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Getting the most out of RNA-seq data analysis

Tsung Fei Khang, Ching Yee Lau

Background: A common research goal in transcriptome projects is to find genes that are

differentially expressed in different phenotype classes. Biologists might wish to validate

such gene candidates experimentally or use them for downstream systems biology

analysis. Producing a coherent differential expression analysis from RNA-seq count data

requires an understanding of how numerous sources of variation such as the replicate size,

the hypothesized biological effect, and the specific method for making differential

expression calls interact. We believe an explicit demonstration of such interactions in real

RNA-seq data sets is of practical interest to the biologist.

Results: Using two large public RNA-seq data sets - one representing strong, and another

mild, biological response, we simulated different replicate size scenarios and tested the

performance of several commonly-used methods for calling differentially expressed genes

in each of them. Our results suggest that if the biological response of interest in the

different phenotype classes is expected to be mild, then RNA-seq experiments should

focus on validation of differentially expressed gene candidates. At least triplicates must be

used, and the differentially expressed genes should be called using methods with high

positive predictive value such as NOISeq or GFOLD. In contrast, for strong biological

response, differentially expressed genes mined from unreplicated experiments using

NOISeq, ASC and GFOLD had between 30 to 50% mean positive predictive value, an

increase of more than 30-fold compared to the case of mild biological response. Among

methods with good positive predictive value performance, having triplicates or more

substantially improved mean positive predictive value to over 90% for GFOLD, 60% for

DESeq2, 50% for NOISeq, and 30% for edgeR. We found DESeq2 to be the most

reasonable method to call differentially expressed genes for systems level analysis as it

showed the best PPV and sensitivity trade-off (mean PPV and mean sensitivity � 65% at

replicate size of six).

Conclusion: When biological effect size is strong, NOISeq and GFOLD are effective tools for

detecting differentially expressed genes in unreplicated RNA-seq experiments for

validation work. Having triplicates or more enables DESeq2 to detect sufficiently large
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numbers of reliable gene candidates for downstream systems level analysis. When

biological effect size is weak, systems level investigation is not possible, and no

meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or

GFOLD may yield limited numbers of candidates with good validation potential when

triplicates or more are available.
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ABSTRACT

Background: A common research goal in transcriptome projects is to find genes that are differentially

expressed in different phenotype classes. Biologists might wish to validate such gene candidates

experimentally or use them for downstream systems biology analysis. Producing a coherent differential

expression analysis from RNA-seq count data requires an understanding of how numerous sources of

variation such as the replicate size, the hypothesized biological effect, and the specific method for making

differential expression calls interact. We believe an explicit demonstration of such interactions in real

RNA-seq data sets is of practical interest to the biologist.

Results: Using two large public RNA-seq data sets - one representing strong, and another mild,

biological response, we simulated different replicate size scenarios and tested the performance of several

commonly-used methods for calling differentially expressed genes in each of them. Our results suggest

that if the biological response of interest in the different phenotype classes is expected to be mild, then

RNA-seq experiments should focus on validation of differentially expressed gene candidates. At least

triplicates must be used, and the differentially expressed genes should be called using methods with

high positive predictive value such as NOISeq or GFOLD. In contrast, for strong biological response,

differentially expressed genes mined from unreplicated experiments using NOISeq, ASC and GFOLD

had between 30 to 50% mean positive predictive value, an increase of more than 30-fold compared to

the case of mild biological response. Among methods with good positive predictive value performance,

having triplicates or more substantially improved mean positive predictive value to over 90% for GFOLD,

60% for DESeq2, 50% for NOISeq, and 30% for edgeR. We found DESeq2 to be the most reasonable

method to call differentially expressed genes for systems level analysis as it showed the best PPV and

sensitivity trade-off (mean PPV and mean sensitivity ∼ 65% at replicate size of six).

Conclusion: When biological effect size is strong, NOISeq and GFOLD are effective tools for detecting

differentially expressed genes in unreplicated RNA-seq experiments for validation work. Having triplicates

or more enables DESeq2 to detect sufficiently large numbers of reliable gene candidates for downstream

systems level analysis. When biological effect size is weak, systems level investigation is not possible,

and no meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or GFOLD

may yield limited numbers of candidates with good validation potential when triplicates or more are

available.

Keywords: biological effect size, biological replicate size, differential gene expression analysis,

RNA-seq

INTRODUCTION

Elucidating key genes associated with variation between different biological states at the genomic level

typically begins with the mining of high dimensional gene expression data for differentially expressed

genes (DEG). For a long time, biologists have been using microarrays for gene expression studies, and

over the years, the collective experience of the community has congealed into a set of best practices for

mining microarray data (Allison et al., 2006). Hence, to determine optimal replicate size, one may use

the SAM package (Tibshirani, 2006); to call DEG, the moderated t-test (Smyth, 2005, 2004) would be

applied (Jeanmougin et al., 2014), producing p-values for each gene that adjust for multiple comparisons

(Dudoit et al., 2014). When jointly considered with fold change (Xiao et al., 2014), the researcher can
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then get a set of DEG with strong potential to be validated by qPCR. Riding on such confidence, the

researcher could further study functional enrichment to gain understanding of dysregulated biological

processes, or generate network-based hypotheses for targeted intervention.

Despite microarray’s analytical maturity, RNA-seq - which is based on next-generation sequencing

technology, is set to become the method of choice for current and future gene expression studies (Wang

et al., 2009). In RNA-seq, direct transcript counting thorugh mapping of short reads to the genome

overcomes the problem of limited dynamic range caused by signal saturation in microarrays. In addition,

the transcriptome can now be sequenced to unprecedented coverage, thus removing dependence on prior

transcriptome knowledge which is crucial for probe design in microarrays. With the availability of

numerous de novo transcriptome assembly tools (Li et al., 2014), meaningful gene expression studies

in non-model organisms can now be done. While conceptually simple, sophisticated algorithms are

involved in transforming raw reads to the final gene counts, and they constitute an important source of

non-biological variation that must be appropriately accounted for (Oshlack et al., 2010).

Limited availability of biological material and costs of data production and bioinformatic support

mean that RNA-seq data sets with little or no replication remain quite common today. Like microarray

experiments, RNA-seq experiments that have less biological replicates are considered to have weak power

for detecting genes with modest or weaker biological effect size. In fact, the problem may become worse

from a multiple comparison point of view, as potentially many more genes are scored. Studies that aim at

a systems level understanding using the list of DEG must therefore prioritize large replicate sizes over

sequencing depth (Rapaport et al., 2013). However, large RNA-seq experiments remain the exception,

rather than the rule at the moment.

The count-based nature of RNA-seq data prompted new development of statistical methods to call DEG.

Despite the latter, DE analysis remains challenging due to lack of standard guidelines for experimental

design, read processing, normalization and statistical analysis (Auer and Doerge, 2010; Auer et al., 2012).

Currently, there is a bewildering number of methods for calling DEG. Two recent studies compared the

relative performance of large number of DEG call methods (eleven in Soneson and Delorenzi (2013);

eight in Seyednasrollah et al. (2015)) under the R environment, and offerred recommendations for method

selection. Nevertheless, it is important to keep in mind that the conclusions from the comparative

studies were mostly derived from simulations based on synthetic data. More crucially, variation of the

performance of DEG calling methods was not considered in the context biological effect and replicate

size, which is of practical concern to the biologist. It may not be an overstatement to say that, at present,

how researchers pick a DEG call method out of the plethora of alternatives available is more guided

by their degree of familiarity with the methodology literature, computing convenience and democratic

evaluation of personal experiences in bioinformatics forums, rather than on empirical evidence.

Most DEG call methods are designed to address analysis of RNA-seq experiments that have biological

replicates. Nevertheless, some (e.g. NOISeq (Tarazona et al., 2011), GFOLD (Feng et al., 2012)) have

options to deal with cases of unreplicated experiments. A minority such as ASC (Wu et al., 2010) is

specifically designed for unreplicated experiments. While unreplicated experiments are not suitable for

reliable inference at the systems level, DEG mined using particular DEG call methods may nonetheless

be useful for targeted study if their expression can be validated independently using qPCR. Such small

incremental gains can be crucial to build up the ground work in preparation for more extensive study in

non-model organisms. Our study aims to clarify the interaction between replicate size, biological effect

size and DEG call method, so as to provide practical recommendations for RNA-seq data analysis that

will help researchers get the most out of their RNA-seq experiments.

MATERIALS AND METHODS

Statistical methods for calling differentially expressed gene
We investigated the performance of seven DEG call methods: GFOLD, ASC, NOISeq, edgeR (Robinson

et al., 2010), DESeq2(Love et al., 2014), DESeq (Anders and Wolfgang, 2010) and Z-test. The first

two are Bayesian methods, and were proposed to specifically address analysis of unreplicated RNA-seq

data. However, GFOLD also has option to handle experiments with biological replicates. A popular

nonparametric method is NOISeq, while edgeR and DESeq (and its updated version DESeq2) are

commonly used parametric methods that explicitly model the distribution of count data using negative

binomial distribution. Initially designed for standard experiments with biological replicates, these methods

have been modified to accomodate analysis of unreplicated experiments, but their performance relative to
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GFOLD and ASC remains unclear. The Z-test for equality of proportions was primarily used to set upper

bounds in the tested performance metrics that are attainable by naive application of a common textbook

statistical method. Specifically, the Z-test statistic for the ith gene is given by

Z =
p̂i1 − p̂i2

√

p̂(1− p̂)/N
,

where p̂i j is the estimated proportion of the ith gene in the jth phenotype class ( j = 1,2), p̂ is the estimated

pooled proportion of the ith gene, and N is the total number of normalized counts.

Criteria for differential expression

For edgeR, DESeq, DESeq2 and Z-test, we used a joint filtering criteria (Li, 2012) based on fold change

(φ ) and p-value (p) to call DEG. Let y = − log10 p and x = log2 φ . Thus, each gene is associated with

a paired score (x,y) after differential expression analysis. Following (Feng et al., 2012), we required

p < 0.01 and φ ≥ 2 to call for up-regulated genes, and p < 0.01 and φ ≤ 1/2 to call for down-regulated

genes. The product of y > 2 and |x| ≥ 1 yields the inequality y > 2/|x|. Thus, genes that fell in the

region defined by y > 2/x were differentially up-regulated, and those in the region of y > −2/x were

differentially down-regulated. The union of the sets of differentially up and down-regulated genes made

up the set of DEG candidates.

For edgeR, we used the exact test option to perform differential expression analysis. To handle

unreplicated experiments, we set the biological coefficient of variation (BCV) parameter as 0.4 for the

Cheung data set (see details in Benchmarking section), and 0.1 for the Bottomly data set, following

recommendations in Chen et al. (2015).

For NOISeq, we used the recommended criteria for calling DEG as described in the NOISeq docu-

mentation - q = 0.9 for unreplicated experiments, and q = 0.95 for experiments with biological replicates.

For ASC, we called DEG using double filtering of estimated log2 of fold change (FC) and estimated

posterior probability, where | log2 FC| ≥ 1 and posterior probability ≥ 99%.

For GFOLD, we used the default significant cut-off of 0.01 for fold change of. A gene with GFOLD

value of 1 or larger was considered differentially up-regulated, and differentially down-regulated if

GFOLD value was -1 or smaller. Except GFOLD which requires the Linux platform, the other methods

were implemented in R version 3.1.3 (R Core Team, 2015).

Benchmarking

To set up our benchmarking exercise, we needed two RNA-seq data sets whereby variation in their

phenotype classes corresponded to mild and strong biological effect sizes in the tissue of interest. We

further required the RNA-seq data sets to have fairly large replicate sizes to enable the simulation of

different replicate size scenarios. To this end, we identified two suitable RNA-seq data sets in the Recount

database (Frazee et al., 2011). The latter contains unnormalized RNA-seq count data sets from 18 major

studies that have been assembled from raw reads using the Myrna (Langmead et al., 2010) pipeline.

The Bottomly data set (Bottomly et al., 2011) consists of gene expression data (22 million Illumina

reads per sample, read length of ∼30 bases) obtained from the brain striatum tissues of two mice strains:

C57BL/6J (n = 10) and DBA/2J (n = 11). Both mice strains are known to show large, strain-specific

variation in neurological response when subjected to opiate drug treatment (Korostynski et al., 2006,

2007; Grice et al., 2007).

The Cheung data set (Cheung et al., 2010) consists of gene expression data (40 million Illumina

reads per sample, read length of 50 bases) from immortalized human B-cells of 24 males and 17 females.

Sex hormones are known to modulate B cell function (Klein, 2000; Verthelyi, 2001). For example,

estrogen modulates B cell apoptosis and activation (Grimaldi et al., 2002), while testosterone suppresses

immunoglobulin production by B cells (Kanda et al., 1996). In the absence of antigenic challenge,

however, it seems reasonable to expect only a modest number of DEG in male and female B cells.

After removal of transcripts with zero counts in all samples, the Bottomly count table contained

13932 transcripts, down from an initial 36536 transcripts, whereas the Cheung count table contained

12410 transcripts, down from 52580. Prior to analysis, the count data were normalized using DESeq

normalization (Anders and Wolfgang, 2010), which has been shown to be robust to library size and

composition variation (Dillies et al., 2013). The exception is DESeq2, which specifically requires raw

counts instead of normalized count for analysis.
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We proceeded to create an in silico gold standard set of DEG for each of the two RNA-seq data

sets. To avoid biasing results of the called DEG due to algorithmic similarities, we decided to use the

voom algorithm (Law et al., 2014; Ritchie et al., 2015). Unlike other DEG methods that primarily model

mean-variance relationships in the count data using discrete distributions such as the Poisson or negative

binomial distributions, voom log-transforms count data into a microarray-like data type suitable for

analysis using the robust limma pipeline (Smyth, 2004; Ritchie et al., 2015). In addition, a recent study

reported that voom calls highly reliable DEG (Soneson and Delorenzi, 2013). A gene was defined as

differentially expressed using the same joint filtering criteria for edgeR, DESeq, DESeq2 and Z-test. We

found the nonparametric SAMSeq (Li and Tibshirani, 2013), which has also been reported to have strong

DEG mining performance, unsuitable for setting the gold standard as it returned different DEG sets for

different random seeds and number of permutation parameters (Supplemental Material Fig. S1).

Ideally, the in silico gold standard DEG called using voom should be validated using qPCR, but

evidence at such level may not always be available. Where microarray data are available for the same

study, a DEG candidate can be considered reliable if it is called in both RNA-seq and microarray analyses,

since fold change of DEG from the latter has been found to correlate strongly with fold change from

qPCR (Wang et al., 2014). A total of 362 DEG for the Bottomly data set were thus called (Fig. 1a).

About 88% (320/362) of the DEG for the Bottomly data called using voom were identical with those

called in Bottomly et al. (2011) using edgeR (1727 DEG). Approximately two fifths of them (153/362)

were detected using limma applied on Affymetrix or Illumina microarray expression data (Supplemental

Material Table T1 The remainder of the DEG that were unique to RNA-seq may either be false positives,

or DEG that could not be detected using microarrays. Assuming that at most half of them were false

positives, at least 70% of the voom-called DEG were expected to be real.

For the Cheung data set, gender difference was the source of phenotype class variation. We exploited

this fundamental biological difference to infer the most reliable DEG from the candidates returned using

voom. Only DEG which were located on the sex chromosomes, or interacted with at least one gene product

from the sex chromosomes were used to construct the gold standard. This strategy resulted in a set of 19

DEG (Fig. 1b). Five of them were located on the Y chromosome, three on the X chromosome and the

remainder had known gene-gene interactions (based on BioGRID; Stark et al. (2006); Chatr-Aryamontri

et al. (2015)) with at least one gene located on sex chromosomes (Supplemental Material Table T2).

Simulation and performance evaluation
To simulate unreplicated experiments in both data sets, we considered all possible paired samples from

different phenotype classes. We discovered that the ASC package provided by (Wu et al., 2010) failed

to run for particular combinations of sample pairs. As a result, only 27 and 124 pairs of samples from

the Bottomly and Cheung data set respectively could be used for comparison across all methods. Except

ASC, which only handles unreplicated experiments, we further examined the behavior of other DEG call

methods in cases of low to modest number of replicates. We constructed 100 instances of experiments for

each replicate size per phenotype class in the Cheung data set (n = 3,6,10), and the Bottomly data set

(n = 3,6) by random sampling without replacement within each phenotype class.

To evaluate method performance, we used sensitivity and positive predictive value (PPV; the comple-

ment of the false discovery rate). For each DEG call method, we computed sensitivity as the proportion

of gold standard DEG that were called. PPV was computed as the proportion of DEG called that were

members of the set of gold standard DEG. The mean and standard deviation of these metrics were

then reported. Methods that show good PPV are particularly interesting in the context of unreplicated

experiments, since DEG candidates obtained from them offer the best potential of being validated. For

systems level analysis, DEG should preferably be called using methods with good balance of sensitivity

and PPV.

RESULTS & DISCUSSION

Performance of DEG call methods in the Cheung and Bottomly data sets

Positive predictive value and sensitivity

The simulation results show that optimality of a DEG call method for a given replicate size depended

on whether biological response was mild or strong (Fig.2). In the Cheung data set (mild biological

response), all methods had very low (about 1%) mean positive predictive value (PPV) for unreplicated

design (Supplemental Material Table T3). However, mean PPV (±SD) increased substantially for NOISeq
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to 43.5±31.5%, and for GFOLD to 29.6±15.8%, for a design with n = 3. Doubling and approximately

tripling the latter to n = 6 and n = 10 (Supplemental Material Fig. S2) further improved mean PPV

for NOISeq to 87.0± 16.1% and 92.2± 12.9%, and for GFOLD to 36.3± 14.9% and 52.6± 18.8%,

respectively. In all four designs, mean PPV was low for the other methods; it did not exceed 12% for

DESeq2, and was never more than 3% for edgeR, DESeq and Z-test.

A markedly different pattern of method performance was observed in the analysis of the Bottomly data

set (strong biological response). In unreplicated experiments, mean PPV was relatively high for NOISeq

(47.9±23.7%), ASC (47.2±25.9%) and GFOLD (33.7±27.7%), compared to just about 15% in edgeR

and 5% in DESeq and Z-test. Although DESeq2 showed reasonable mean PPV as well (37.3±34.7%),

the mean size of DEG called was very small (6±11.6%). Interestingly, GFOLD attained very high mean

PPV at n = 3 (94.3±6.9%), with marginal change to 92.5±3.3% at n = 6. However, GFOLD was also

the method with the lowest sensitivity (below 10%) under these two designs, which was caused by its

small DEG set size (Fig.3). DESeq2 struck the best balance between PPV and sensitivity as replicate

size increased. At n = 3 and n = 6, it had mean PPV of 52.5± 10.8% and 62.1± 7.7%, with mean

sensitivity of 36.0±5.7% and 65.1±4.5%, respectively. Moreover, at n = 6, DESeq2 had comparable

sensitivity compared to its older version DESeq, and a superior mean PPV that was about four times

higher. Unsurprisingly, the Z-test remained the worst performer, with mean PPV just about 6%. The

general increase in mean sensitivity for replicated experiments was consistent with Liu et al.’s (Liu et al.,

2014) study of the effect of replicate size (unreplicated experiments excluded) and sequencing depth, that

statistical power primarily increases as a result of increasing biological replicate size.

DEG set size

Figure 3 shows the distribution of DEG set size in the Cheung and Bottomly data sets for different

replicate sizes. Although DESeq2 could be used to call DEG for unreplicated experiments, it tended to

make the least number of calls among methods, thus affecting its sensitivity. Because of this, its use in

such cases does not seem justified. In general, for replicated studies, methods such as DESeq2, DESeq,

edgeR and Z-test made large numbers of calls that were typically one or two order of magnitudes more

(depending on underlying biological effect size) compared to GFOLD or NOISeq. Consequently, it is

expected that their sensitivity would increase at the expense of PPV.

Optimality requires a context

The current results suggest that unreplicated RNA-seq experiments, which are still very common among

underfunded labs working with non-model organisms, may be a cost-effective way to generate candidate

DEG with reasonable likelihood of being validated, provided that the underlying biological effect size is

strong. Thus, for unreplicated RNA-seq experiments with phenotype classes such as those associated with

pathogenic challenge and physico-chemical stress, we expect DEG called using NOISeq or GFOLD to be

good candidates for validation. ASC may also be useful, though it should be noted that it could fail to run

for particular combinations of sample pairs, as we found out in the present study. For validation work,

GFOLD and NOISeq should be even more efficient once triplicates are available, but further replicate size

increase produced only marginal mean PPV gain in the Bottomly data set, suggesting that using more than

triplicates is not a cost-effective approach when validation of DEG candidates is the main research goal.

When biological response is strong, we suggest that DESeq2 is most suitable to mine DEG for systems

biology work, on account of its good PPV and sensitivity balance. It should definitely replace DESeq.

Research programs focusing on investigation of weak or modest biological responses must have

replicates, use NOISeq or GFOLD for DEG calling, and then to restrict the research goal to validation of

the DEG candidates. Pursuing a systems biology (e.g. gene set analysis, functional enrichment) direction

in such programs is not feasible, since in the Bottomly data set, the DEG set size both GFOLD and

NOISeq at n = 10 became too small (below 20).

Table 1 summarizes the recommended DEG call methods and research goals for the combinations of

biological effect size and replicate size considered in the present study.

Transcriptome coverage effect

Transcriptome coverage can be another important source of variation for the observed RNA-seq gene

counts (Sims et al., 2014). Assuming transcriptome size was approximately equal for human and rat,

relative transcriptome coverage was about three times larger in the Cheung data set (human) compared to

the Bottomly data set (rat). Despite this, detection of DEG remained difficult when biological effect size
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Biological effect size

Replicate size Mild Strong

1 nothing works GFOLDv, NOISeqv

3+ GFOLDv, NOISeqv GFOLDv, DESeq2s

Table 1. Pragmatic DEG call methods for four combinations of biological effect size and replicate size,

with suggested applications. Abbreviation: v for validation work; s for systems biology work.

was weak, suggesting that the effect of transcriptome coverage on DEG calling was probably marginal in

the present study.

Future prospects
Many biologists have difficulty publishing results of RNA-seq experiments with no or few biological

replicates. Despite including qPCR validation results, these studies are often dismissed by reviewers

simply on grounds of ‘not having enough sample size’. This stand is unnecessarily dogmatic, and does

not take into account that some particular combinations in the trinity of replicate size-effect size-call

method can potentially yield biologically meaningful results, as shown in the present study.

It is gradually being appreciated that RNA-seq analysis is a complex analysis that needs to address the

numerous sources of variation from library preparation to bioinformatic processing (Kratz and Carninci,

2014) to yield an interpretable result. As a corollary, we suggest that one-size-fits-all pipelines for

RNA-seq analysis commonly adopted by bioinformatics service providers should not be expected to

always yield the most optimal set of DEG. There is a certainly a need for greater consultation between

scientist and the bioinformatician to fine-tune pipelines by taking into account interactions in the replicate

size-effect size-call method trinity.

As more high-quality RNA-seq experimental data continue to accrue in public databases, a better

understanding of the anticipated behavior of various DEG calling methods under different biological and

replicate size scenarios should gradually emerge from systematic comparison studies such as the current

one. A complete dummy’s guide to RNA-seq differential expression analysis may not be too far ahead in

the future.

CONCLUSIONS

In RNA-seq experiments, biological effect size is an important determinant of whether a research program

at the individual gene or systems level would yield the most biological insight. When biological response

is expected to be mild, RNA-seq experiments should primarily aim at mining DEG for validation purpose,

using at least triplicates and either NOISeq or GFOLD for DEG calling. Morever, systems level analysis

remains difficult as none of the methods considered presently showed satisfactory sensitivity and positive

predictive value performance. When strong biological response is expected, analysis of unreplicated

experiments using GFOLD or NOISeq can yield DEG candidates with optimistic validation prospects.

A standard triplicate design should result in further improvement. DESeq2 seems to be most suited for

calling DEG for subsequent systems level analysis as it showed the best compromise between PPV and

sensitivity among all tested methods.
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FIGURES

a) b)

Figure 1. Heat map of differentially expressed genes in a) Bottomly data set (362 DEG) and b) Cheung

data set (19 DEG). Phenotype class legend: a) Black for DBA/2J strain (n = 11); yellow for C57BL/6J

strain (n = 10). b) Black for male (n = 17); yellow for female (n = 24). The heat maps were made using

the gplots (Warnes et al., 2014) R package. Samples were estimated using the Euclidean distance and

clustered using the Ward algorithm. The DEG were sorted based the magnitude and sign of their

t-statistic.
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Figure 2. Scatter plots of PPV against sensitivity. The n = 1,3,6 scenarios are given in panels a,b,c for

the Cheung data set, and d,e,f for the Bottomly data set, respectively. The diameter of a circle indicates

the DEG set size. Color legend: blue(Z-test), pink(DESeq), red(edgeR), brown(DESeq2),

purple(GFOLD), green(NOISeq), orange(ASC). For n = 10 in the Cheung data set, see Supplemental

Material Fig. S2.
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Figure 3. Box plots of distribution of DEG set size (in log10 scale) by method. The n = 1,3,6 scenarios

are given in panels a,b,c for the Cheung data set, and d,e,f for the Bottomly data set, respectively. Color

legend: blue(Z-test), pink(DESeq), red(edgeR), brown(DESeq2), purple(GFOLD), green(NOISeq),

orange(ASC). For n = 10 in the Cheung data set, see Supplemental Material Fig. S3.
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