp units. Most elements of the matrix are equal to zero, 

89 corresponding to the fact that the majority of the individuals does not result genetically related. 

90 The sparsity of the matrix C(i,j) is visually shown in Figure 1, where the white points indicate a 
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91 mutual match of any magnitude between two individuals, and the black correspond to no 

92 genetic relation at all. 

93

94 Figure 1 � Visual representation of the correlation between the individuals considered in this work.

95 3. Classification

96 The matrix depicted in Figure 1 can be alternatively interpreted as a correlation matrix, a 

97 covariance matrix, a similarity matrix[6] or it can be transformed in a distance matrix[7]. 

98 Accordingly, the way to elaborate and manipulate the associated information varies depending 

99 on the interpretation tasks. Given that the statistical analysis is aimed at simplifying data 

100 outputs, a loss of information with respect to the original data has to be expected. The 

101 effectiveness of the analysis thus depends on the amount of �interesting� information 

102 unearthed out of the bulk of �redundant� information. It follows that different methods can be 

103 more or less effective according to what is considered, from time to time, interesting or 

104 redundant.
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105 To this extent, a number of potential confounders must be considered when dealing with the 

106 available genetic similarity matrix. First of all the genetic information on which the analysis is 

107 based is intrinsically fuzzy, because of the uncertainty in the data obtained by the service 

108 provider (a few �no-called� SNPs should be routinely expected). Additionally, the presence of 

109 identical by state (IBS) other than identical by descent (IBD)[8] SNPs could potentially bias the 

110 genealogical interpretation, especially the one associated with distant relationships (Most 

111 Recent Common Ancestors distant more than 6/7 generations). Finally, as opposed to 

112 uniparental markers, the diploid autosomic data combine information inherited from the 

113 paternal and maternal genealogy that should be kept separated when tracing one�s ancestry. 

114 Therefore, the analysis must be performed using statistical techniques robust enough to sustain 

115 these unavoidable uncertainties. 

116 4. Graph theory approach

117 The ideal framework for studying the complex network of links between the DNA-

118 relatives of a TU is the Graph Theory[9,10]. This approach, widely used in Mathematics, 

119 Engineering, and Computer Science, allows the analysis and graphical representation of the 

120 links between different entities in a network. In synthesis, the Graph Theory represents the 

121 elements in a network as vertices (or nodes) connected by edges. Edges are often associated 

122 with a value representing a weight. In our case, the weight of an edge connecting two vertexes 

123 is related to the genetic distance between them. A couple of vertexes a and b can be 

124 connected, in principle, by more than one edge. Graphs can be generally oriented, so that the 

125 edge from a to b is different from that linking b to a. In this way, the distance between the 

126 vertexes a and b can be different from the distance between b and a (a typical example is 

127 driving a car between two points in a city, where the traffic regulations might impose different 

128 routes for the direct and return trip, see figure 2). 
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129

130 Figure 2 � Graphic representation of a Graph with two vertexes and two edges (oriented Graph). 

131 At the right, the corresponding adjacency matrix.

132 The relation between the vertexes is usually represented in matrix form (adjacency 

133 matrix[11]) where the elements out of the diagonal are the weights of the corresponding edges. 

134 If the adjacency matrix is symmetric (the distance between two nodes is the same in both the 

135 directions) the resulting graph is called unoriented.  

136 In our scenario, the correlation matrix C(i,j) between the DNA-relatives of the TU is 

137 interpreted as a symmetric adjacency matrix. Therefore, we will use unoriented graphs, 

138 implemented using the Matlab® code provided in Supplementary Materials.

139
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140 5. Results

141 In the dataset analysed here, the adjacency matrix is described by an unweighted Graph 

142 with 120 vertexes (individuals) and 196 edges (DNA links between them). The graphical 

143 representation of the Graph described by this matrix is shown in Supplementary Figure 1. 

144 The main network connects 100 vertexes (83% of the total) by 190 edges (97% of the total) and 

145 sets aside only a few  individuals, singularly (10 individuals) or in small groups of two or three 

146 persons. A strict interpretation of Supplementary Figure 1 would thus bring to the conclusion 

147 that all the individuals belonging to the main group should be considered as somehow related, 

148 directly or indirectly, to all the other members of the group. To reduce this connectivity and to 

149 assign the various individuals to the TU paternal and maternal ancestries, a further treatment 

150 of the input data is thus necessary.

151 5.1 Pruning

152 The strength of the DNA cross-links between the individuals can be used to reduce (prune) the 

153 connections highlighted in Supplementary Figure 1. Since all the 120 individuals included in this 

154 study are, by design, related with the TU,  no information can be derived from those that are 

155 connected only to the TU. They are represented, in graphical form, as isolated vertexes with no 

156 edges associated. Therefore, these individuals can be safely removed from the adjacency matrix 

157 without any loss of information. Moreover, as already discussed in Section 3, spurious 

158 connections could be introduced by fuzziness of the genetic data and the occurrence of IBS 

159 SNPs. These connections can be excluded via the application of an upper threshold on the 

160 genetic distances between the individuals. The threshold amount of shared genome for a link to 

161 be considered �real� (i.e., corresponding to IBD SNPs) can be easily converted into expected 

162 number of generations, using Supplementary Table 1. 

163 Figure 3 shows the Graph corresponding to the adjacency matrix C(i,j) where only the edge 

164 weights greater or equal to 24 Mbp (roughly a 8 generations distance between the 

165 vertexes/individuals, see Supplementary Table 1) are considered.
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166

167 Figure 3 � Graphic representation of the Graph described by the adjacency matrix C(i,j) considering only 

168 the edges corresponding to DNA-matches greater or equal to 24 Mbp. Isolated individuals and groups of 

169 two are not reported in the figure

170

171 Figure 3 corresponds to the idea of unconnected graph that we associate with the separation of 

172 the different ancestral lines of the TU. Surprisingly enough, when the results of the Graph 

173 Theory are compared with the pre-existing genealogical information on some of the matching 

174 individuals, it turns out that the two large groups correspond to relatives of the TU related to 

175 the maternal grandfather (at the center of the figure) and maternal grandmother (at the left). 

176 Another small group of three individuals, at the right in figure 3, shows up, containing an 

177 individual associated to the maternal grandmother�s lineage of the TU (n.22). The two 

178 individuals that can be identified with reasonable certainty as belonging to the paternal 

179 grandfather�s (n. 118) and grandmother�s (n. 96) lineage of the TU, remains unconnected. 

180 These results are summarized in Table 1. The individuals underlined and marked in bold are the 

181 ones for whom a genealogical evidence exists, and therefore can be assigned with certainty to a 

182 given lineage. The ones underlined and marked in italic, on the other hand, cannot be assigned 

183 with similar certainty, although there are strong independent clues suggesting that they would 

184 actually belong to that lineage.  

185
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186 Table 1 � Classification of the individuals according to their lineage (24 Mbp threshold). Individuals 

187 underlined and marked in bold are the ones for whom a genealogical evidence exists, and 

188 therefore can be assigned with certainty to a given lineage. The ones underlined and marked in 

189 italic, on the other hand, cannot be assigned with similar certainty, although there are strong 

190 independent clues suggesting that they would actually belong to that lineage.  

191

192

193

194

195

196 The adoption of a conservative threshold (24 Mbp / approx. 8 generations distance / 3rd � 4th 

197 cousin range) to define a link between the individuals produced the classification reported in 

198 Table I, which is robust and reliable. However, only 17 individuals over a total of 120 (110 with 

199 at least one DNA match besides the TU) are attributed to the corresponding ancestral lineage.

200 Reducing the level of the threshold to 12 Mbp (approx. 9 generations distance) increases the 

201 number of individuals that can be associated to the different groups (Supplementary Figure 2). 

202 Individual 22 is now correctly associated to the maternal grandmother�s group, along with the 

203 other members of his/her subgroup. Most importantly the graph now shows an additional 

204 group of three individuals (21, 46 and 118) that can be associated to the TU paternal 

205 grandfather�s lineage, on the basis of independent genealogical information existing for 

206 individual 118.

207 Further lowering the threshold to 6 Mbp (approx. 10 generations distance, i.e. a 4th � 5th cousin 

208 range, which is usually considered the lower limit for having a significant DNA match between 

209 two individuals) allows to recover important information, graphically represented in figure 4.

Paternal GF Paternal GM Maternal GF Maternal GM Unclassified

62 52 28

97 109 54

42 84 22

43 74

80 61

82 10

32 53

35 39

11
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210

211 Figure 4 � The same as in figure 3, considering only the edges corresponding to DNA-matches greater or 

212 equal to 6 Mbp. The individuals connecting the two main groups and their links are evidenced. Isolated 

213 individuals and groups of two are not reported in the figure

214 From the analysis of figure 4 it is evident that after lowering the threshold to 6 Mbp, a 

215 connection appears between the two main groups. The key elements which are linked to both 

216 the groups (corresponding to the maternal grandparents of the TU) are individual 83 (initially 

217 classified in the maternal GM group) which connects with individual 80 in the maternal GF 

218 group), individual 61 of the maternal GM group which connects with individual 42 in the 

219 maternal GF group, and individual 86 of the maternal GF group which connects with individual 

220 13 of the maternal GM group. 

221 Lowering the threshold also increased the number of individuals associated to the paternal 

222 grandfather of the TU, which at this level formed a group of five persons (118, 46, 21, 6 and 64) 

223 connected by the same sub-graph, and recovered a new group of five individuals (96, 112, 65, 

224 100 and 68) that can be associated to the TU paternal grandmother�s lineage on the basis of 

225 independent genealogical information existing for individual 96.

226 The main information that can be derived by the comparison of the Graphs obtained using 

227 different thresholds on the edge weight is a classification of the individuals according to the 

228 different ancestral lineages, with increasing �levels of confidence�. In that respect, 

229 Supplementary Figure 1 would give a minimum level of information, providing classification at 

230 the confidence level of the minimum match in the C(i,j) matrix, which in our case is 2 Mbp, 

231 subsequently refined at higher thresholds of genomic sharing in Figure 3, Supplementary Figure 

232 2 and Figure 4. 
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233 The most important results of this paper are shown in Table II, where the classification of the 

234 DNA-relatives of the TU is reported according to his maternal and paternal ancestral lineages, 

235 with the corresponding confidence level, or �strength�, in brackets. The individuals connecting 

236 the groups corresponding to the two maternal grandparents are assigned to both the groups 

237 and marked in gray.

238 Table 2 � Classification of the individuals according to their ancestral lineage. The corresponding level of 

239 confidence of the classification is reported in brackets. The individuals connecting the two groups of the 

240 maternal grandparents are marked in gray.

Paternal GF Paternal GM Maternal GF Maternal GM Unclassified

118 (12) 96 (6) 97 (24) 52 (24) 116

46 (12) 112 (6) 62 (24) 109 (24) 101

21 (12) 65 (6) 42 (24) 84 (24) 38

6 (6) 100 (6) 43 (24) 74 (24) ----------

64 (6) 68 (6) 80 (24) 61 (24) 29

82 (24) 10 (24) 33

32 (24) 53 (24) 15

35 (24) 39 (24) 76

11 (24) 70 (12) 93

102 (12) 83 (12) 87

95 (12) 54 (12) 19

25 (6) 51 (12) ----------

89 (6) 92 (12) 63

114 (6) 79 (12) 111

83 (6) 14 (12) 2

61 (6) 22 (12) ----------

85 (6) 9 (12) 75

77 (6) 5 (12) 110

17 (6) 28 (12) 50

66 (6) 1 (6) ----------

26 (6) 24 (6) 88

55 (6) 56 (6) 119

13 (6) 42 (6) 41

86 (6) 18 (6) ----------

106 (6) 108

31 (6) 72

13 (6) 71

86 (6) 8

45 (6) 48

37 (6) 4

120 (6) 107

105 (6)
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241

242

243 The Graph Theory method here proposed is capable of reliably classifying 62 individuals at 

244 strength 6 (Mbp) over a total of 110 DNA-relatives of the TU (56%). Six other unclassified 

245 groups with more than two members can also be determined. Some of them could be 

246 connected to the main groups if additional information from new DNA relatives of the TU will 

247 become available in the future.

248

40 (6)

80 (6)
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249 Conclusion

250 The statistical method presented in this work can be usefully exploited for extracting 

251 genealogical information from genetic/genomic data. The input data are usually �fuzzy� and, 

252 therefore, the methods used for their analysis should be robust enough for providing useful 

253 information. The approach proposed, based on the Graph representation of the adjacency 

254 matrix built from the mutual matches between the DNA-relatives of the test user, after the 

255 setting of a suitable threshold fulfils this requirement. The method, for which the code is 

256 provided at the bottom of this paper, could be easily implementable by the genetic service 

257 providers for an easy visualization of the DNA-links existing between the customer and the 

258 other users of the service, at different levels of confidence.

259
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