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Abstract. Association rule mining has a great importance in data mining. 

Apriori is the key algorithm in association rule mining. Many approaches are 

proposed in past to improve Apriori but the core concept of the algorithm is same 

i.e. support and confidence of itemsets and previous studies finds that classical 

Apriori is inefficient due to many scans on database. In this paper, we are 

proposing a method to improve Apriori algorithm efficiency by reducing the 

database size as well as reducing the time wasted on scanning the transactions. 

Keywords: Apriori algorithm, Support, Frequent Itemset, Association rules, 

Candidate Item Sets. 

1. INTRODUCTION 

Extracting relevant information by exploitation of data is called Data Mining. There is 

an increasing need to extract valid and useful information by business people from 

large datasets [2]; here data mining achieves its goal. Thus, data mining has its 

importance to discover hidden patterns from huge data stored in databases, OLAP 

(Online Analytical Process), data warehouse etc. [5]. This is the only reason why data 

mining is also known as KDD (Knowledge Discovery in Databases). [4] KDD’s 

techniques are used to extract the interesting patterns. Steps of KDD process are 

cleaning of data (data cleaning), selecting relevant data, transformation of data, data 

pre-processing, mining and pattern evaluation. 

2. ASSOCIATION RULE MINING 

Association rule mining has its importance in fields of artificial intelligence, 

information science, database and many others. Data volumes are dramatically 

increasing by day-to-day activities. Therefore, mining the association rules from 

massive data is in the interest for many industries as theses rules help in decision-

making processes, market basket analysis and cross marketing etc.  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts



 

 

 

Association rule problems are in discussion from 1993 and many researchers have 

worked on it to optimize the original algorithm such as doing random sampling, 

declining rules, changing storing framework etc. [1]. We find association rules from a 

huge amount of data to identify the relationships in items which tells about human 

behavior of buying set of items. There is always a particular pattern followed by 

humans during buying the set of items.  

In data mining, unknown dependency in data is found in association rule mining 

and then rules between the items are found [3]. Association rule mining problem is 

defined as follows. 

DBT = {T1, T2... TN} is a database of N T transactions.  

Each transaction consists of I, where I= {i1, i2, i3….iN} is a set of all items. An 

association rule is of the form A⇒B, where A and B are item sets, A⊆I, B⊆I, A∩B=∅. 

The whole point of an algorithm is to extract the useful information from these 

transactions.  

For example: Consider below table containing some transactions: 

Table 1. Example of transactions in a database 

TID Items 

1  CPU, Monitor 

2 CPU, Keyboard, Mouse, UPS 

3 Monitor, Keyboard, Mouse, Motherboard 

4 CPU, Monitor, Keyboard, Mouse 

5 CPU, Monitor, Keyboard, Motherboard 

 

Example of Association Rules: 

{Keyboard}  {Mouse}, 

{CPU, Monitor}  {UPS, Motherboard}, 

{CPU, Mouse}  {Monitor}, 

A B is an association rule (A and B are itemsets). 

Example: {Monitor, Keyboard}  {Mouse} 

 

Rule Evaluation: 

Support: It is defined as rate of occurrence of an itemset in a transaction database. 

Support (Keyboard  Mouse) =  

No. Of transactions containing both Keyboard and   Mouse 

No. Of total transactions 

 

Confidence: For all transactions, it defines the ratio of data items which contains Y in 

the items that contains X. 

Confidence (Keyboard  Mouse) =  

No. Of transactions containing Keyboard and Mouse  

        No. Of transactions (containing Keyboard) 
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Itemset: One or more items collectively is called an itemset. Example: {Monitor, 

Keyboard, Mouse}. K-itemset contains k-items. 

 

Frequent Itemset: For a frequent item set: 

     SI >= min_sup    

where I is an itemset, min_sup is minimum support threshold and S represent the 

support for an itemset. 

3. CLASSICAL APRIORI ALGORITHM 

Using an iterative approach, in each iteration Apriori algorithm generates candidate 

item-sets by using large itemsets of a previous iteration. [2]. Basic concept of this 

iterative approach is as follows:  

 

Algorithm Apriori_algo(Lk) 

1. L1= {frequent-1 item-sets}; 

2. for (k=2; Lk-1≠Φ; k++) { 

3. Ck= generate_Apriori(Lk-1); //New candidates 

4. forall transactions t ϵ D do begin 

5. Ct=subset(Ck,t); //Candidates contained in t 

6. forall candidates c ϵ Ct do 

7.  c.count++; 

8.  } 

9.  Lk={c ϵ Ck | c.count≥minsup} 

10. end for 

11.  Answer=UkLk 

Algorithm. 1. Apriori Algorithm[6] 

Above algorithm is the apriori algorithm. In above, database is scanned to find 

frequent 1-itemsets along with the count of each item. Frequent itemset L1 is created 

from candidate item set where each item satisfies minimum support. In next each 

iteration, set of item sets is used as a seed which is used to generate next set of large 

itemsets i.e candidate item sets (candidate generation) using generate_Apriori 

function.  

Lk-1 is input to generate_Apriori function and returns Ck. Join step joins Lk-1 with 

another Lk-1 and in prune step, item sets c ϵ Ck are deleted such that (k-1) is the subset 

of “c” but not in Lk-1 of Ck-1. 

 

Algorithm generate_Apriori (Lk) 

1. insert into Ck 

2. p =Lk-1 ,q= Lk-1 
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3. select p.I1,p.I2,.....p.Ik-1,q.Ik-1 from p, q where p.I1=q.I1...p.Ik-2= q.Ik-2,p.Ik-1<q.Ik-1; 

4. forall itemsets c ϵ Ck do 

5. forall { s ⊃ (k-1) of c) do 

6. if (s ∉ Lk-1) then 

7. from Ck , delete c 

Algorithm. 2. Apriori-Gen Algorithm[6] 

  

Fig.1. Apriori Algorithm Steps 
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3.1. Limitations of Apriori Algorithm 

 Large number of candidate and frequent item sets are to be handled and 

results in increased cost and waste of time. 

Example: if number of frequent (k-1) items is 104 then almost 107 Ck need to 

be generated and tested [2]. So scanning of a database is done many times to 

find Ck 

 

 Apriori is inefficient in terms of memory requirement when large numbers of 

transactions are in consideration. 

4. PROPOSED ENHANCEMENT IN EXISTING APRIORI 

ALGORITHM 

Below section will give an idea to improve apriori efficiency along with example and 

algorithm. 

4.1. Improvement of Apriori 

In this approach to improve apriori algorithm efficiency, we focus on reducing the time 

consumed for Ck generation. 

In the process to find frequent item sets, first size of a transaction (ST) is found for 

each transaction in DB and maintained. Now, find L1 containing set of items, support 

value for each item and transaction ids containing the item. Use L1 to generate L2, 

L3… along with decreasing the database size so that time reduces to scan the 

transaction from the database. 

To generate C2(x,y) (items in Ck are x and y), do L(k-1) * L(k-1) . To find L2 from 

C2, instead of scanning complete database and all transactions, we remove transaction 

where ST < k (where k is 2, 3…) and also remove the deleted transaction from L1 as 

well. This helps in reducing the time to scan the infrequent transactions from the 

database. 

Find minimum support from x and y and get transaction ids of minimum support 

count item from L1. Now, Ck is scanned for specific transactions only (obtained above) 

and from decreased DB size. Then, L2 is generated by C2 where support of Ck >= 

min_supp.  

C3(x,y,z), L3 and so on is generated repeating above steps until no frequent items 

sets can be discovered.  

 

Algorithm Apriori 

Input: transactions database, D 

         Minimum support, min_sup 
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Output Lk: frequent itemsets in D 

1. find ST //for each transaction in DB 

2. L1=find frequent_1_itemset (D) 

3. L1= find frequent_1_itemset (D) 

4. L1+=get_txn_ids(D) 

5. for (k=2;Lk-1≠Φ ; k++){ 

6. Ck=generate_candidate (Lk-1) 

7. x= item_min_sup(Ck, L1) //find item from Ck(a,b) which has minimum support 

using L1 

8. target =get_txn_ids(x)  //get transactions for each item  

9. foreach (txn t in tgt) do{ 

10. Ck.count++ 

11. Lk=(items in Ck>=min_sup) 

12.} //end foreach 

13. foreach(txn in D){ 

14. if(ST=(k-1)) 

15. txn_set+=txn 

16. //end foreach 

17. delete_txn_DB(txn_set)  //reduce DB size 

18. delete_txn_L1(txn_set,L1)  //reduce transaction size in L1 

19.} //end for 

Algorithm. 3. Proposed Apriori Algorithm 
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Fig.2. Proposed Apriori Algorithm Steps 
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5. EXPERIMENTAL EXAMPLE 

Below is the transaction database (D) having 10 transactions and min_sup=3. Size of 

transaction (ST) is calculated for each transaction. (Refer figure 3). 

 

Fig.3. Transaction Database 

All the transactions are scanned to get frequent-1-itemset, L1. It contains items, 

respective support count and transactions from D which contain the items. Infrequent 

candidates’ i.e. itemsets whose support < min_sup are eliminated or deleted. (Refer 

Figure 4 and Figure 5) 

 

Fig.4. Candidate-1-itemset 
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Fig.5. Frequent-1-itemset 

From L1, frequent-2-itemset (L2) is generated as follows. Example: consider itemset 

{I1, I2}. In classical apriori, all transactions are scanned to find {I1, I2} in D. But in our 

proposed idea, firstly, transaction T9 is deleted from D as well as from L1 as ST for T9 

is less than k (k=2). New D and L1 are shown in figure 6 and figure 7 respectively. 

Secondly, {I1, I2} is split into {I1} and {I2} and item with minimum support i.e. {I1} is 

selected using L1 and its transactions will be used in L2. So, {I1, I2} will be searched 

only in transactions which contain {I1} i.e. T1, T3, T7, T10. 

 

So, searching time is reduced twice: 

 By reducing database size  

 By cutting down the number of transactions to be scanned.  

 

L2 is shown in Figure 8. 

 

Fig.6. Transaction Database (updated) 
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Fig.7. Frequent-1-itemset (updated) 

 

Fig.8. Frequent-2-itemset 

To generate frequent-3-itemset (L3), D is updated by deleting transactions T6 and 

T10 as ST for these transactions is less than k (k=3). L1 is also updated by deleting 

transactions T6 and T10. Then, repeating above process, L3 is generated and infrequent 

itemsets are deleted. Refer figure 9, figure 10 and figure 11 for updated database, L1 

and L3 respectively. 

 

Fig.9. Transaction Database (updated) 
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Fig.10. Frequent-1-itemset (updated) 

 

Fig.11. Frequent-3-itemset 

So, above process is followed to find frequent-k-itemset for a given transaction 

database. Using frequent-k-itemset, association rules are generated from non-empty 

subsets which satisfy minimum confidence value. 

6. COMPARATIVE ANALYSIS 

 

We have counted the number of transactions that are scanned to find L1, L2 and L3 for 

our given example and below figure shows the difference in count of transactions 

scanned by using original apriori algorithm and our proposed idea. 

 

 

Fig.12. Comparative Results 
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For k=1, number of transactions scanned is same for both classical apriori and our 

proposed idea but with the increase in k, count of transactions decrease. Refer below 

figure. 

 

Fig.13. Comparative Analysis 

7. CONCLUSION 

We have proposed an idea to improve the efficiency of apriori algorithm by reducing 

the time taken to scan database transactions. We find that with increase in value of k, 

number of transactions scanned decreases and thus, time consumed also decreases in 

comparison to classical apriori algorithm. Because of this, time taken to generate 

candidate item sets in our idea also decreases in comparison to classical apriori. 
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