An Approach of Improvisation in Efficiency of Apriori Algorithm

Sakshi Aggarwal¹, Ritu Sindhu²

¹ SGT Institute of Engineering & Technology, Gurgaon, Haryana
sakshi26@gmail.com
² SGT Institute of Engineering & Technology, Gurgaon, Haryana
ritu.sindhu2628@gmail.com

Abstract. Association rule mining has a great importance in data mining. Apriori is the key algorithm in association rule mining. Many approaches are proposed in past to improve Apriori but the core concept of the algorithm is same i.e. support and confidence of itemsets and previous studies finds that classical Apriori is inefficient due to many scans on database. In this paper, we are proposing a method to improve Apriori algorithm efficiency by reducing the database size as well as reducing the time wasted on scanning the transactions.

Keywords: Apriori algorithm, Support, Frequent Itemset, Association rules, Candidate Item Sets.

1. INTRODUCTION

Extracting relevant information by exploitation of data is called Data Mining. There is an increasing need to extract valid and useful information by business people from large datasets [2]; here data mining achieves its goal. Thus, data mining has its importance to discover hidden patterns from huge data stored in databases, OLAP (Online Analytical Process), data warehouse etc. [5]. This is the only reason why data mining is also known as KDD (Knowledge Discovery in Databases). [4] KDD’s techniques are used to extract the interesting patterns. Steps of KDD process are cleaning of data (data cleaning), selecting relevant data, transformation of data, data pre-processing, mining and pattern evaluation.

2. ASSOCIATION RULE MINING

Association rule mining has its importance in fields of artificial intelligence, information science, database and many others. Data volumes are dramatically increasing by day-to-day activities. Therefore, mining the association rules from massive data is in the interest for many industries as theses rules help in decision-making processes, market basket analysis and cross marketing etc.
Association rule problems are in discussion from 1993 and many researchers have worked on it to optimize the original algorithm such as doing random sampling, declining rules, changing storing framework etc. [1]. We find association rules from a huge amount of data to identify the relationships in items which tells about human behavior of buying set of items. There is always a particular pattern followed by humans during buying the set of items.

In data mining, unknown dependency in data is found in association rule mining and then rules between the items are found [3]. Association rule mining problem is defined as follows.

\[DBT = \{T_1, T_2, \ldots, T_N\} \] is a database of \(N \) transactions.

Each transaction consists of \(I \), where \(I = \{i_1, i_2, i_3, \ldots, i_N\} \) is a set of all items. An association rule is of the form \(A \Rightarrow B \), where \(A \) and \(B \) are item sets, \(A \subseteq I, B \subseteq I, A \cap B = \emptyset \).

The whole point of an algorithm is to extract the useful information from these transactions.

For example: Consider below table containing some transactions:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CPU, Monitor</td>
</tr>
<tr>
<td>2</td>
<td>CPU, Keyboard, Mouse, UPS</td>
</tr>
<tr>
<td>3</td>
<td>Monitor, Keyboard, Mouse, Motherboard</td>
</tr>
<tr>
<td>4</td>
<td>CPU, Monitor, Keyboard, Mouse</td>
</tr>
<tr>
<td>5</td>
<td>CPU, Monitor, Keyboard, Motherboard</td>
</tr>
</tbody>
</table>

Example of Association Rules:
\(\{\text{Keyboard}\} \Rightarrow \{\text{Mouse}\} \),
\(\{\text{CPU, Monitor}\} \Rightarrow \{\text{UPS, Motherboard}\} \),
\(\{\text{CPU, Mouse}\} \Rightarrow \{\text{Monitor}\} \).

A \Rightarrow B is an association rule (\(A \) and \(B \) are itemsets).

Example: \(\{\text{Monitor, Keyboard}\} \Rightarrow \{\text{Mouse}\} \)

Rule Evaluation:

Support: It is defined as rate of occurrence of an itemset in a transaction database.

\[
\text{Support (Keyboard }\Rightarrow\text{ Mouse) = } \frac{\text{No. Of transactions containing both Keyboard and Mouse}}{\text{No. Of total transactions}}
\]

Confidence: For all transactions, it defines the ratio of data items which contains \(Y \) in the items that contains \(X \).

\[
\text{Confidence (Keyboard }\Rightarrow\text{ Mouse) = } \frac{\text{No. Of transactions containing Keyboard and Mouse}}{\text{No. Of transactions (containing Keyboard)}}
\]
Itemset: One or more items collectively is called an itemset. Example: {Monitor, Keyboard, Mouse}. K-itemset contains k-items.

Frequent Itemset: For a frequent item set:

\[S_I \geq \text{min_sup} \]

where I is an itemset, min_sup is minimum support threshold and S represent the support for an itemset.

3. CLASSICAL APRIORI ALGORITHM

Using an iterative approach, in each iteration Apriori algorithm generates candidate item-sets by using large itemsets of a previous iteration. [2]. Basic concept of this iterative approach is as follows:

Algorithm Apriori_algo(L_k)

1. \(L_1 = \{\text{frequent-1 item-sets}\} \);
2. for \((k=2; L_k-1\neq\Phi; k++)\) {
3. \(C_k = \text{generate_Apriori}(L_{k-1}) \); //New candidates
4. forall transactions \(t \in D \) do begin
5. \(C_t = \text{subset}(C_k, t) \); //Candidates contained in t
6. forall candidates \(c \in C_t \) do
7. \(c.\text{count}++ \);
8. }
9. \(L_k = \{c \in C_k | c.\text{count}\geq\text{minsup}\} \)
10. end for
11. Answer=U_kL_k

Algorithm. 1. Apriori Algorithm[6]

Above algorithm is the apriori algorithm. In above, database is scanned to find frequent 1-itemsets along with the count of each item. Frequent itemset \(L_1 \) is created from candidate item set where each item satisfies minimum support. In next each iteration, set of item sets is used as a seed which is used to generate next set of large itemsets i.e candidate item sets (candidate generation) using generate_Apriori function.

\(L_{k-1} \) is input to generate_Apriori function and returns \(C_k \). Join step joins \(L_{k-1} \) with another \(L_{k-1} \) and in prune step, item sets \(c \in C_k \) are deleted such that \((k-1)\) is the subset of “c” but not in \(L_{k-1} \) of \(C_{k-1} \).

Algorithm generate_Apriori (L_k)

1. insert into \(C_k \)
2. \(p = L_{k-1}, q = L_{k-1} \)
3. select p.I_1, p.I_2, ..., p.I_{k-1}, q.I_{k-1} from p, q where p.I_1 = q.I_1, ..., p.I_{k-2} = q.I_{k-2}, p.I_{k-1} < q.I_{k-1};
4. forall itemsets c ∈ C_k do
5. forall { s ⊃ (k-1) of c) do
6. if (s ∉ L_{k-1}) then
7. from C_k, delete c

3.1. Limitations of Apriori Algorithm

- Large number of candidate and frequent item sets are to be handled and results in increased cost and waste of time. Example: if number of frequent (k-1) items is \(10^4\) then almost \(10^7\) \(C_k\) need to be generated and tested [2]. So scanning of a database is done many times to find \(C_k\).

- Apriori is inefficient in terms of memory requirement when large numbers of transactions are in consideration.

4. PROPOSED ENHANCEMENT IN EXISTING Apriori ALGORITHM

Below section will give an idea to improve apriori efficiency along with example and algorithm.

4.1. Improvement of Apriori

In this approach to improve apriori algorithm efficiency, we focus on reducing the time consumed for \(C_k\) generation.

In the process to find frequent item sets, first size of a transaction \(S_T\) is found for each transaction in DB and maintained. Now, find \(L_1\) containing set of items, support value for each item and transaction ids containing the item. Use \(L_1\) to generate \(L_2\), \(L_3\)… along with decreasing the database size so that time reduces to scan the transaction from the database.

To generate \(C_2(x,y)\) (items in \(C_k\) are \(x\) and \(y\)), do \(L(k-1) \times L(k-1)\). To find \(L_2\) from \(C_2\), instead of scanning complete database and all transactions, we remove transaction where \(S_T < k\) (where \(k\) is 2, 3…) and also remove the deleted transaction from \(L_1\) as well. This helps in reducing the time to scan the infrequent transactions from the database.

Find minimum support from \(x\) and \(y\) and get transaction ids of minimum support count item from \(L_1\). Now, \(C_k\) is scanned for specific transactions only (obtained above) and from decreased DB size. Then, \(L_2\) is generated by \(C_2\) where support of \(C_k\) \(\geq\) \(\text{min supp}\).

\(C_3(x,y,z)\), \(L_3\) and so on is generated repeating above steps until no frequent items sets can be discovered.

Algorithm Apriori

Input: transactions database, \(D\)
- Minimum support, \(\text{min}_\text{sup}\)
Output L_k: frequent itemsets in D

1. find S_T //for each transaction in DB
2. L_1=find frequent_1_itemset (D)
3. L_1= find frequent_1_itemset (D)
4. L_1+=get_txn_ids(D)
5. for (k=2; L_{k-1}≠Φ ; k++) {
6. C_k=generate_candidate (L_{k-1})
7. x= item_min_sup(C_k, L_1) //find item from $C_k(a,b)$ which has minimum support using L_1
8. target =get_txn_ids(x) //get transactions for each item
9. foreach (txn t in tgt) do{
10. C_k.count++
11. L_k=(items in C_k>=min_sup)
12. }
13. foreach(txn in D){
14. if(S_T=(k-1))
15. txn_set+=txn
16. }
17. delete_txn_DB(txn_set) //reduce DB size
18. delete_txn_L1(txn_set,L_1) //reduce transaction size in L_1
19. }

Algorithm. 3. Proposed Apriori Algorithm
Fig. 2. Proposed Apriori Algorithm Steps
5. EXPERIMENTAL EXAMPLE

Below is the transaction database (D) having 10 transactions and min_sup=3. Size of transaction (S_T) is calculated for each transaction. (Refer figure 3).

All the transactions are scanned to get frequent-1-itemset, L_1. It contains items, respective support count and transactions from D which contain the items. Infrequent candidates’ i.e. itemsets whose support < min_sup are eliminated or deleted. (Refer Figure 4 and Figure 5)
From L_1, frequent-2-itemset (L_2) is generated as follows. Example: consider itemset \{I_1, I_2\}. In classical apriori, all transactions are scanned to find \{I_1, I_2\} in D. But in our proposed idea, firstly, transaction T_9 is deleted from D as well as from L_1 as S_T for T_9 is less than k ($k=2$). New D and L_1 are shown in figure 6 and figure 7 respectively. Secondly, \{I_1, I_2\} is split into \{I_1\} and \{I_2\} and item with minimum support i.e. \{I_1\} is selected using L_1 and its transactions will be used in L_2. So, \{I_1, I_2\} will be searched only in transactions which contain \{I_1\} i.e. T_1, T_3, T_7, T_{10}.

So, searching time is reduced twice:
- By reducing database size
- By cutting down the number of transactions to be scanned.

L_2 is shown in Figure 8.
To generate frequent-3-itemset (L_3), D is updated by deleting transactions T_6 and T_{10} as S_T for these transactions is less than k ($k=3$). L_1 is also updated by deleting transactions T_6 and T_{10}. Then, repeating above process, L_3 is generated and infrequent itemsets are deleted. Refer figure 9, figure 10 and figure 11 for updated database, L_1 and L_3 respectively.

<table>
<thead>
<tr>
<th>Item</th>
<th>Support</th>
<th>Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_2</td>
<td>2</td>
<td>T_1, T_2, T_3, T_7, T_{20}</td>
</tr>
<tr>
<td>t_2, t_4</td>
<td>2</td>
<td>T_1, T_2, T_3, T_5, T_{20}</td>
</tr>
<tr>
<td>t_4, t_8</td>
<td>3</td>
<td>T_1, T_2, T_3, T_5, T_8, T_{20}</td>
</tr>
<tr>
<td>t_8, t_9</td>
<td>4</td>
<td>T_1, T_2, T_3, T_5, T_8, T_9, T_{20}</td>
</tr>
</tbody>
</table>

Fig. 9. Transaction Database (updated)
So, above process is followed to find frequent-k-itemset for a given transaction database. Using frequent-k-itemset, association rules are generated from non-empty subsets which satisfy minimum confidence value.

6. COMPARATIVE ANALYSIS

We have counted the number of transactions that are scanned to find L_1, L_2 and L_3 for our given example and below figure shows the difference in count of transactions scanned by using original apriori algorithm and our proposed idea.

<table>
<thead>
<tr>
<th>k</th>
<th>Classical Apriori</th>
<th>Proposed approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>9</td>
</tr>
</tbody>
</table>
For $k=1$, number of transactions scanned is same for both classical apriori and our proposed idea but with the increase in k, count of transactions decrease. Refer below figure.

![Figure 13. Comparative Analysis](image)

7. **CONCLUSION**

We have proposed an idea to improve the efficiency of apriori algorithm by reducing the time taken to scan database transactions. We find that with increase in value of k, number of transactions scanned decreases and thus, time consumed also decreases in comparison to classical apriori algorithm. Because of this, time taken to generate candidate item sets in our idea also decreases in comparison to classical apriori.

REFERENCES