

A peer-reviewed version of this preprint was published in PeerJ
on 24 September 2015.

View the peer-reviewed version (peerj.com/articles/1273), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML, Notredame C.
2015. The impact of Docker containers on the performance of genomic
pipelines. PeerJ 3:e1273 https://doi.org/10.7717/peerj.1273

https://doi.org/10.7717/peerj.1273
https://doi.org/10.7717/peerj.1273

1

The impact of Docker containers on the performance of genomic pipelines 1

Paolo Di Tommaso*
1,2

, Emilio Palumbo
1,2

, Maria Chatzou
1,2

, Pablo Prieto
1,2

, Michael L Heuer
3
, 2

Cedric Notredame
1,2

 3

1
Comparative Bioinformatics, Bioinformatics and Genomics Program, 4

Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain 5
2
Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 6

3
National Marrow Donor Program, Minneapolis, MN 55413-1753, USA 7

* Corresponding author: paolo.ditommaso@crg.eu 8

Abstract 9

Genomic pipelines consist of several pieces of third party software and, because their experimental 10

nature, frequent changes and updates are commonly necessary thus raising serious distribution and 11

reproducibility issues. Docker containers technology offers an ideal solution, as it allows the 12

packaging of pipelines in an isolated and self-contained manner. This makes it easy to distribute and 13

execute pipelines in a portable manner across a wide range of computing platforms. Thus the 14

question that arises is to what extent the use of Docker containers might affect the performance of 15

these pipelines. Here we address this question and conclude that Docker containers have only a 16

minor impact on the performance of common genomic pipelines, which is negligible when the 17

executed jobs are long in terms of computational time. 18

Introduction 19

Genomic pipelines usually rely on a combination of several pieces of third party research software. 20

These applications tend to be academic prototypes that are often difficult to install, configure and 21

deploy. Furthermore their experimental nature can result in frequent updates, thus raising serious 22

reproducibility issues. In the past virtual machines were proposed as an answer to this issue. They 23

are indeed very convenient but come along with a few major issues that include high latency and 24

significant overhead. 25

Docker containers technology has been designed to address these issues. It has recently received an 26

increasing level of attention throughout the scientific community because it allows applications to run 27

in an isolated, self-contained package that can be efficiently distributed and executed in a portable 28

manner across a wide range of computing platforms. 29

The first most obvious advantage of this approach is to replace the tedious installation of numerous 30

pieces of software, with complex dependencies, by simply downloading a single pre-built ready-to-run 31

image containing all the software and the required configuration. 32

The second strength of Docker is to run each process in an isolated container that is created starting 33

from an immutable image. This prevents conflicts with any other installed program in the hosting 34

computing environment, and guarantees that each process runs in a predictable system configuration 35

that cannot change over time due to misconfigured software, system updates or programming errors. 36

Containers only require a few milliseconds to start and many instances can run in the same hosting 37

environment. This is possible because it runs as an isolated process in userspace on the host 38

operating system, sharing the kernel with other containers. 39

A study from IBM Research showed that Docker technology introduces a negligible overhead for CPU 40

and memory performance, and applications running in a container perform equally or better when 41

compared to KVM virtualization in all tests (1). 42

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1171v2 | CC-BY 4.0 Open Access | rec: 12 Jun 2015, publ: 12 Jun 2015

P
re
P
ri
n
ts

2

In this work we assess the impact of Docker containers on the performance of genomic pipelines 43

using a realistic computational biology usage scenario based on the re-computation of selected 44

subsets of the ENCODE analysis. 45

Method 46

In order to evaluate the impact of Docker usage on the execution performance of bioinformatics tools 47

we benchmarked three different genomic pipelines. A comparison of the execution times was made 48

running them with and without Docker along with the same dataset. The tests were executed using a 49

cluster node HP BL460c Gen8 with 12 cpus Intel Xeon X5670 (2.93GHz), 96 GB of RAM and running 50

on Scientific Linux 6.5 (kernel 2.6.32-431.29.2.el6.x86_64). 51

Tests were executed using Docker 1.0 configured with "device mapper" as the storage driver. Docker 52

images used for the benchmark were built starting from a Scientific Linux 6.5 base image (2). The 53

compute node was reserved for the benchmark execution (this means that no other workload was 54

dispatched to it), moreover to prevent any possible network latencies that could affect the execution 55

times in a aleatory manner, all tests were executed using the node local disk as main storage. 56

All three pipelines are developed with Nextflow, a tool that is designed to simplify the deployment of 57

computational pipelines across different platforms in a reproducible manner (4). Nextflow integrates 58

the support for Docker allowing pipeline tasks to be executed transparently in Docker containers. 59

This allowed us to execute the same pipeline natively or run it with Docker without having to modify 60

the pipeline code, but by simply specifying the Docker image to be used in the Nextflow configuration 61

file. 62

It should be noted that when the pipeline is executed with Docker support it does not mean that the 63

overall pipeline execution runs "inside" a single container, but that each task spawned by the pipeline 64

runs in its own container. This approach allows a Docker based pipeline to use a different image for 65

each different task in the computational workflow, and therefore scale seamlessly in a cluster of 66

computers (which wouldn't be possible using the single container approach). 67

The overhead introduced by containers technology on the pipelines performance was estimated by 68

comparing the median execution time of 10 instances running with and without Docker. As the 69

pipeline ran parallel tasks, the execution time was normalized summing up the execution time of all 70

the tasks in each instance. 71

Benchmark 1 72

The first performance evaluation was carried out using a simple pipeline for RNA-Seq data analysis 73

(15). 74

The pipeline takes raw RNA-Seq sequences as input and first maps them to a reference genome and 75

a transcript annotation by sequence alignment. The mapping information is then used to quantify 76

known transcripts using the reference transcript annotation. For each processed sample, the pipeline 77

produces as output a table of relative abundances of all transcripts in the transcript annotation. 78

The pipeline was run 10 times using the same dataset with and without Docker. The RNA-Seq data 79

was taken from the ENCODE project and contained randomly sampled (10% of the original) Illumina 80

paired-end sequences from brain samples (CNS) of mouse embryos at day 14 and day 18, in 2 81

bioreplicates. Each run executed a first index task using Bowtie, then a mapping task using Tophat2 82

and finally a transcript task using the Cufflinks tool. The following versions of these tools were used: 83

Samtools 0.1.18 (5), Bowtie2 2.2.3 (6), Tophat-2.0.12 (7), Cufflinks 2.2.1 (8). 84

Each run executed 9 tasks. The median pipeline execution time in the native environment was 85

1,158.4 minutes (19h 18m 23s), while the median execution time when running it with Docker was 86

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1171v2 | CC-BY 4.0 Open Access | rec: 12 Jun 2015, publ: 12 Jun 2015

P
re
P
ri
n
ts

3

1,157.6 minutes (19h 17m 35s). Thus, the use of Docker containers didn't add any time overhead to 87

the pipeline execution, on the contrary the median execution time was a few seconds faster (0.1%). 88

Pipeline Tasks Mean task time (mins) Median execution time (mins) Slow down

native docker native docker

RNA-Seq 9 128.7 128.6 1,158.4 1,157.6 0.999

Variant call. 48 26.1 26.7 1,252.6 1,283.6 1.025

Piper 98 0.6 1.0 58.5 97.1 1.659

Table 1 89

Benchmark 2 90

The second benchmark was executed using an assembly-based variant calling pipeline (16), part of a 91

Minimum Information for Reporting Next Generation Sequencing Genotyping (MIRING)-compliant 92

genotyping workflow for histocompatibility, immunogenetic and immunogenomic applications (3). 93

Paired-end genomic reads from targeted human leukocyte antigen (HLA) and killer-cell 94

immunoglobulin-like receptors (KIR) genes are assembled into consensus sequences. Reads and 95

consensus sequences are then aligned to the human genome reference and used to call variants. 96

The pipeline was launched 10 times using Illumina paired end genomic reads targeted for major 97

histocompatibility complex (MHC) class I HLA-A, HLA-B, and HLA-C genes and MHC class II gene 98

HLA-DRB1 from 8 individuals. The following versions of these tools were used both in the native and 99

Docker environment: ngs-tools 1.7 (14), SSAKE 3.8.2 (9), BWA 0.7.12-r1039 (10), Samtools 1.2 (5). 100

Each run executed 48 tasks, and the maximum number of tasks that could be executed in parallel 101

was set to 10. Most of the tasks completed in a few seconds, with the exclusion of the SSAKE stage 102

which needed from 2 to 3.5 hours to complete (see fig. 2). 103

The median pipeline execution time in the native environment was 1,252.6 minutes (20h 52m 34s), 104

while the median execution time when running it with Docker was 1,283.6 minutes (21h 23m 38s). 105

This means that when running with Docker the execution was slowed down by 2.5% (see table 1). 106

Benchmark 3 107

The last benchmark was carried out using Piper-NF, a genomic pipeline for the detection and 108

mapping of long non-coding RNAs (17). 109

The pipeline takes as input cdna transcripts sequences in FASTA format which are blasted against a 110

set of genomes also provided in FASTA format. Homologous regions on the target genomes are used 111

as anchor points and the surrounding regions are then extracted and re-aligned with the original 112

query. If the aligner can align these sequences and the alignment covers a required minimal region of 113

the original query, the sequences are used to build a multiple sequence alignment which is then used 114

to obtain the similarity between each homologous sequence and the original query. 115

As in previous experiments the pipeline was run 10 times using the same dataset with and without 116

Docker. We used as the input query a set of 100 RNA-Seq transcript sequences in FASTA format 117

from Gallus gallus species. The input sequences were mapped and aligned towards a set of genomes 118

consisting of Anas platyrhynchos, Anolis carolinensis, Chrysemys picta bellii, Ficedula albicollis, 119

Gallus gallus, Meleagris gallopavo, Melobsittacus undulatus, Pelodiscus sinensis, Taeniopygia 120

guttata, from Ensembl version 73. The following versions of the tools were used both in the native and 121

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1171v2 | CC-BY 4.0 Open Access | rec: 12 Jun 2015, publ: 12 Jun 2015

P
re
P
ri
n
ts

4

Docker environment: T-Coffee 10.00.r1613 (11), NCBI BLAST 2.2.29+ (12), Exonerate 2.2.0 (13). 122

Each run executed 98 jobs and the maximum number of tasks that could be executed in parallel was 123

set to 10. 124

The median pipeline execution time in the native 125

environment was 58.5 minutes, while the median 126

execution time when running it with Docker was 97.1 127

minutes. In this experiment running with Docker 128

introduced a significative slowdown of the pipeline 129

execution time, around 66% (see table 1). 130

This result can be explained by the fact that the 131

pipeline executed many short-lived tasks: the mean 132

task execution time was 35.8 seconds, and the median 133

execution time was 5.5 seconds (see fig. 3). Thus the 134

overhead added by Docker to bootstrap the container 135

environment and mount the host file system became 136

significative when compared to the short task duration. 137

Results 138

In this work we assessed the impact of Docker containers technology on the performance of genomic 139

pipelines. We showed that container "virtualization" has a negligible overhead on pipeline 140

performance when it is composed by medium/long running tasks, which is the most common scenario 141

in computational genomic pipelines. While the performance degradation is more significative for 142

pipelines where most of the tasks have a fine or very fine granularity (few seconds or milliseconds). 143

Conclusion 144

The fast start-up time for Docker containers technology allows one to virtualize a single process or the 145

execution of a bunch of applications, instead of a complete operating system. This opens up new 146

possibilities, for example the possibility to "virtualize" distributed job executions in an HPC cluster of 147

computers. 148

In this work we show that Docker containerization has a negligible impact on the execution 149

performance of common genomic pipelines where tasks are generally very time consuming. 150

Figure 1

Figure 2 Figure 3

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1171v2 | CC-BY 4.0 Open Access | rec: 12 Jun 2015, publ: 12 Jun 2015

P
re
P
ri
n
ts

5

The minimal performance loss introduced by the Docker engine is offset by the advantages of running 151

an analysis in a self-contained and precisely controlled runtime environment. Docker makes it easy to 152

precisely prototype an environment, maintain all its variations over time and rapidly reproduce any 153

former configuration one may need to re-use. These capacities guarantee consistent results over time 154

and across different computing platforms. 155

References 156

1. Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio. An Updated Performance 157

Comparison of Virtual Machines and Linux Contain. IBM Research (2014). Available at 158

http://ibm.co/V55Otq (accessed 1 Jun 2015) 159

2. Scientific Linux 6.5 Docker image. Available at https://registry.hub.docker.com/u/ringo/scientific/ 160

(accessed 5 May 2015) 161

3. Steven J. Mack, et al. Minimum Information for Reporting Next Generation Sequence Genotyping 162

(MIRING): Guidelines for Reporting HLA and KIR Genotyping via Next Generation Sequencing. 163

Available at http://biorxiv.org/content/early/2015/02/16/015230 (accessed 1 Jun 2015) 164

4. Di Tommaso P., et al. Nextflow: A novel tool for highly scalable computational pipelines. (2014) 165

Available at http://dx.doi.org/10.6084/m9.figshare.1254958 166

5. Heng Li, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 (16): 167

2078-2079. doi: 10.1093/bioinformatics/btp352 168

6. Ben Langmead, Steven L Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat 169

Methods. 2012 Mar 4; 9(4): 357–359. doi: 10.1038/nmeth.1923 170

7. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of 171

transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013 Apr 172

25;14(4):R36. doi: 10.1186/gb-2013-14-4-r36. 173

8. Cole Trapnell, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated 174

transcripts and isoform switching during cell differentiation. Nature Biotechnology 28, 511–515 (2010) 175

doi:10.1038/nbt.1621 176

9. Warren RL, Sutton GG, Jones SJM, Holt RA. Assembling millions of short DNA sequences using 177

SSAKE. Bioinformatics (2007) 23 (4): 500-501. doi: 10.1093/bioinformatics/btl629 178

10. Heng Li, Richard Durbin. Fast and accurate short read alignment with Burrows–Wheeler 179

transform. Bioinformatics (2009) 25 (14): 1754-1760. doi: 10.1093/bioinformatics/btp324 180

11. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple 181

sequence alignment. J Mol Biol. (2000) Sep 8;302(1):205-17. doi:10.1006/jmbi.2000.4042 182

12. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. 183

J Mol Biol. (1990) Oct 5; 215:403-410. PMID: 2231712 184

13. Guy St C Slater, Ewan Birney. Automated generation of heuristics for biological sequence 185

comparison. BMC Bioinformatics (2005) 6:31 doi:10.1186/1471-2105-6-31 186

14. NGS Tools. Available at https://github.com/nmdp-bioinformatics/ngs 187

15. RNA-Seq toy. Available at https://github.com/nextflow-io/rnatoy/tree/docker-benchmark 188

16. Consensus assembly and variant calling workflow. 189

Available at https://github.com/nextflow-io/nmdp-flow/tree/docker-benchmark 190

17. Piper-NF. Available at https://github.com/cbcrg/piper-nf/tree/docker-benchmark 191

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1171v2 | CC-BY 4.0 Open Access | rec: 12 Jun 2015, publ: 12 Jun 2015

P
re
P
ri
n
ts

