
An Approach of Improvisation in Efficiency of Apriori

Algorithm

Sakshi Aggarwal1, Ritu Sindhu2

1 SGT Institute of Engineering & Technology,

Gurgaon, Haryana

sakshii.26@gmail.com
2 SGT Institute of Engineering & Technology,

Gurgaon, Haryana

ritu.sindhu2628@gmail.com

Abstract. Association rule mining has a great importance in data mining.

Apriori is the key algorithm in association rule mining. Many approaches are

proposed in past to improve Apriori but the core concept of the algorithm is same

i.e. support and confidence of itemsets and previous studies finds that classical

Apriori is inefficient due to many scans on database. In this paper, we are

proposing a method to improve Apriori algorithm efficiency by reducing the

database size as well as reducing the time wasted on scanning the transactions.

Keywords: Apriori algorithm, Support, Frequent Itemset, Association rules,

Candidate Item Sets.

1. INTRODUCTION

Extracting relevant information by exploitation of data is called Data Mining. There is

an increasing need to extract valid and useful information by business people from

large datasets [2]; here data mining achieves its goal. Thus, data mining has its

importance to discover hidden patterns from huge data stored in databases, OLAP

(Online Analytical Process), data warehouse etc. [5]. This is the only reason why data

mining is also known as KDD (Knowledge Discovery in Databases). [4] KDD’s

techniques are used to extract the interesting patterns. Steps of KDD process are

cleaning of data (data cleaning), selecting relevant data, transformation of data, data

pre-processing, mining and pattern evaluation.

2. ASSOCIATION RULE MINING

Association rule mining has its importance in fields of artificial intelligence,

information science, database and many others. Data volumes are dramatically

increasing by day-to-day activities. Therefore, mining the association rules from

massive data is in the interest for many industries as theses rules help in decision-

making processes, market basket analysis and cross marketing etc.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

Association rule problems are in discussion from 1993 and many researchers have

worked on it to optimize the original algorithm such as doing random sampling,

declining rules, changing storing framework etc. [1]. We find association rules from a

huge amount of data to identify the relationships in items which tells about human

behavior of buying set of items. There is always a particular pattern followed by

humans during buying the set of items.

In data mining, unknown dependency in data is found in association rule mining

and then rules between the items are found [3]. Association rule mining problem is

defined as follows.

DBT = {T1, T2... TN} is a database of N T transactions.

Each transaction consists of I, where I= {i1, i2, i3….iN} is a set of all items. An

association rule is of the form A⇒B, where A and B are item sets, A⊆I, B⊆I, A∩B=∅.

The whole point of an algorithm is to extract the useful information from these

transactions.

For example: Consider below table containing some transactions:

Table 1. Example of transactions in a database

TID Items

1 CPU, Monitor

2 CPU, Keyboard, Mouse, UPS

3 Monitor, Keyboard, Mouse, Motherboard

4 CPU, Monitor, Keyboard, Mouse

5 CPU, Monitor, Keyboard, Motherboard

Example of Association Rules:

{Keyboard}  {Mouse},

{CPU, Monitor}  {UPS, Motherboard},

{CPU, Mouse}  {Monitor},

A B is an association rule (A and B are itemsets).

Example: {Monitor, Keyboard}  {Mouse}

Rule Evaluation:

Support: It is defined as rate of occurrence of an itemset in a transaction database.

Support (Keyboard  Mouse) =

No. Of transactions containing both Keyboard and Mouse

No. Of total transactions

Confidence: For all transactions, it defines the ratio of data items which contains Y in

the items that contains X.

Confidence (Keyboard  Mouse) =

No. Of transactions containing Keyboard and Mouse

 No. Of transactions (containing Keyboard)

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

3

Itemset: One or more items collectively is called an itemset. Example: {Monitor,

Keyboard, Mouse}. K-itemset contains k-items.

Frequent Itemset: For a frequent item set:

 SI >= min_sup

where I is an itemset, min_sup is minimum support threshold and S represent the

support for an itemset.

3. CLASSICAL APRIORI ALGORITHM

Using an iterative approach, in each iteration Apriori algorithm generates candidate

item-sets by using large itemsets of a previous iteration. [2]. Basic concept of this

iterative approach is as follows:

Algorithm Apriori_algo(Lk)

1. L1= {frequent-1 item-sets};

2. for (k=2; Lk-1≠Φ; k++) {

3. Ck= generate_Apriori(Lk-1); //New candidates

4. forall transactions t ϵ D do begin

5. Ct=subset(Ck,t); //Candidates contained in t

6. forall candidates c ϵ Ct do

7. c.count++;

8. }

9. Lk={c ϵ Ck | c.count≥minsup}

10. end for

11. Answer=UkLk

Algorithm. 1. Apriori Algorithm[6]

Above algorithm is the apriori algorithm. In above, database is scanned to find

frequent 1-itemsets along with the count of each item. Frequent itemset L1 is created

from candidate item set where each item satisfies minimum support. In next each

iteration, set of item sets is used as a seed which is used to generate next set of large

itemsets i.e candidate item sets (candidate generation) using generate_Apriori

function.

Lk-1 is input to generate_Apriori function and returns Ck. Join step joins Lk-1 with

another Lk-1 and in prune step, item sets c ϵ Ck are deleted such that (k-1) is the subset

of “c” but not in Lk-1 of Ck-1.

Algorithm generate_Apriori (Lk)

1. insert into Ck

2. p =Lk-1 ,q= Lk-1

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

3. select p.I1,p.I2,.....p.Ik-1,q.Ik-1 from p, q where p.I1=q.I1...p.Ik-2= q.Ik-2,p.Ik-1<q.Ik-1;

4. forall itemsets c ϵ Ck do

5. forall { s ⊃ (k-1) of c) do

6. if (s ∉ Lk-1) then

7. from Ck , delete c

Algorithm. 2. Apriori-Gen Algorithm[6]

Fig.1. Apriori Algorithm Steps

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

5

3.1. Limitations of Apriori Algorithm

 Large number of candidate and frequent item sets are to be handled and

results in increased cost and waste of time.

Example: if number of frequent (k-1) items is 104 then almost 107 Ck need to

be generated and tested [2]. So scanning of a database is done many times to

find Ck

 Apriori is inefficient in terms of memory requirement when large numbers of

transactions are in consideration.

4. PROPOSED ENHANCEMENT IN EXISTING APRIORI

ALGORITHM

Below section will give an idea to improve apriori efficiency along with example and

algorithm.

4.1. Improvement of Apriori

In this approach to improve apriori algorithm efficiency, we focus on reducing the time

consumed for Ck generation.

In the process to find frequent item sets, first size of a transaction (ST) is found for

each transaction in DB and maintained. Now, find L1 containing set of items, support

value for each item and transaction ids containing the item. Use L1 to generate L2,

L3… along with decreasing the database size so that time reduces to scan the

transaction from the database.

To generate C2(x,y) (items in Ck are x and y), do L(k-1) * L(k-1) . To find L2 from

C2, instead of scanning complete database and all transactions, we remove transaction

where ST < k (where k is 2, 3…) and also remove the deleted transaction from L1 as

well. This helps in reducing the time to scan the infrequent transactions from the

database.

Find minimum support from x and y and get transaction ids of minimum support

count item from L1. Now, Ck is scanned for specific transactions only (obtained above)

and from decreased DB size. Then, L2 is generated by C2 where support of Ck >=

min_supp.

C3(x,y,z), L3 and so on is generated repeating above steps until no frequent items

sets can be discovered.

Algorithm Apriori

Input: transactions database, D

 Minimum support, min_sup

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

Output Lk: frequent itemsets in D

1. find ST //for each transaction in DB

2. L1=find frequent_1_itemset (D)

3. L1= find frequent_1_itemset (D)

4. L1+=get_txn_ids(D)

5. for (k=2;Lk-1≠Φ ; k++){

6. Ck=generate_candidate (Lk-1)

7. x= item_min_sup(Ck, L1) //find item from Ck(a,b) which has minimum support

using L1

8. target =get_txn_ids(x) //get transactions for each item

9. foreach (txn t in tgt) do{

10. Ck.count++

11. Lk=(items in Ck>=min_sup)

12.} //end foreach

13. foreach(txn in D){

14. if(ST=(k-1))

15. txn_set+=txn

16. //end foreach

17. delete_txn_DB(txn_set) //reduce DB size

18. delete_txn_L1(txn_set,L1) //reduce transaction size in L1

19.} //end for

Algorithm. 3. Proposed Apriori Algorithm

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

7

Fig.2. Proposed Apriori Algorithm Steps

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

5. EXPERIMENTAL EXAMPLE

Below is the transaction database (D) having 10 transactions and min_sup=3. Size of

transaction (ST) is calculated for each transaction. (Refer figure 3).

Fig.3. Transaction Database

All the transactions are scanned to get frequent-1-itemset, L1. It contains items,

respective support count and transactions from D which contain the items. Infrequent

candidates’ i.e. itemsets whose support < min_sup are eliminated or deleted. (Refer

Figure 4 and Figure 5)

Fig.4. Candidate-1-itemset

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

9

Fig.5. Frequent-1-itemset

From L1, frequent-2-itemset (L2) is generated as follows. Example: consider itemset

{I1, I2}. In classical apriori, all transactions are scanned to find {I1, I2} in D. But in our

proposed idea, firstly, transaction T9 is deleted from D as well as from L1 as ST for T9

is less than k (k=2). New D and L1 are shown in figure 6 and figure 7 respectively.

Secondly, {I1, I2} is split into {I1} and {I2} and item with minimum support i.e. {I1} is

selected using L1 and its transactions will be used in L2. So, {I1, I2} will be searched

only in transactions which contain {I1} i.e. T1, T3, T7, T10.

So, searching time is reduced twice:

 By reducing database size

 By cutting down the number of transactions to be scanned.

L2 is shown in Figure 8.

Fig.6. Transaction Database (updated)

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

Fig.7. Frequent-1-itemset (updated)

Fig.8. Frequent-2-itemset

To generate frequent-3-itemset (L3), D is updated by deleting transactions T6 and

T10 as ST for these transactions is less than k (k=3). L1 is also updated by deleting

transactions T6 and T10. Then, repeating above process, L3 is generated and infrequent

itemsets are deleted. Refer figure 9, figure 10 and figure 11 for updated database, L1

and L3 respectively.

Fig.9. Transaction Database (updated)

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

11

Fig.10. Frequent-1-itemset (updated)

Fig.11. Frequent-3-itemset

So, above process is followed to find frequent-k-itemset for a given transaction

database. Using frequent-k-itemset, association rules are generated from non-empty

subsets which satisfy minimum confidence value.

6. COMPARATIVE ANALYSIS

We have counted the number of transactions that are scanned to find L1, L2 and L3 for

our given example and below figure shows the difference in count of transactions

scanned by using original apriori algorithm and our proposed idea.

Fig.12. Comparative Results

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

For k=1, number of transactions scanned is same for both classical apriori and our

proposed idea but with the increase in k, count of transactions decrease. Refer below

figure.

Fig.13. Comparative Analysis

7. CONCLUSION

We have proposed an idea to improve the efficiency of apriori algorithm by reducing

the time taken to scan database transactions. We find that with increase in value of k,

number of transactions scanned decreases and thus, time consumed also decreases in

comparison to classical apriori algorithm. Because of this, time taken to generate

candidate item sets in our idea also decreases in comparison to classical apriori.

REFERENCES

1. J. Han and M. Kamber, Conception and Technology of Data Mining, Beijing: China

Machine Press, 2007.

2. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge discovery

in databases,” vol. 17, no. 3, AI magazine, 1996, pp. 37.

3. S. Rao, R. Gupta, “Implementing Improved Algorithm over APRIORI Data Mining

Association Rule Algorithm”, International Journal of Computer Science And Technology,

pp. 489-493, Mar. 2012

4. H. H. O. Nasereddin, “Stream data mining,” International Journal of Web Applications, vol.

1, no. 4,pp. 183–190, 2009.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

13

5. M. Halkidi, “Quality assessment and uncertainty handling in data mining process,” in Proc,

EDBT Conference, Konstanz, Germany, 2000.

6. Rakesh Agarwal, Ramakrishna Srikant, “Fast Algorithm for mining association rules”

VLDB Conference Santiago, Chile, 1994, pp 487-499.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1159v1 | CC-BY 4.0 Open Access | rec: 5 Jun 2015, publ: 5 Jun 2015

P
re
P
rin

ts

