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ABSTRACT

Automatic music transcription is a difficult task that has
provoked extensive research on transcription systems that
are predominantly general purpose, processing any num-
ber or type of instruments sounding simultaneously. This
paper presents a polyphonic transcription system that is
constrained to processing the output of a single instrument
with an upper bound on polyphony. For example, a gui-
tar has six strings and is limited to producing six notes si-
multaneously. The transcription system consists of a novel
pitch estimation algorithm that uses a deep belief network
and multi-label learning techniques to generate multiple
pitch estimates for each audio analysis frame, such that the
polyphony does not exceed that of the instrument. The
implemented transcription system is evaluated on a com-
piled dataset of synthesized guitar recordings. Compar-
ing these results to a prior single-instrument polyphonic
transcription system that received exceptional results, this
paper demonstrates the effectiveness of deep, multi-label
learning for the task of polyphonic transcription.

1. INTRODUCTION

The process of automatic music transcription involves the
transformation of an audio signal into a digitally encoded
music score through an analysis of the frequency and rhyth-
mic properties of the acoustical waveform. The input au-
dio signal may consist of an aggregation of signals from
several different instruments and may be monophonic or
polyphonic. Though the transcription of monophonic mu-
sical passages is considered a solved problem [3], the tran-
scription of polyphonic music “falls clearly behind skilled
human musicians in accuracy and flexibility” [15].

In an effort to reduce the complexity, the transcription
problem can be constrained by limiting the number of notes
that sound simultaneously (polyphony), the genre of music
being analyzed, or the number and type of instruments pro-
ducing sound [2]. Imposing constraints on the domain of
analyzed signals provides meaningful prerequisite knowl-
edge to the transcription algorithm, allowing it to exploit
certain properties of its input, consequently reducing the
difficulty of transcription. With this in mind, the objective
of this research is to improve the quality of transcriptions
generated from isolated recordings of individual polyphonic
instruments, such as the guitar, bass guitar, or piano.

A solution to the problem of isolated instrument tran-
scription has substantial commercial interest with appli-
cations in musical games, instrument learning software,
and music cataloguing. However, these applications seem
far out of grasp given that the music information retrieval
(MIR) research community has collectively reached a plateau
in the accuracy of automatic music transcription systems [3].
In a paper addressing this issue, Benetos et al. [3] stress
the importance of extracting expressive audio features and
moving towards context-specific transcription systems. Also
addressing this issue, Humphrey et al. [13, 14] propose
that effort should be focused on audio features generated
by deep belief networks instead of hand-engineered audio
features, due to the success of these methods in other fields
such as computer vision [18] and speech recognition [10].
The aforementioned literature provides motivation for in-
vestigating the viability of applying deep belief networks
to the problem of isolated instrument transcription.

This paper presents a polyphonic transcription system
containing a novel pitch estimation algorithm that addresses
three arguable shortcomings in modern pattern recogni-
tion approaches to pitch estimation: first, the task of es-
timating multiple pitches sounding simultaneously is of-
ten approached using multiple one-versus-all binary clas-
sifiers [21, 22] in lieu of estimating the presence of multi-
ple pitches using a single classifier; second, there exists no
standard method to impose constraints on the polyphony of
pitch estimates at any given time; and third, the discrimina-
tive power of latent audio feature representations, as pro-
duced by deep belief networks and autoencoders, are often
overlooked in favour of more traditional features such as
the short-time Fourier transform (STFT). In response to
these points, the pitch estimation algorithm described in
this work uses a deep belief network in conjunction with
multi-label learning techniques to produce multiple pitch
estimates for each audio analysis frame that conform to
the polyphony constraints of the input instrument.

The structure of this paper is as follows: The subse-
quent section reviews algorithms for multiple fundamen-
tal frequency estimation, pitch detection, and note track-
ing. Section 3 describes the developed pitch estimation
algorithm in the context of a larger polyphonic transcrip-
tion system, which uses existing algorithms for note track-
ing. Section 4 presents a compiled ground-truth dataset of
acoustic guitar recordings synthesized from crowdsourced
tablature transcriptions that are then used to evaluate the

1PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1193v1 | CC-BY 4.0 Open Access | rec: 23 Jun 2015, publ: 23 Jun 2015

P
re
P
rin

ts



developed polyphonic transcription system. Section 5 ends
with a discussion of the strengths and weaknesses of the
transcription algorithm.

2. RELATED WORK

The first polyphonic transcription system for duets imposed
constraints on the frequency range and timbre of the two
input instruments as well as the intervals between simulta-
neously performed notes [20]. This work instigated a sig-
nificant amount of research on this topic, which still aims
to further the accuracy of transcriptions while gradually
eliminating domain constraints.

In the infancy of the problem, polyphonic transcription
algorithms relied heavily on digital signal processing tech-
niques to uncover the fundamental frequencies present in
an input audio waveform. To this end, several different al-
gorithms have been proposed: perceptually motivated mod-
els that attempt to model human audition [16]; salience
methods, which transform the audio signal to accentuate
the underlying fundamental frequencies [17, 30]; iterative
estimation methods, which iteratively select a predominant
fundamental from the frequency spectrum and then sub-
tract an estimate of its harmonics from the residual spec-
trum until no fundamental frequency candidates remain [17];
and joint estimation, which holistically selects fundamen-
tal frequency candidates that, together, best describe the
observed frequency domain of the input audio signal [28].

The MIR research community is gradually adopting a
machine-learning-centric paradigm for many MIR tasks,
including polyphonic transcription. Several innovative ap-
plications of machine learning algorithms to the task of
polyphonic transcription have been proposed, including
hidden Markov models (HMMs) [23], non-negative ma-
trix factorization [8,25], support vector machines [22], and
artificial shallow neural networks [19]. Although each of
these algorithms operate differently, the underlying princi-
ple involves the formation of a model that seeks to capture
the harmonic, and perhaps temporal, structures of notes
present in a set of training audio signals. The trained model
then predicts the harmonic and/or temporal structures of
notes present in a set of previously unseen audio signals.

Training a machine learning classifier for note pitch es-
timation involves extracting meaningful features from the
audio signal that reflect the harmonic structures of notes
and allow discrimination between different pitch classes.
The obvious set of features exhibiting this property is the
STFT, which computes the discrete Fourier transform (DFT)
on a sliding analysis window over the audio signal. How-
ever, somewhat recent advances in the field of deep learn-
ing have revealed that neural networks with many layers of
neurons can be efficiently trained [12] and form a hierar-
chical, latent representation of the input features [18].

Using a deep belief network (DBN) to learn alternate
feature representations of DFT audio features, Nam et al. [21]
exported these audio features and injected them into 88 bi-
nary support vector machine classifiers: one for each pos-
sible piano pitch. Each classifier outputs a binary class
label denoting whether the pitch is present in a given au-

Figure 1. Workflow of the proposed polyphonic transcrip-
tion algorithm, which converts the recording of a single
instrument to a sequence of MIDI note events.

dio analysis frame. Using the same experimental set up
as Poliner and Ellis. [22], Nam et al. [21] noted that the
learned features computed by the DBN yielded significant
improvements in the precision and recall of pitch estimates
relative to standard DFT audio features.

After note pitch estimation it is necessary to perform
note tracking, which involves the detection of note on-
sets and offsets [2]. Several techniques have been pro-
posed in the literature including a multitude of onset es-
timation algorithms [1, 9], HMM note-duration modelling
algorithms [4, 24], and an HMM frame-smoothing algo-
rithm [22]. The output of these note tracking algorithms
are a sequence of note event estimates, each having a pitch,
onset time, and duration. These note events may then be
digitally encoded in a symbolic music notation for cata-
loguing or publishing.

3. ISOLATED INSTRUMENT TRANSCRIPTION

The workflow of the proposed polyphonic transcription al-
gorithm is presented in Figure 1. The algorithm consists
of an audio signal preprocessing step, followed by a novel
DBN pitch estimation algorithm that conforms to the poly-
phony constraints of the input instrument. The note-tracking
component of the polyphonic transcription algorithm uses
a combination of the frame-smoothing algorithm devel-
oped by Poliner and Ellis [22] and the spectral flux onset
estimation algorithm described by Dixon [9].

3.1 Audio Signal Preprocessing

The input audio signal is preprocessed before feature ex-
traction. If the audio signal is stereo, the channels are av-
eraged to produce a monaural audio signal. Then the audio
signal is decimated to lower the sampling rate fs by an
integer multiple, k ∈ N+. Decimation involves low-pass
filtering with a cut-off frequency of fs/2k Hz to mitigate
against aliasing, followed by selecting every kth sample
from the original signal.
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Figure 2. Structure of the deep belief network for note
pitch estimation. Edge weights are omitted for clarity.

3.2 Note Pitch Estimation

The structure of the DBN pitch estimation algorithm is pre-
sented in Figure 2. The algorithm extracts audio features
that are subsequently fed forward through the deep net-
work, resulting in an array of posterior probabilities used
for pitch and polyphony estimation.

First, features are extracted from the input audio signal.
The power spectrum of each audio analysis frame is cal-
culated using a Hamming window of size w samples and
a hop size of h samples. Half of the spectrum is retained,
resulting inm = bw/2c+1 features. The result is a matrix
of normalized audio features Φ ∈ [0, 1]n×m, such that n is
the number of analysis frames spanning the input signal.

The DBN consumes these normalized audio features;
hence, the input layer consists of m nodes. There can be
any number of stochastic binary hidden layers, each con-
sisting of any number of nodes. The output layer of the
network consists of k + p nodes, where the first k nodes
are allocated for pitch estimation and the final p nodes are
allocated for polyphony estimation. The network uses a
sigmoid activation as the non-linear transfer function.

The feature vectors Φ are fed forward through the net-
work with parameters Θ, resulting in a matrix of prob-
abilities P(Ŷ |Φ,Θ) ∈ [0, 1]k+p that is then split into a
matrix of pitch probabilities P(Ŷ (pitch)|Φ,Θ) and poly-
phony probabilities P(Ŷ (poly)|Φ,Θ). The polyphony of
the ith analysis frame is estimated by selecting the poly-
phony class with the highest probability using the equation

ρi = argmax
j

(
P(Ŷ

(poly)
ij |Φi,Θ)

)
. (1)

Pitch estimation is performed using a multi-label learn-
ing technique similar to the MetaLabeler system [26], which

trains a multi-class classifier for label cardinality estima-
tion using the output values of the original label classifier
as features. Instead of using the matrix of pitch proba-
bilities as features for a separate polyphony classifier, in-
creased recall was noted by training the polyphony classi-
fier alongside the pitch classifier using the original audio
features. Formally, the pitches sounding in the ith analysis
frame are estimated by selecting the indices of the ρi high-
est pitch probabilities produced by the DBN. With these
estimates, the corresponding vector of pitch probabilities is
converted to a binary vector Ŷ (pitch)

i ∈ {0, 1}k by turning
on bits that correspond to the ρi highest pitch probabilities.

For training and testing the algorithm, a set of pitch and
polyphony labels are calculated for each audio analysis
frame using an accompanying ground-truth MIDI file. A
matrix of pitch annotations Y (pitch) ∈ {0, 1}n×k, where k
is the number of considered pitches, is computed such that
an enabled bit indicates the presence of a pitch. A matrix
of polyphony annotations Y (poly) ∈ {0, 1}n×p, where p
is the maximum frame-wise polyphony, is also computed
such that a row is a one-hot binary vector in which the en-
abled bit indicates the polyphony of the frame. These ma-
trices are horizontally concatenated to form the final matrix
Y ∈ {0, 1}n×(k+p) of training and testing labels.

The deep belief network is trained using a modified ver-
sion of the greedy layer-wise algorithm described by Hin-
ton et al. [12]. Pretraining is performed by stacking a series
of restricted Boltzmann machines and sequentially training
each in an unsupervised manner using 1-step contrastive
divergence [5]. Instead of using the “up-down” fine-tuning
algorithm proposed by Hinton et al. [12], the layer of out-
put nodes are treated as a set of logistic regressors and stan-
dard backpropagation is conducted on the network. Rather
than creating features from scratch, this fine-tuning method
is responsible for modifying the latent features in order to
adjust the class boundaries [11].

The canonical error function to be minimized for a set
of separate pitch and polyphony binary classifications is
the cross-entropy error function, which forms the training
signal used for backpropagation:

E(Θ) = −
n∑

i=1

k+p∑
j=1

Yij ln P(Ŷij |Φi,Θ) (2)

+ (1− Yij) ln(1− P(Ŷij |Φi,Θ)).

The aim of this objective function is to adjust the network
weights Θ to pull output node probabilities closer to one
for ground-truth label bits that are on and to pull probabil-
ities closer to zero for bits that are off.

The described pitch estimation algorithm was imple-
mented using the Theano numerical computation library
for Python [6]. Computations for network training and
testing are parallelized on the GPU. Feature extraction and
audio signal preprocessing is performed using Marsyas [27].

3.3 Note Tracking

Although frame-level pitch estimates are essential for tran-
scription, converting these estimates into note events with
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Figure 3. An overview of the transcription workflow on a four-second segment of a synthesized guitar recording.

an onset and duration is not a trivial task. The purpose of
note tracking is to process these pitch estimates and deter-
mine when a note onsets and offsets.

3.3.1 Frame-level Smoothing

The frame-smoothing algorithm developed by Poliner and
Ellis [22] is used to postprocess the DBN pitch estimates
Ŷ (pitch) for an input audio signal. The algorithm allows
a frame-level pitch estimate to be contextualized amongst
its neighbours instead of solely trusting the independent
estimates made by a classification algorithm.

Formally, the frame-smoothing algorithm [22] operates
by training an HMM for each pitch. Each HMM consists
of two hidden states: ON and OFF. The transition prob-
abilities are computed by observing the frequency with
which a pitch transitions between and within the ON and
OFF states across analysis frames. The emission distribu-
tion is a Bernoulli distribution that models the certainty of
each frame-wise estimate and is represented using the pitch
probabilities P(Ŷ (pitch)|Φ,Θ). The output of the Viterbi
algorithm, which searches for the optimal underlying state
sequence, is a revised binary vector of activation estimates
for a single pitch. Concatenating the results of each HMM
results in a revised matrix of pitch estimates Ŷ (pitch).

3.3.2 Onset Detection

If the HMM frame-smoothing algorithm claims a pitch arises
within an analysis frame, it could onset at any time within
the window. Arbitrarily setting the note onset time to occur
at the beginning of the window often results in “choppy”
sounding transcriptions. In response, the onset detection
algorithm that uses spectral flux measurements between
analysis frames [9] is run at a finer time resolution to pin-
point the exact note onset time. The onset detection algo-
rithm is run on the original, undecimated audio signal with
a window size of 2048 samples and a hop size of 512 sam-
ples. When writing the note event estimates as a MIDI file,
the onset times calculated by this algorithm are used. The
offset time is calculated by following the pitch estimate
across consecutive analysis frames until it transitions from
ON to OFF, at which point the time stamp of the end of this
analysis frame is used. Note events spanning less than two
audio analysis frames are removed from the transcription
to mitigate against spurious notes.

Output of the transcription algorithm at each stage—
from feature extraction to DBN pitch estimation to frame
smoothing and quantization (note tracking)—is displayed
in Figure 3 for a four-second segment of a synthesized gui-
tar recording. The pitch probabilities output by the DBN
show that the classifier is quite certain about its estimates;
there are few grey areas indicating indecision.

4. TRANSCRIPTION EVALUATION

The polyphonic transcription algorithm is evaluated on a
dataset of synthesized guitar tracks. Knowing that the in-
put instrument is a guitar with six strings, the pitch estima-
tion algorithm considers the k = 51 pitches from C2–D6,
which spans the lowest note capable of being produced by
a guitar in Drop C tuning to the highest note capable of
being produced by a 22-fret guitar in Standard tuning.

Though a guitar with six strings is only capable of pro-
ducing six notes simultaneously, a chord transition may
occur within a frame and so the maximum polyphony in-
creases above this bound. This is a side effect of a sliding-
window analysis of the audio signal. The maximum frame-
wise polyphony is calculated using the equation

p = max
i

((
Y (pitch)1

)
i

)
+ 1, (3)

where 1 is a vector of ones. The addition of one to the
maximum polyphony is to accommodate silence where no
pitches sound in an analysis frame.

4.1 Ground-truth Dataset

Using the methodology proposed by Burlet and Fujinaga [7],
a ground-truth dataset of 45 synthesized acoustic guitar
recordings paired with MIDI note-event annotations was
compiled. The dataset was created by harvesting the abun-
dance of crowdsourced guitar transcriptions uploaded to
www.ultimate-guitar.com as tablature files that are
manipulated by the Guitar Pro desktop application. 1 The
transcriptions in the ground-truth dataset were selected by
searching for the keyword “acoustic”, filtering results to
those that have been rated by the community as five out of
five stars, and selecting those that received the most num-
bers of ratings and views. The dataset consists of songs by

1 www.guitar-pro.com
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Figure 4. Distribution of note pitches in the ground-truth
dataset.

artists ranging from The Beatles, Eric Clapton, and Neil
Young to Led Zeppelin, Metallica, and Radiohead.

Each Guitar Pro file was preprocessed to remove ex-
traneous instrument tracks other than guitar, removing re-
peated bars, and removing note ornamentations such as
dead notes, palm muting, harmonics, pitch bends, and vi-
brato. The guitar model for note synthesis was set to a Mar-
tin & Co. acoustic guitar with steel strings and no capo.
Finally, each Guitar Pro file is synthesized as a WAV file
and also exported as a MIDI file, which captures the note
events occurring in the guitar track. Recordings of real gui-
tars would be ideal but the resources required to record and
double-key annotate such a dataset is immense.

In total the dataset consists of approximately 104 min-
utes of audio, an average tempo of 101 beats per minute,
44436 notes, and an average polyphony of 2.34. The aver-
age polyphony is calculated by dividing the number of note
events by the number of chords plus the number of individ-
ual notes. The distribution of note pitches in the dataset is
displayed in Figure 4.

4.2 Frame-wise Pitch Estimation Evaluation

The songs in the compiled ground-truth dataset are par-
titioned into a training and testing set, such that roughly
80% of songs are allocated for training and 20% are al-
located for testing. Several preliminary experiments with
the proposed transcription system revealed that a sampling
rate of 22050 Hz, a window size of 1024, a hop size of
768, a network structure of 350 nodes in the first three
hidden layers followed by 1200 nodes in the penultimate
layer yielded promising results. For network pretraining,
400 epochs were conducted with a learning rate of 0.05 us-
ing 1-step contrastive divergence with a batch size of 1000
training instances. For network fine-tuning, 30000 epochs
were conducted with a learning rate of 0.05 and a batch
size of 1000 training instances.

The frame-level pitch estimates computed by the DBN
pitch estimation algorithm followed by the HMM frame-
smoothing algorithm are evaluated using the following stan-
dard multi-label learning metrics [29]: precision (p), re-
call (r), f -measure (f ), one error, and hamming loss. The
one error provides insight into the number of audio analy-
sis frames where the predominant pitch is estimated incor-

rpoly p r f ONE
ERROR

HAMMING
LOSS

i. 0.52 0.66 0.60 0.63 0.22 0.04
ii. 0.52 0.72 0.69 0.70 0.18 0.03

Table 1. Frame-wise pitch estimation evaluation metrics:
rpoly denotes the polyphony recall, p denotes precision,
r denotes recall, and f denotes f -measure. The first row
includes octave errors while the second row excludes them.

rectly. The hamming loss provides insight into the number
of false positive and false negative pitch estimates across
the audio analysis frames. In addition, the frame-level
polyphony recall (rpoly) is calculated to evaluate the ac-
curacy of polyphony estimates.

Using the ground-truth dataset, pretraining the DBN took
13 hours and fine-tuning took 9 hours using an Nvidia
GPU with 1664 CUDA cores. After training, the network
weights are saved so that they can be reused for future tran-
scriptions. The results of the DBN pitch estimation algo-
rithm are presented in Table 1. After HMM frame smooth-
ing the results substantially improve with a precision of
0.79, a recall of 0.64, and an f -measure of 0.71 when con-
sidering octave errors.

The results reveal that the 52% polyphony estimation
accuracy likely hinders the frame-wise f -measure of the
pitch estimation algorithm. Investigating further, when us-
ing the ground-truth polyphony for each frame an f -measure
of 0.68 is noted before HMM smoothing. The 5% in-
crease in f -measure reveals that the polyphony estimates
are close to their ground-truth value. With respect to the
one error, the results reveal that the DBN’s belief of the
predominant pitch—the label with the highest probability—
is incorrect in 22% of the analysis frames, which improves
to 18% when not considering octave errors. With respect
to the hamming loss, the results show that, on average, 4%
of pitch estimates in an analysis frame are false positives or
negatives. Additionally, the results reveal a 7% increase in
f -measure when disregarding octave errors. Comparison
of these results with a state-of-the-art transcription algo-
rithm is performed in the following section.

4.3 Note Event Evaluation

After HMM smoothing the frame-level pitch estimates com-
puted by the DBN, onset quantization is performed and a
MIDI file, which encodes the pitch, onset time, and du-
ration of note events, is written. An evaluation procedure
similar to the music information retrieval evaluation ex-
change (MIREX) note tracking task is conducted using the
metrics of precision, recall, and f -measure. Relative to a
ground-truth note event, an estimate is considered correct
if its onset time is within 250ms and its pitch is equivalent.
The accuracy of offset times are not considered. A ground-
truth note event can only be associated with a single note
event estimate.

Table 2 presents the results of this evaluation on the gui-
tar tracks in the testing dataset. Additionally, these guitar
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DBN TRANSCRIPTION
PRECISION RECALL f -MEASURE RUNTIME (S)

i. 0.73 0.59 0.65 49.15
ii. 0.76 0.62 0.68 –

ZHOU AND REISS [30]
PRECISION RECALL f -MEASURE RUNTIME (S)

i. 0.71 0.50 0.56 203.32
ii. 0.76 0.53 0.60 –

Table 2. Precision, recall, and f -measure evaluation of
note events transcribed using the DBN transcription algo-
rithm compared to the Zhou and Reiss [30] algorithm. The
first row includes octave errors while the second row ex-
cludes them.

tracks are transcribed by the single-instrument polyphonic
transcription algorithm proposed by Zhou and Reiss [30],
which was evaluated in the 2008 MIREX and received an
f -measure of 0.76 on a dataset of 30 synthesized and real
piano recordings.

The transcription algorithm described in this paper re-
sulted in a 9% increase, or a 16% relative increase, in f -
measure relative to the transcription algorithm developed
by Zhou and Reiss [30], and further, performed these tran-
scriptions in a quarter of the time. This result emphasizes a
lucrative property of neural networks: after training, feed-
ing the features forward through the network is accom-
plished in a small amount of time. An analysis of the num-
ber of octave errors made by both algorithms reveals that
the DBN transcription algorithm made a similar number
of note octave errors as the digital signal processing tran-
scription algorithm proposed by Zhou and Reiss.

A subjective, aural analysis of the guitar transcriptions
reflects these results: the predominant pitches and tempo-
ral structures of notes occurring in the input guitar tracks
are more or less maintained. Another remark on the tran-
scriptions is that when several guitar strums occur quickly
in succession, the DBN transcription algorithm often tran-
scribes only the first chord and prescribes it a long dura-
tion. This is likely a result of the temporally “coarse” win-
dow size of 1024 samples or a product of the HMM frame-
smoothing algorithm. A remedy for this issue is to lower
the window size, which has an undesirable side-effect of
lowering the frequency resolution of the DFT.

5. CONCLUSION

The developed polyphonic transcription algorithm is capa-
ble of forming discriminative, latent audio features that are
suitable for quickly transcribing isolated instrument record-
ings. The algorithm workflow consists of audio signal pre-
processing, feature extraction, a novel pitch estimation al-
gorithm that uses multi-label learning techniques to en-
force polyphony constraints, frame smoothing, and onset
quantization. The generated note event transcriptions are
digitally encoded as a MIDI file.

An evaluation of the frame-level pitch estimates gen-
erated by the deep belief network on a dataset of synthe-

sized guitar recordings resulted in an f -measure of 0.71
after frame smoothing. An evaluation of the note events
output by the entire transcription algorithm resulted in an
f -measure of 0.65, which is 9% higher than the f -measure
reported by a state-of-the-art, single-instrument transcrip-
tion algorithm [30] on the same dataset. A threat to valid-
ity is the use of synthesized guitar signals for training and
testing, which could be addressed by hiring guitarists and
expert annotators to compile a dataset of real recordings.

There are several directions of future work to improve
the accuracy of transcriptions. First, there are substantial
variations in the distribution of pitches across songs, and
so the compilation of more training data is expected to im-
prove the accuracy of frame-level pitch estimates made by
the DBN. Second, alternate methods could be explored
to raise the accuracy of frame-level polyphony estimates,
such as training a separate classifier for predicting poly-
phony on potentially different audio features. Third, an
alternate frame-smoothing algorithm that jointly considers
the probabilities of other pitch estimates across analysis
frames could further increase pitch estimation f -measure
relative to the HMM method [22], which smooths the es-
timates of one pitch across the audio analysis frames. Fi-
nally, it would be beneficial to investigate whether the la-
tent audio features derived for transcribing one instrument
are transferable to the transcription of other instruments.

The results of this work encourage the use of deep ar-
chitectures such as belief networks or autoencoders to form
alternative representations of industry-standard audio fea-
tures for the purposes of instrument transcription. More-
over, this work demonstrates the effectiveness of multi-
label learning for pitch estimation, specifically when an
upper bound on polyphony exists.
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