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Background: Data from 16S amplicon sequencing present challenges to ecological and
statistical interpretation. In particular, library sizes often vary over several ranges of
magnitude, and the data contains many zeroes. Also, since researchers sample a small
fraction of the ecosystem, the observed sequences are relative abundances and therefore
the data is compositional. Here we evaluate methods developed in the literature to
address these three challenges in the context of normalization and ordination analysis,
which is commonly used to visualize overall differences in bacterial composition between
sample groups, and differential abundance analysis, which tests for significant differences
in the abundances of microbes between sample groups. Results. Effects of normalization
on ordination: Most normalization methods successfully cluster samples according to
biological origin when many microbes differ between the groups. For datasets in which
clusters are subtle and/or sequence depth varies greatly between samples, or for metrics
in which rare microbes play an important role, rarefying outperforms other techniques. For
abundance-based metrics, rarefying as well as alternatives like DESeq and
metagenomeSeq’s cumulative sum scaling (CSS), seem to correctly cluster samples
according to biological origin. With these normalization alternatives, clustering by
sequence depth as a confounding variable must be checked for, especially for low library
sizes. Effects of differential abundance testing model choice: We build on previous work to
evaluate each statistical method using rarefied as well as unrarefied data. When the mean
library sizes in the differential abundance groups differ by more than 2-3x, or the library
sizes differ in distribution, our simulation studies reveal that each statistical method
improved in its false positive rate when samples were rarefied. However, when the
difference in library size mean is less than 2-3x, and the library sizes are similarly
distributed, rarefying results in a loss of power for all methods. In this case, DESeq2 has
the highest power to compare groups, especially for less than 20 samples per group.
MetagenomeSeq’s fitZIG is a faster alternative to DESeq2, although it does worse for
smaller sample sizes (<50 samples per group) and tends to have a higher false positives
rate. For larger sample sizes (>50 samples), rarefying paired with a non-parametric test,
such as the Mann-Whitney test, can also yield equally high sensitivity. Based on these
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results, we recommend a stepwise procedure in which sample groups are first tested for
significant differences in library size. If there is a significant difference, we recommend
rarefying with a non-parametric test. Otherwise, DESeq2 and/or fitZIG offer increased
sensitivity, especially for rare OTUs and small sample numbers. Conclusions. These
findings help guide which technique to use depending on the data characteristics of a
given study.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1157v1 | CC-BY 4.0 Open Access | rec: 3 Jun 2015, publ: 3 Jun 2015

P
re
P
rin

ts



2 Effects of library size variance, sparsity, and compositionality on the analysis of 
3 microbiome data
4
5 Sophie J. Weiss1, Zhenjiang Zech Xu2, Amnon Amir2, Shyamal Peddada3, Kyle Bittinger4, 
6 Antonio Gonzalez2, Catherine Lozupone5, Jesse R. Zaneveld6, Yoshiki Vázquez-Baeza2, 
7 Amanda Birmingham7, Rob Knight2,8a

8
9

10
11 1Department of Chemical and Biological Engineering, University of Colorado at Boulder, 
12 Boulder, CO 80309
13 2Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093
14 3Biostatistics and Computational Biology Branch, NIEHS, NIH
15 4Department of Microbiology, University of Pennsylvania, Philadelphia, PA 18014
16 5Department of Medicine, University of Colorado, Denver 80204
17 6 Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331
18 7Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of 
19 California San Diego, La Jolla, CA 92093
20 8Department of Computer Science & Engineering, University of California San Diego, La Jolla, 
21 CA 92093
22
23
24
25 aTo whom correspondence should be addressed

26 Corresponding author
27 Rob Knight, University of California San Diego, 9500 Gilman Drive, MC 0763 La Jolla, CA 
28 92093
29 robknight@ucsd.edu t:858-246-1184 f:858-246-1981
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1157v1 | CC-BY 4.0 Open Access | rec: 3 Jun 2015, publ: 3 Jun 2015

P
re
P
rin

ts

mailto:robknight@ucsd.edu


47 ABSTRACT
48 Background: Data from 16S amplicon sequencing present challenges to ecological and 
49 statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, 
50 and the data contains many zeroes. Also, since researchers sample a small fraction of the 
51 ecosystem, the observed sequences are relative abundances and therefore the data is 
52 compositional. Here we evaluate methods developed in the literature to address these three 
53 challenges in the context of normalization and ordination analysis, which is commonly used to 
54 visualize overall differences in bacterial composition between sample groups, and differential 
55 abundance analysis, which tests for significant differences in the abundances of microbes 
56 between sample groups.
57 Results. Effects of normalization on ordination: Most normalization methods successfully 
58 cluster samples according to biological origin when many microbes differ between the groups. 
59 For datasets in which clusters are subtle and/or sequence depth varies greatly between samples, 
60 or for metrics in which rare microbes play an important role, rarefying outperforms other 
61 techniques. For abundance-based metrics, rarefying as well as alternatives like DESeq and 
62 metagenomeSeq’s cumulative sum scaling (CSS), seem to correctly cluster samples according to 
63 biological origin. With these normalization alternatives, clustering by sequence depth as a 
64 confounding variable must be checked for, especially for low library sizes.  Effects of differential 
65 abundance testing model choice: We build on previous work to evaluate each statistical method 
66 using rarefied as well as unrarefied data. When the mean library sizes in the differential 
67 abundance groups differ by more than 2-3x, or the library sizes differ in distribution, our 
68 simulation studies reveal that each statistical method improved in its false positive rate when 
69 samples were rarefied.  However, when the difference in library size mean is less than 2-3x, and 
70 the library sizes are similarly distributed, rarefying results in a loss of power for all methods.  In 
71 this case, DESeq2 has the highest power to compare groups, especially for less than 20 samples 
72 per group. MetagenomeSeq’s fitZIG is a faster alternative to DESeq2, although it does worse for 
73 smaller sample sizes (<50 samples per group) and tends to have a higher false positives rate. For 
74 larger sample sizes (>50 samples), rarefying paired with a non-parametric test, such as the 
75 Mann-Whitney test, can also yield equally high sensitivity. Based on these results, we 
76 recommend a stepwise procedure in which sample groups are first tested for significant 
77 differences in library size. If there is a significant difference, we recommend rarefying with a 
78 non-parametric test.  Otherwise, DESeq2 and/or fitZIG offer increased sensitivity, especially for 
79 rare OTUs and small sample numbers.
80 Conclusions. These findings help guide which technique to use, depending on the data 
81 characteristics of a given study.
82
83 INTRODUCTION
84 Although data produced by high-throughput sequencing has proven extremely useful for 
85 understanding microbial communities, the interpretation of these data is complicated by several 
86 statistical challenges. To ease data interpretation, data are often normalized to account for the 
87 sampling process and differences in sequencing efforts. Ordination analysis, such as principal 
88 coordinates analysis (PCoA) (Gower 1966), is subsequently applied to these normalized data to 
89 visualize broad trends of how similar or different bacteria are in certain sample types, such as 
90 healthy vs. sick patients). Samples containing similar bacteria will group, or cluster, close 
91 together, while differences in bacterial composition will cause separation in PCoA space. Next, 
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92 researchers may wish to determine, through statistical testing, which specific bacteria are 
93 significantly differentially abundant between two sample type clusters.
94
95 For example, patients with Clostridium difficile infection cluster separately from healthy 
96 patients in PCoA plots, and these overall differences in community composition are driven by 
97 differences in microbial relative abundances (Kelly et al. 2014; Shankar et al. 2014; Weingarden 
98 et al. 2015). Restoration of each intestinal bacteria type to healthy levels leads to patient 
99 recovery, and causes samples from treated patients to overlap with healthy individuals in PCoA 

100 plots. Significant changes in certain bacterial species abundances has also been linked to 
101 inflammatory bowel diseases (Gevers et al. 2014), diarrhea (Pop et al. 2014), obesity (Ley et al. 
102 2005; Ridaura et al. 2013; Turnbaugh et al. 2009), HIV (Lozupone et al. 2013a), diet (David et 
103 al. 2014), culture, age, and antibiotic use (Lozupone et al. 2013b), among many other factors. 
104 However, the veracity of these discoveries depends upon how well the chosen normalization and 
105 differential abundance testing techniques address the statistical challenges posed by the 
106 underlying community sequence data.
107
108 Following initial quality control steps to account for errors in the sequencing process, 
109 microbial community sequencing data is typically organized into large matrices where the 
110 columns represent samples, and rows contain observed counts of clustered sequences commonly 
111 known as Operational Taxonomic Units, or OTUs, that represent bacteria types.  These tables are 
112 often referred to as OTU tables. Several features of OTU tables can cause erroneous results in 
113 downstream analyses if unaddressed. First, the microbial community in each biological sample 
114 may be represented by very different numbers of sequences, reflecting differential efficiency of 
115 the sequencing process rather than true biological variation. This problem is exacerbated by the 
116 observation that the full range of species is rarely saturated, such that more bacterial species are 
117 observed with more sequencing. (Similar trends by sequencing depth hold for discovery of genes 
118 in shotgun metagenomic samples (Qin et al. 2010; Rodriguez & Konstantinidis 2014)). Thus, 
119 samples with relatively few sequences can have inflated beta (, or between sample) diversity, 
120 because authentically shared OTUs are erroneously scored as unique to samples with more 
121 sequences (Lozupone et al. 2011). Second, most OTU tables are sparse, meaning that they 
122 contain a high proportion of zero counts (Paulson et al. 2013). This sparsity means that the 
123 counts of rare OTUs are uncertain, since they are at the limit of sequencing detection ability 
124 when there are many sequences per sample (i.e. large library size), and are undetectable when 
125 there are few sequences per sample. Third, each sample is only a small percentage of its original 
126 environment, constraining the total number of rRNA sequences to a constant sum; in such 
127 “compositional” data, researchers do not know the absolute counts of each type of OTU but only 
128 their relative abundances in relation to each other (Aitchison 1982; Friedman & Alm 2012; 
129 Lovell D 2010). Uneven sampling depth, sparsity, and compositionality represent serious 
130 challenges for interpreting these data.  No normalization method or differential abundance 
131 testing method simultaneously addresses all of these challenges.  Thus, investigators must 
132 choose methods based on relevant features of the dataset under consideration.
133
134 Normalization
135 Normalization is critical to address variability in sampling depths and number of zeros. 
136 Microbial ecologists in the era of high-throughput sequencing have commonly normalized their 
137 OTU matrices by rarefying, or drawing without replacement from each sample such that all 
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138 samples have the same number of total counts. Samples with total counts below the defined 
139 threshold are excluded, sometimes leading researchers to face difficult trade-offs between 
140 sampling depth and the number of samples evaluated.  To ensure the proper total sum is chosen, 
141 rarefaction curves can be constructed (Gotelli & Colwell 2001). These curves plot the number of 
142 counts sampled (rarefaction depth) vs. the expected value of species diversity. Rarefaction 
143 curves provide guidance that allows users to avoid negatively impacting the species diversity 
144 found in samples by choosing too low a rarefaction depth.  The origins of rarefying sample 
145 counts are mainly in sample species diversity measures, or alpha diversity (Brewer & 
146 Williamson 1994; Gotelli & Colwell 2001).  However, more recently rarefying has been used in 
147 the context of -diversity (Horner-Devine et al. 2004; Jernvall & Wright 1998).  Rarefying 
148 samples for normalization is now the standard in microbial ecology, and is present in all major 
149 data analysis toolkits for this field (Caporaso et al. 2010; Jari Oksanen 2015; McMurdie & 
150 Holmes 2013; Schloss et al. 2009). While rarefying is not an ideal normalization method, as it 
151 reduces statistical power by removing some data, and was not designed to address 
152 compositionality, alternatives to rarefying have not been sufficiently developed until recently.  
153   
154 Normalization alternatives to rarefying all involve some type of transformation, the most 
155 common of which are scaling or log-ratio transformations. Effects of scaling methods depend on 
156 the scaling factor chosen; often, a particular quantile of the data is used for normalization, but 
157 choosing the correct quantile is difficult (Anders & Huber 2010; Bullard et al. 2010; Dillies et al. 
158 2013; Paulson et al. 2013; Robinson & Oshlack 2010), and scaling can overestimate or 
159 underestimate the prevalence of zero fractions, depending on whether zeroes are left in or thrown 
160 out of the scaling (Agresti & Hitchcock ; Friedman & Alm 2012). This is because putting all 
161 samples of varying sampling depth on the same scale ignores the differences in sequencing 
162 depth, and therefore resolution of species, between the samples.  For example, a rare species 
163 having zero counts in a small rRNA sample can have a small fractional abundance in a large 
164 rRNA sample (unless further mathematical modeling beyond simple proportions is applied to 
165 correct for this). Scaling can also distort OTU correlations across samples, again due to zeroes, 
166 differences in sequencing depth, and sum constraints (Aitchison 1982; Buccianti et al. 2006; 
167 Friedman & Alm 2012; Lovell D 2010; Pearson 1896). 
168
169 While rarefying and some scaling techniques, such as total sum scaling (proportions), 
170 treat OTU sequence counts as absolute environmental abundances, the counts are compositional 
171 and only a fraction from the original environment, making only their relative ratios known 
172 (Friedman & Alm 2012; Lovell D 2010). In contrast, log ratio transformations correct for 
173 compositionality by exploiting this relative ratio information, and can also alleviate some noise 
174 in the data (Aitchison 1982; Buccianti et al. 2006; Friedman & Alm 2012; Lovell D 2010). 
175  However, because the log transformation cannot be applied to zeros (which are often well over 
176 half of microbial data counts (Paulson et al. 2013)), sparsity is extremely problematic for 
177 methods that rely on this transformation. One approach to this issue is to replace zeros with a 
178 small value, known as a pseudocount. Despite active research on selection of pseudocount values 
179 for scaling methods (Egozcue et al. 2003; Greenacre 2011), the choice of pseudocount values 
180 can dramatically change the results (Costea et al. 2014; Paulson et al. 2014).  
181
182 Differential Abundance Testing
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183 For OTU differential abundance testing between conditions (e.g. case vs. control), a 
184 common approach is to first rarify the count matrix to a fixed depth and then apply a non-
185 parametric test  (e.g. Mann-Whitney test for tests of two classes; Kruskal-Wallis test for tests of 
186 multiple groups). Non-parametric tests are often preferred because most OTU counts are not 
187 normally distributed (Wagner et al. 2011). However, this approach does not account for the fact 
188 that the OTU counts are compositional. Also, nonparametric tests such as the Kruskal-Wallis test 
189 do not fare well in terms of power when the data are sparse, but perform well when the data are 
190 not sparse (Paulson et al. 2013). Recently, promising parametric models that make stronger 
191 assumptions about the data have been developed in the subfields of transcriptomics (‘RNA-Seq’) 
192 and metagenomic sequencing. These may additionally be useful for microbial marker gene data 
193 (Anders & Huber 2010; Anders et al. 2013; Law et al. 2014; Love MI 2014; McMurdie & 
194 Holmes 2014; Paulson et al. 2013; Robinson et al. 2010; Robinson & Smyth 2008). Such models 
195 have greater detection power if their assumptions about the data are correct; however, studies of 
196 these models on RNA-Seq data have shown that they can yield poor results (Rapaport et al. 
197 2013) if relevant assumptions are not valid. 
198
199 These parametric models are composed of a generalized linear model (GLM) that 
200 assumes a distribution (Cameron & Trivedi), and there is debate about which distribution to use 
201 (Auer & Doerge 2010; Cheung 2002; Connolly et al. 2009; Holmes et al. 2012; McMurdie & 
202 Holmes 2014; Paulson et al. 2013; Rapaport et al. 2013; Soneson & Delorenzi 2013; White et al. 
203 2009; Yu et al. 2013). In the genomics field, the negative binomial (NB) GLM has replaced the 
204 Poisson GLM to allow for estimating overdispersion (Anders & Huber 2010; Anders et al. 2013; 
205 Robinson et al. 2010). This model type was also one of the first in the RNA-Seq field, and 
206 developed for use with a low number of replicates. NB models accommodate low replication by 
207 assuming that OTUs of similar mean expression strength have similar variance in their sample 
208 count distributions, estimating model parameters using this assumption, and then leveraging the 
209 GLM to perform exact statistical tests. Also, while allowing for some overdispersion, the NB 
210 often yields a poor fit in the case of a large number of zeroes, which is very typical in 
211 microbiome data (Cheung 2002; Paulson et al. 2013). Zero-inflated GLMs, the most promising 
212 of which is the zero-inflated Gaussian (ZIG), attempts to overcome this limitation (Paulson et al. 
213 2013). The ZIG tries to address compositionality, sparsity and unequal sampling depth by 
214 separately modeling ‘structural’ zero counts generated by e.g. under-sequencing and zeros 
215 generated by the biological distribution of taxa. Log transformation of the non-zero counts yields 
216 the Gaussian. However, this mixture model distribution is designed for continuous data rather 
217 than discrete microbiome data. Hence, it is expected to do best in study designs that have large 
218 sample sizes and high sequencing depths, and thus best approximate continuous distributions.  
219
220 Here, we evaluate some of the most widely used or promising techniques for analyzing 
221 sequencing data in the context of microbial ecology, with a focus on normalization and OTU 
222 differential abundance testing. In addition to these widely used or promising methods, we also 
223 test the naïve approaches of no normalization, and proportions (i.e. total sum scaling) for 
224 comparison purposes.  Such comparisons are important, because while potential issues with 
225 many methodologies are known, the balance of sensitivity and specificity for these methods in 
226 situations commonly facing microbial ecologists is currently largely unknown.  Recent work in 
227 this area (McMurdie & Holmes 2014), provides insights into the performance of parametric 
228 normalization and differential abundance testing approaches for microbial ecology studies.  
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229 However, the work is primarily focused on estimating proportions from discrete data. Here we 
230 update and expand these recent findings using both real and simulated datasets exemplifying the 
231 additional combined challenges of uneven library sizes, sparsity, and compositionality.
232
233 MATERIALS AND METHODS
234 Normalization
235 The basic test of how well broad differences in microbial sample composition are 
236 detected, as assessed by clustering analysis, was conducted as in ‘Simulation A’ from McMurdie 
237 and Holmes (McMurdie & Holmes 2014).  Briefly, the ‘Ocean’ and ‘Feces’ microbiomes (the 
238 microbial data from ocean and human feces samples, respectively) from the ‘Global Patterns’ 
239 dataset (Caporaso et al. 2011b) were used as templates, modeled with a multinomial, and taken 
240 to represent distinct classes of microbial community because they have few OTUs in common. 
241  These two classes were mixed in many defined proportions (the ‘effect size’) in independent 
242 simulations in order to generate simulated samples of varying clustering difficulty. Samples were 
243 generated in sets of 40, as in McMurdie and Holmes (McMurdie & Holmes 2014). We also 
244 tested smaller and larger sample sizes but saw little difference in downstream results. Additional 
245 sets of 40 samples were simulated for varying library sizes (1000, 2000, 5000, and 10000 
246 sequences per sample). These simulated samples were then used to assess normalization methods 
247 by the proportion of samples correctly classified into the two clusters by the partitioning around 
248 medioids (PAM) algorithm (Kaufman L. 1990; Reynolds A 2006). 
249
250 McMurdie and Holmes (McMurdie & Holmes 2014) evaluated clustering accuracy with 
251 five normalization methods (none, proportion, rarefying with replacement as in the multinomial 
252 model (Colwell et al. 2012), DESeqVS (Anders & Huber 2010), and UQ-logFC (in the edgeR 
253 package) (Robinson et al. 2010)) and six beta diversity metrics (Euclidean, Bray-Curtis (Bray & 
254 Curtis 1957), PoissonDist (Witten 2011), top-MSD (Robinson et al. 2010), unweighed UniFrac 
255 (Lozupone & Knight 2005), and weighted UniFrac (Lozupone et al. 2007)).  We modified the 
256 normalization methods to those in Table S1 (none, proportion, rarefying without replacement as 
257 in the hypergeometric model (Colwell et al. 2012), CSS (Paulson et al. 2013), logUQ (Bullard et 
258 al. 2010), DESeqVS (Anders & Huber 2010), and edgeR-TMM (Robinson & Oshlack 2010)) 
259 and the beta diversity metrics to those in Fig2 and Fig. S1 (binary Jaccard, Bray-Curtis (Bray & 
260 Curtis 1957), Euclidean, unweighed UniFrac (Lozupone & Knight 2005), and weighted UniFrac 
261 (Lozupone et al. 2007)), thus including more recent normalization methods (Bullard et al. 2010; 
262 Paulson et al. 2013), and only those beta diversity metrics that are most common in the literature.  
263 We amended the rarefying method to the hypergeometric model (Colwell et al. 2012), which is 
264 much more common in microbiome studies (Caporaso et al. 2010; Schloss et al. 2009). 
265 Negatives in the DESeq normalized values (Anders & Huber 2010) were set to zero as in 
266 McMurdie and Holmes (McMurdie & Holmes 2014), and a pseudocount of one was added to the 
267 count tables (McMurdie & Holmes 2014). McMurdie and Holmes (McMurdie & Holmes 2014) 
268 penalized the rarefying technique for dropping the lowest fifteenth percentile of sample library 
269 sizes in their simulations by counting the dropped samples as ‘incorrectly clustered’. Because the 
270 15th percentile was used to set rarefaction depth, this capped clustering accuracy at 85%. We 
271 instead quantified cluster accuracy among samples that were clustered following normalization 
272 to exclude this rarefying penalty (Fig. S1). Conversely, it has since been confirmed that low-
273 depth samples contain a higher proportion of contaminants (rRNA not from the intended sample) 
274 (Kennedy et al. 2014; Salter et al. 2014). Because the higher depth samples that rarefying keeps 
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275 may be higher quality and therefore give rarefying an unfair advantage, Fig. 2 compares 
276 clustering accuracy for all the techniques based on the same set of samples remaining in the 
277 rarefied dataset. 
278
279 On the real datasets, non-parametric multivariate ANOVA (PERMANOVA) (Anderson 
280 2001) was calculated by fitting a Type I sequential sums of squares model (y ~ Library_Size + 
281 Biological_Effect).  Thus, we control for library size differences before assessing the effects on 
282 the studied biological effect. All data was retrieved from QIITA (https://qiita.microbio.me). 
283
284
285 Differential Abundance Testing
286 The simulation test for how well truly differentially abundant OTUs are recognized by 
287 various parametric and non-parametric tests was conducted as in ‘Simulation B’ in McMurdie 
288 and Holmes (McMurdie & Holmes 2014), with a few changes.  The basic data generation model 
289 remained the same, but the creation of ‘true positive’ OTUs was either made symmetrical 
290 through duplication or moved to a different step, to avoid introducing compositionality artifacts 
291 (see below) depending on the simulation. The ‘Global Patterns’ (Caporaso et al. 2011b) dataset 
292 was again used, because it was one of the first studies to apply high-thoughput sequencing to a 
293 broad range of environments, which includes 9 environment types from ‘Ocean’, to ‘Soil’; all 
294 simulations were evaluated for all environments. Additionally, we verified the results on the 
295 ‘Lean’ and ‘Obese’ microbiomes from a different study (Piombino et al. 2014). As in McMurdie 
296 and Holmes, significant changes were controlled for multiple comparisons using the Benjamini 
297 & Hochberg (Benjamini & Hochberg 1995) False Discovery Rate (FDR) threshold of 0.05.
298
299 A simple overview of the two methods used for simulating differential abundance is 
300 presented in Fig. S5a.  In McMurdie and Holmes’ (McMurdie & Holmes 2014) ‘Original’ 
301 simulation (second row), the distribution of counts from one environment (e.g. ‘Ocean’) was 
302 modeled off of a multinomial template (first row) for two similar groups (‘Ocean_1’ and 
303 ‘Ocean_2’), ensuring a baseline of all ‘true negative’ OTUs. Following the artificial inflation of 
304 specific OTUs in the ‘Ocean_1’ samples to create ‘true positives’, fold-change estimates for 
305 every other OTU are affected. Thus, ‘true negatives’ are possible ‘true positives.’ This is because 
306 the counts in an OTU table are compositional, or relative abundances constrained to a sum. To 
307 control for this we inflate OTUs by pairs of differentially abundant OTUs in both the ‘Ocean_1’ 
308 and ‘Ocean_2’ samples (third row), creating a new ‘Balanced’ simulation.  
309
310 We also tested the effect of differentially abundant organisms dominating one type of 
311 community by drawing from a multinomial distribution where solely that organism’s template 
312 value is increased. This ‘Compositional’ approach is explained in Fig. S5b, and the results are 
313 shown in Fig. S7.  In Fig S7, the environmental abundances of 25% of the OTUs in one group 
314 are increased.
315
316 Besides the above procedural changes to the McMurdie and Holmes (McMurdie & 
317 Holmes 2014) simulation, we also modified the rarefying technique from sampling with 
318 replacement (multinomial) to sampling without replacement (hypergeometric - as in the previous 
319 Normalization simulations) (Colwell et al. 2012). The testing technique was modified from a 
320 two-sided Welch t-test to non-parametric Mann-Whitney test, which is widely used and more 
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321 appropriate because the OTU distributions in microbiome data usually deviate from normality. 
322 The techniques used (Table S2) differ only by the addition of another RNA-Seq method, Voom 
323 (Law et al. 2014). Finally, we corrected the FPR definition (McMurdie & Holmes 2014) from 
324 FP/(TP + FP) to FP/(TN + FP), where FP = number of false positive OTUs, TP = number of true 
325 positive OTUs, and TN = number of true negative OTUs. This new simulation code can be 
326 found in the supplemental R files (Differential_abundance.R, and 
327 Differential_abundance_with_compositionality.R). 
328
329 Power Curve Calculations
330 Similar to Table S1 in McMurdie and Holmes [27], we considered a very simplistic set-
331 up to evaluate the effect of rarefying on power when comparing two groups, labeled A and B. As 
332 in McMurdie and Holmes [27], we considered the extreme case of a microbial population 
333 consisting of only 2 species (or 2 OTUs), with OTU1 + OTU2 = library size.  For power 
334 calculations, we assumed that the amount of OTU1 in group B is 85% of the amount of OTU1 in 
335 group A.  Thus, it is enough to quantify the proportion of OTU1 in group A and library sizes of 
336 groups A and B to specify the whole system.  
337
338 We considered varied patterns of proportions of OTU1 in group A ranging from very rare 
339 to common (0.5% to 50%).  The library size of group A was fixed at either 500, 1000 or 10,000 
340 sequences per sample.  Meanwhile, the library size of group B was always taken to be at least as 
341 large as that of group A and was either 10,000 or 100,000 sequences per sample. Various 
342 rarefied percentages of the group B library size were considered.  The percent-rarefied 
343 calculation for the first set of power curves is exemplified below using a library size of 500 for 
344 library A, and an unrarefied library size of 10,000 for B:
345  
346 Library size for A       Library size for B
347 ---------------------       ----------------------
348
349 500                             10,0000 (unrarefied case)
350 500                                5,000   (50% rarefied)
351 500                                1,000   (90% rarefied)
352 500                                   500   (95% rarefied)
353
354 For each scenario of proportion of OTU1 and library sizes, power was computed using 
355 Fisher's exact test.  Power calculations were done using the statistical software SAS.  Power 
356 calculation results are provided in Fig. 5.  
357
358 Software Package Versions
359 R version 3.1.0 (Team 2014) was used with Bioconductor (Gentleman et al. 2004) 
360 packages phyloseq version 1.10.0, DESeq version 1.16.0, DESeq2 version 1.4.5, edgeR version 
361 3.6.8, metagenomeSeq version 1.7.31, and Limma version 3.20.9.  Also, we used python-based 
362 QIIME version 1.9.0, with Emperor (Vazquez-Baeza et al. 2013).
363
364
365 RESULTS AND DISCUSSION
366 Normalization
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367 When there is a strong biological signal, and normalization is done properly, PCoA can 
368 yield clear clustering and insight into microbial community differences (Fig. 1a).  However, low-
369 depth samples can lead to poor cluster resolution (Fig. 1b), both by reducing information on 
370 community structure, and by being more readily influenced by contamination (Kennedy et al. 
371 2014; Salter et al. 2014).  Furthermore, if no data normalization is applied, or the normalization 
372 method fails to properly correct for differences in sequencing efficacy, the original library size of 
373 the samples can confound biological differences (Fig. 1c). This is because samples of lower 
374 sequencing depth fail to detect rare taxa. Highly sequenced samples will thus appear more 
375 similar to each other than to shallow sequenced samples because they are scored as sharing the 
376 same rare taxa.
377
378 To assess all the normalization methods (Table S1), we conducted simulations in the 
379 context of results that are highly critical of the rarefying technique (McMurdie & Holmes 2014). 
380 Briefly, only necessary modifications (Methods) were made to the code of McMurdie and 
381 Holmes (McMurdie & Holmes 2014), making our approach easily comparable. If rarefying is 
382 not penalized for the fifteenth percentile lowest depth samples that are thrown out, it can do 
383 better than other techniques (Fig. S1).  This practice of removing low depth samples from the 
384 analysis is supported by the recent discovery that small biomass samples are of poorer quality 
385 and may contain contaminating sequences (Kennedy et al. 2014; Salter et al. 2014). Furthermore, 
386 alternatives to rarefying also recommend discarding low-depth samples, especially if they cluster 
387 separately from the rest of the data (Love MI 2014; Paulson et al. 2013). If all other techniques 
388 are run only on the same samples as rarefying, rarefying still does well (Fig. 2). These results 
389 demonstrate that previous microbiome ordinations using rarefying as a normalization method 
390 likely drew correct conclusions, even if some low depth samples were removed. However, these 
391 results also suggest that CSS (Paulson et al. 2013) and DESeq’s variance-stabilizing 
392 transformation (Anders & Huber 2010) are promising alternatives for normalization prior to 
393 PCoA analysis, especially for weighted distance metrics. For unweighted metrics that are based 
394 on species presence and absence, like binary Jaccard and unweighted UniFrac, DESeq’s 
395 variance-stabilizing transformation performs poorly. This is because the negatives resulting from 
396 DESeq’s log-like transformation are set to zero (as in McMurdie and Holmes (McMurdie & 
397 Holmes 2014)), which ignores rare species.  
398
399 No good solution exists for the negatives output by the DESeq technique. DESeq was 
400 developed mainly for use with Euclidean metrics (Lozupone & Knight 2005; Lozupone et al. 
401 2007), for which negatives are not a problem; however, this issue yields misleading results for 
402 ecologically useful non-Euclidean measures, like Bray-Curtis (Bray & Curtis 1957) 
403 dissimilarity. Also, the negatives pose a problem to UniFrac’s (Lozupone & Knight 2005; 
404 Lozupone et al. 2007) branch length. The alternative to setting the negatives to zero, or adding 
405 the absolute value of the lowest negative value back to the normalized matrix, will not work with 
406 distance metrics that are not Euclidean because it amounts to multiplying the original matrix by a 
407 constant due to DESeq’s log-like transformation.  Also, the addition of a constant (or 
408 pseudocount; here, one) to the count matrix prior to CSS (Paulson et al. 2013), DESeq (Anders 
409 & Huber 2010), and logUQ (Bullard et al. 2010) transformation as a way to avoid log(0) is not 
410 ideal, and clustering results have been shown to be very sensitive to the choice of pseudocount, 
411 due to the nonlinear nature of the log transform (Costea et al. 2014; Paulson et al. 2014). This 
412 underscores the need for a better solution to the zero problem so that log-like approaches 
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413 inspired by Aitchison can be used (Aitchison 1982), and is especially critical since microbial 
414 matrices are almost always much more than half sparse (Paulson et al. 2013).
415
416 While simulations are a useful initial check, real datasets are often much more complex. 
417 Therefore, all normalization methods were also examined on real data to check for result and 
418 methodological consistency. To perform an initial, detailed comparison of normalization 
419 methods, we selected the data set from Caporaso et al. (Caporaso et al. 2012). The data included 
420 a wide variety of samples, representing both environmental and host-associated sources.  To 
421 provide an extreme example of differences in sequencing depth, we artificially decreased the 
422 library size by 90% for half the samples in the data set.  The samples selected for library size 
423 reduction were chosen randomly, and the same artificially altered data was used in all 
424 normalization comparisons. 
425
426 Using the data set from Caporaso et al. (Caporaso et al. 2012), we observed substantial 
427 biases/confounding of results due to sequencing depth.  In ordination of unweighted UniFrac 
428 distance by PCoA, the soil samples were split into two groups along the first principal coordinate 
429 when no normalization was used (Fig. 3a).  Soil samples appearing in the group to the left had 
430 more reads than those appearing in the group to the right.  Similarly, the two stool samples in the 
431 data set were arranged close to soil samples with similar library size.  When the data was 
432 rarefied prior to ordination, soil and stool samples were arranged along the first two coordinates 
433 according to sample type rather than library size (Fig. 3b).  Other methods of normalization 
434 preserved the characteristic pattern seen in the non-normalized data, where soil and stool 
435 samples were separated into groups according to library size (Fig. 3c-f).
436
437 Normalization did not affect conclusions drawn from non-parametric multivariate 
438 ANOVA (PERMANOVA) (Anderson 2001), but we did observe differences in the effect size 
439 estimated for sample type, and library size (R2).  Without normalization, the estimated effect size 
440 of sample type for unweighted UniFrac distance was R2=0.40. When the data was rarefied prior 
441 to computing distances, the estimated effect size increased to R2=0.56. Other methods of 
442 normalization produced effect sizes similar to the non-normalized result.  Although the true 
443 effect size is not known for this data set, the environment of origin is known to be a dominant 
444 effect in the determination of bacterial species observed (Lozupone & Knight 2007). Without 
445 normalization, there is a large effect (R2=0.14) corresponding to original library size, which is a 
446 known artifact of the sequencing process.  Rarefying helps to remove the effect of sequencing 
447 depth (R2=0.045), whereas other normalization techniques do not remove this signal artifact, 
448 again resembling the non-normalized data. 
449
450 As another example, we selected the inflammatory bowel disease (IBD) data set from 
451 Gevers et al. (Gevers et al. 2014). In contrast to the previous data set, all samples here were 
452 taken from a single environment type, namely human stool, and were extremely low depth, 
453 having an average of 375 sequences per sample.  In an ordination of unweighted UniFrac 
454 distance with no normalization, there is again strong clustering by library size, with a group of 
455 samples with low sequencing depth appearing slightly separate from the other samples (Fig. 
456 S2a). Samples in the low-depth group are either dominated by a lack of species detected due to 
457 few sequences, thus artificially inflating the diversity, or constitute different bacterial species 
458 than the main group of stool samples, which should raise suspicion of potential problems from 
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459 contamination or poor quality PCR products.  Furthermore, the first principal coordinate in Fig 
460 S2a is more strongly correlated with library size (R2=0.055, Fig S2b) and poorly correlated with 
461 disease state (R2=0.022), with sampling depth explaining twice the variance of the studied 
462 biological effect. Subsampling the data to uniform library size increased the correlation with 
463 disease state (R2=0.036), while other methods did not (R2=0.022 for proportion, DESeq, and 
464 CSS).  Because the average library size is so low for this study, the library size also affects 
465 weighted UniFrac, where there is again low effect size for this gastrointestinal disorder.  Thus, 
466 extremely low depth samples still need to be discarded from rarefying alternatives, especially if 
467 they are suspected of yielding a poor representation of the true bacterial community due to 
468 experimental factors.
469
470 PCoA plots using ecologically common metrics for all of the normalization techniques 
471 on a few key real datasets representing a gradient (Lauber et al. 2009), distinct body sites 
472 (Costello et al. 2009), and time series (Caporaso et al. 2011a) are shown in Supplemental Figures 
473 S3-S4. Most measures do well in these cases where there is strong separation between the 
474 categories. Clustering according to sequence depth is less of a problem in these datasets since 
475 they have strong clustering patterns, however, some clustering according to depth persists.  For 
476 example, in the ‘Moving Pictures of the Human Microbiome’ dataset (Caporaso et al. 2011a), 
477 there is some clustering by sequence depth within each of the four main clusters when 
478 normalization alternatives to rarefying are applied. It is noteworthy that CSS normalization 
479 results appear robust to the distance metric used, including even Euclidean distance (results not 
480 shown), which have been reported to perform poorly on highly sparse matrices (Legendre & 
481 Gallagher 2001).  
482
483 Thus, both simulations and real data suggest that rarefying remains a strong technique for 
484 sample normalization prior to ordination and clustering, especially for presence/absence distance 
485 metrics that have historically been very useful (such as binary Jaccard and unweighted UniFrac 
486 (Lozupone & Knight 2005) distances), subtle effects, small library sizes, and large differences in 
487 library size.  Of the other methods, and for weighted distance measures, we recommend 
488 metagenomeSeq’s CSS (Paulson et al. 2013) or DESeq’s variance stabilizing transformation 
489 (Anders & Huber 2010); however, the researcher must check for erroneous clustering according 
490 to sequence depth.
491
492 Differential Abundance Testing
493        Differential abundance analysis is useful for testing whether certain microbes have higher 
494 relative abundance in one condition vs. another (e.g. healthy vs. diseased patients). More 
495 complex statistical methods specifically for RNA-Seq data have been developed and include 
496 DESeq (Anders & Huber 2010), DESeq2 (Love MI 2014), edgeR (Robinson et al. 2010; 
497 Robinson & Smyth 2008), and Voom (Law et al. 2014) (Table S2).  MetagenomeSeq (Paulson et 
498 al. 2013) however, was developed specifically for microbial datasets, which usually contain 
499 many more zeros than RNA-Seq data. These five methods incorporate more sensitive statistical 
500 tests than the standard non-parametric tests such as the Wilcoxon rank-sum test, and they make 
501 some distributional assumptions. Therefore, they hold great potential for better prediction of rare 
502 OTU behavior.
503
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504 Previous work in this area concluded that the newer differential abundance testing 
505 models are worthwhile, and that the traditional practice of rarefying causes a high rate of false 
506 positives (McMurdie & Holmes 2014).  However, the latter conclusion was due to an artifact 
507 within the simulation (see Methods, Fig. S5a-b).  Instead, we found that rarefying does not cause 
508 a high rate of false positives, but may lead to false negatives due to the decreased power that 
509 results from throwing away some of the data (Fig. 4). The severity of the power decrease caused 
510 by rarifying depends upon how much data has been thrown away.  (This problem has been 
511 known for a long time, leading to the general guideline to rarefy to the highest depth possible 
512 without losing too many samples (Carcer et al. 2011).)  In order to determine where the greatest 
513 loss in power or information occurs when a dataset is rarefied, we constructed power curves 
514 from a simple two-species simulation (Fig. 5).  The greatest loss in power occurs for rare to 
515 common OTUs (e.g. relative abundance ranging from 0.5% to 50%) depending on the library 
516 size.  This has also been observed in gene expression studies (Robles et al. 2012).  Also, 
517 consistent with other studies on subsampling (Carcer et al. 2011; Robles et al. 2012), 
518 subsampling to library sizes close to the original does not have much effect on the results (50% 
519 is treated as “close to the original” in this simplified example, but real microbiome studies are 
520 much more complex and thus the real threshold is likely lower, and data-dependent).  We also 
521 observed that the performance of rarefying degrades faster for smaller library sizes.
522
523 Since simulations do not necessarily mirror reality, we again investigated the 
524 performance of the techniques on real data.  This was done for the techniques shown to be most 
525 promising in the simulations: DESeq2 (Love MI 2014), edgeR (Robinson et al. 2010; Robinson 
526 & Smyth 2008), metagenomeSeq (Paulson et al. 2013), and rarefying.  Ranges of dataset sizes 
527 were analyzed for environments that likely contain differentially abundant OTUs, as evidenced 
528 by PCoA plots and significance tests (Fig. 6).  Approximately 6 samples in each of the 
529 categories of human skin vs. soil from Caporaso et al. (Caporaso et al. 2012), 28 samples in each 
530 of the lean vs. obese categories from Piombino et al. (Piombino et al. 2014), and 500 samples in 
531 the tongue vs. left palm categories from Caporaso et al. (Caporaso et al. 2011a) were tested. 
532 Although we do not necessarily know which OTUs are true positives in these actual data, it is of 
533 interest to investigate how the most promising techniques compare to each other. While 
534 rarefying (at the 15th percentile as in McMurdie and Holmes (McMurdie & Holmes 2014)) finds 
535 fewer OTUs as significant, the OTUs it does find to be differentially expressed are remarkably 
536 stable.  Agreeing with our modified simulation, it does not appear that rarefying causes a high 
537 type I error.  For example, in Fig. 6 there is high agreement between rarefying and the other 
538 techniques.  However, edgeR, which is known to be too lenient in its dispersion estimates (Love 
539 MI 2014; Paulson et al. 2013), predicts a large number of significantly differentially abundant 
540 OTUs relative to other methods, especially for studies with fewer samples (Fig. 6a), suggesting a 
541 high false positive rate in agreement with RNA-Seq studies (Love MI 2014; Rapaport et al. 
542 2013; Soneson & Delorenzi 2013).  
543
544 We also used simulated data to investigate the situation in which the average library size 
545 between the two groups was not approximately equal (Fig. 7).  We found that of the newer 
546 methods, metagenomeSeq’s figZIG (Paulson et al. 2013) has a high sensitivity and a low false 
547 positive rate (1-specificity) compared to the other techniques.  However, the false positive rate is 
548 still high. Rarefying achieves the lowest false positive rate, but at a cost to sensitivity. Thus, the 
549 method employed by investigators may depend on the sensitivity of the analysis in question to 
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550 false negatives vs. false positives. We often place higher importance in reducing false positives, 
551 but this will vary depending on experimental design. For example, study designs in which 
552 community analysis is used as a pre-screening, and significant changes will be confirmed in 
553 high-throughput follow-up experiments may allow greater tolerance of false positives. However, 
554 while both fitZIG or rarefying followed by Wilcoxon rank sum tests in isolation may be 
555 applicable for detecting differential abundance in particular situations, our results caution that 
556 fitZIG should not be used on rarified data, as this combination of methods caused extremely high 
557 false positive rates.
558
559 While the no-normalization or proportion approaches perform adequately where the 
560 average library size is approximately the same between the two groups (Fig. 4), they do not 
561 when one library is 10x larger than the other (Fig. 7). Therefore, we reiterate that neither the no-
562 normalization nor the naive proportion approach should be used for most statistical analyses. To 
563 demonstrate this, we suggest the theoretical example of a data matrix with half the samples 
564 derived from diseased patients and half from healthy patients.  If the samples from the healthy 
565 patients have a 10x larger library size, OTUs of all mean abundance levels will be found to be 
566 differentially abundant simply because they may have 10x the number of counts in the healthy 
567 patient samples. (Such systematic bias can happen if, for example, healthy vs. diseased patients 
568 are sequenced on separate sequencing runs or are being compared in a meta-analysis).  The same 
569 warning applies for naive proportions, especially for rare OTUs that could be deemed 
570 differentially abundant simply due to differences in sequencing depth.  This is seen even with 
571 some filtering to remove very rare OTUs (Fig. 7).  We first observed a transition from the results 
572 of Fig. 4 to Fig. 7 at around 2-3x difference in library sizes (Fig S6). Further, we investigated 
573 uneven numbers of samples per class, with not much difference in results from Fig. 4.   
574
575 While our previous simulations did not have compositionality, we next evaluated the 
576 performance of the techniques with a compositional OTU table (see Methods, Fig. S5b). In 
577 simulations where the abundances of 25% of the OTUs increased in one group, no method does 
578 well in terms of false positive rate (Fig. S7). Proportion normalization again performs poorly in 
579 the face of compositionality, which is present in all realistic datasets. For DESeq/DESeq2, poor 
580 performance may be due to the model’s assumption that differentially abundant OTUs are not a 
581 large portion of the population (Dillies et al. 2013), or the model’s overdispersion estimates 
582 (Paulson et al. 2013).  Thus, compositionality is still a large unsolved problem in differential 
583 abundance testing (Lovell et al. 2015), and we would urge caution in data sets where 
584 compositionality may play a large role, e.g. when the alpha diversity of the samples is low 
585 (Friedman & Alm 2012). 
586
587 CONCLUSIONS
588 We built on the pioneering work of McMurdie and Holmes (McMurdie & Holmes 2014), 
589 confirming that recently developed more complex techniques for normalization and differential 
590 abundance testing hold potential. More testing of the approaches on experimental data is 
591 necessary. Of methods for normalizing microbial data for ordination analysis, we found that 
592 DESeq normalization (Anders & Huber 2010; Love MI 2014), which was developed for RNA-
593 Seq data and makes use of a log-like transformation, does not work well with ecologically useful 
594 metrics, except weighted UniFrac (Lozupone et al. 2007).  In contrast, MetagenomeSeq’s CSS 
595 normalization (Paulson et al. 2013) was developed for microbial data and does not result in 
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596 troublesome negative output values. However, with techniques other than rarefying, library size 
597 can be a confounding factor with very low library sizes (under approximately 1000 sequences 
598 per sample), or if presence/absence metrics like unweighted UniFrac are used (Lozupone & 
599 Knight 2005).  Extremely low-depth samples should be removed regardless of normalization 
600 technique, especially if it is suspected that they contain a higher proportion of contaminants 
601 (Kennedy et al. 2014; Salter et al. 2014).  Also, when using alternatives to rarefying, the 
602 researcher must check that clustering by sequence depth does not obscure biologically 
603 meaningful results.  Therefore, rarefying is still an extremely useful normalization technique, 
604 especially for presence/absence metrics.  Rarefying can erase the artifact of sample library size 
605 better than other normalization techniques, and results in a higher PERMANOVA effect size 
606 (R2) for the studied biological effect, especially for small (<1000 sequences per sample), and 
607 uneven library sizes between groups. For both normalization and differential abundance testing, 
608 we stress that no normalization and naive proportion approaches should not be used as they can 
609 generate artifactual clusters based on sequencing depth, and may result in mistaken OTU 
610 differential abundance significance or insignificance.
611
612 For differential abundance testing, we studied the methods using both simulations and 
613 real data.  The most promising of current techniques are based on GLMs with either the negative 
614 binomial or zero-inflated Gaussian distributions.  It appears that DESeq2 (Love MI 2014), 
615 metagenomeSeq’s fitZIG (Paulson et al. 2013), and rarefying are all acceptable techniques for 
616 approximately even library sizes and numbers of samples per class.  DESeq2 was designed for, 
617 and is a good option for, increased sensitivity on smaller datasets; however computation time 
618 becomes very slow for larger datasets, especially over 100 samples per category. 
619 MetagenomeSeq’s fitZIG is a faster option for larger library sizes, although it may have a higher 
620 false positive rate. The fitZIG technique is designed for larger sample sizes, since more counts 
621 per OTU enables more accurate approximation of a continuous distribution. Rarefying, paired 
622 with traditional non-parametric tests to account for the non-normal distribution of microbial data, 
623 is useful for all dataset sizes, with sensitivity approaching parametric models in larger 
624 datasets. Rarefying yields fewer OTUs as significantly differentially abundant, but those OTUs 
625 are robust, in the sense that they are almost always identified as significant by at least one other 
626 differential abundance detection model. In the case of highly uneven library sizes per category 
627 (greater than 2-3x library size difference), we recommend rarefying, which provides higher 
628 specificity at a cost to sensitivity, or metagenomeSeq’s fitZIG, giving higher sensitivity at a cost 
629 to specificity, over the DESeq2 technique. In situations with highly compositional data, no 
630 technique does well.
631
632 Prior to differential abundance analysis, we recommend checking for significant 
633 differences in library size means and distribution between categories (e.g. healthy vs. sick); and 
634 propose a Mann-Whitney test, although the subject could be investigated further. The Mann-
635 Whitney test works on the library sizes simulated for this study, as well as that of McMurdie and 
636 Holmes (McMurdie & Holmes 2014). To check distributional differences, the library sizes of 
637 one sample category can be multiplied by a factor (e.g. 2) to make the means comparable prior to 
638 applying the Mann-Whitney test. If there is a significant difference in either mean or 
639 distribution, we recommend rarefying paired with a non-parametric test; if not, alternatives to 
640 rarefying may be used. For the parametric differential abundance techniques, it is recommended 
641 that rare OTUs be filtered out of the matrix prior to differential abundance testing. However, we 
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642 advise OTU filtering after rarefying, and then applying non-parametric tests. Thanks to 
643 McMurdie and Holmes’ previous work in this area (McMurdie & Holmes 2014), we recognize 
644 the potential of these newer techniques, and have incorporated DESeq2 (Love MI 2014) and 
645 metagenomeSeq (Paulson et al. 2013) normalization and differential abundance testing into 
646 QIIME version 1.9.0 (Caporaso et al. 2010), along with the traditional rarefying and non-
647 parametric testing techniques. 
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892 FIGURE CAPTIONS:
893
894 Figure 1: Effect of sampling depth on ordination methods. (a) Data rarefied at 500 sequences 
895 per sample. (b, c) Data not normalized, with a random half of the samples subsampled to 500 
896 sequences per sample and the other half to 50 sequences per sample. (b) is colored by 
897 subject_ID, (c) is colored by sequences per sample. Non-parametric ANOVA (PERMANOVA) 
898 effect sizes (R2) roughly represent the percent variance that can be explained by the given 
899 variable. Asterisk (*) indicates significance at p < 0.01. The distance metric of unweighted 
900 UniFrac was used for all panels.

901 Figure 2:  Comparison of common distance metrics and normalization methods across 
902 library sizes when low-coverage samples are excluded.
903 Clustering accuracy is shown for all combinations of five common distance metrics (panels 
904 arranged from left to right) across four library depths (panels arranged from top to bottom; NL, 
905 median library size), six sample normalization methods (series within each panel), and several 
906 effect sizes (x-axis within panels).  In all cases, samples below the 15th percentile of library size 
907 were dropped from the analysis in order to isolate the effects of rarifying from the effects of 
908 dropping low-coverage samples. The x-axis ('effect size') within each panel represents the 
909 multinomial mixing proportions of the two sample classes 'Ocean' and 'Feces'.  A higher effect 
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910 size represents an easier clustering task. The y-axis (‘accuracy’) shows the accuracy of each 
911 classifier, as assessed by the fraction of simulated samples correctly clustered.
912
913 Figure 3: Rarefying clusters more according to biological origin, and diminishes the effect 
914 of library size. Rarefying exhibits a higher effect size (R2) for biological origin, and a lower 
915 effect size (R2) of original library size. Unweighted UniFrac was used for clustering, and a 
916 random half of samples were subsampled to 10 times fewer sequences per sample.  The 45-
917 degree line splits low from high depth samples in all but the rarefying technique. For each letter 
918 (a-f), the left PCoA plot is colored according to the ‘Canine Feces’, etc. legend, and the right 
919 PCoA plot is colored according to the ‘High/Low Library Size’ legend. 
920
921 Figure 4: Differential abundance detection performance. 
922 The AUC ('Area Under the Curve') version of the ROC ('Receiver Operator Characteristic’) 
923 curve is the ratio of sensitivity to (1-specificity), or true positive rate vs. false positive rate. A 
924 higher AUC indicates better differential abundance detection performance. The 'effect size' 
925 represents the fold-change of the 'true positive' OTUs from one condition (e.g. case) to another 
926 (e.g. control). The right axis represents the median library size (NL), while the shading on the 
927 graph lines represents the number of samples per class.  ‘Model/None’ represents data analyzed 
928 with a parametric statistical model (e.g. DESeq), or no normalization.  Blue lines in, e.g. the 
929 DESeq column represents the data was rarefied, then DESeq was applied.  Since the fitZIG 
930 model depends upon original library size information, the model does poorly on rarefied data.
931
932 Figure 5: The effect of rarefying on power for different OTU relative abundances and 
933 library sizes.
934 The detection power for differentially abundant OTUs of varying levels of relative abundance 
935 (very rare to common). This is for two samples A and B.  For power calculations, we assumed 
936 that OTU1 fraction of group B is 85% of the OTU1 fraction of group A. Library type A was 
937 fixed, while library size B was subsampled at different percentages, creating the power curves 
938 calculated with Fisher’s exact test.
939
940 Figure 6: Comparison of the most promising differential abundance detection techniques 
941 on real datasets. 
942 Each table’s diagonal represents the number of OTUs found significant (Benjamini & Hochberg 
943 FDR < 0.05) by that technique.  The off-diagonal entries represent the number of shared 
944 differentially abundant OTUs between two techniques. The bar charts represents the percentage 
945 of differentially abundant OTUs shared by at least one other technique.   
946
947 Figure 7: Differential abundance detection performance where one sample group average 
948 library size is 10 times the size of the other.  Labels are the same as in Fig. 4.  A significant 
949 difference from the results of Fig. 4 was first observed at 2-3-fold difference in library sizes (see 
950 Fig. S6).
951
952 Figure S1: Simulated clustering accuracy if rarefying is not penalized for removing the 
953 lowest 15th percentile samples.
954 The right axis represents the median library size (NL), while the x-axis ‘effect size’ is the 
955 multinomial mixing proportions of the two classes of samples, ‘Ocean’ and ‘Feces’. See caption 
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956 for Fig. 2 for further details. 
957
958 Figure S2: Low library size samples can diminish result quality, regardless of 
959 normalization technique.  We show the inflammatory bowel disease (IBD) dataset of Gevers et 
960 al.(Gevers et al. 2014), which has an average library size 375 sequences per sample. (a) 
961 Extremely low depth samples cluster in lower right hand corner of PCoA plots with no 
962 normalization, or rarefying alternatives, unweighted UniFrac. (b) The original library size of 
963 samples is a dominant effect, even influencing weighted UniFrac, with low library sizes and 
964 subtle biological clustering for rarefying alternatives.  This diminishes if low library size 
965 samples are removed from analysis.
966
967 Figure S3: All normalization techniques on key microbiome datasets, Bray Curtis distance.  
968 Rows of panels show (from top to bottom) data from 88soils (Lauber et al. 2009), Body Sites 
969 (Costello et al. 2009), Moving Pictures (Caporaso et al. 2011a).  88 soils is colored according to 
970 a color gradient from low to high pH.  The Costello et al. body sites dataset is colored according 
971 to body site: feces (blue), oral cavity (purple), the rest of the colors are external auditory canal, 
972 hair, nostril, skin, and urine. Moving Pictures dataset: Left and Right palm (red/blue), tongue 
973 (green), feces (orange).  It is important to note that all the samples in these datasets are 
974 approximately the same depth, and there are very strong driving gradients.
975
976 Figure S4: All normalization techniques on key microbiome datasets, unweighed UniFrac 
977 distance.  See Figure S3 caption for details.
978
979 Figure S5: Simple example of the reasoning behind differential abundance simulations. (a) 
980 In actual OTU tables generated from sequencing data, the counts (left column) are already 
981 compositional and therefore only relative (left column). Application of the ‘effect size’ to the 
982 original ‘Multinomial’ template to create fold-change differences disturbs the distinction 
983 between true positive (TP) and true negative (TN) OTUs in the ‘Original’ simulation, but not the 
984 ‘Balanced’ simulation. (c) Creation of a ‘Compositional’ OTU table from the ‘Multinomial’ 
985 template, where the counts/relative abundances are intentionally blurred for the TN OTUs.
986
987 Figure S6: Differential abundance detection performance where one sample group average 
988 library size is 3 times the size of the other.  Labels are the same as in Fig. 4.
989
990 Figure S7: Differential abundance detection performance when the dataset is 
991 compositional. 25% of OTUs are differentially abundant.  Labels are the same as in Fig. 4.
992
993
994
995
996
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1
Effect of sampling depth on ordination methods

(a) Data rarefied at 500 sequences per sample. (b, c) Data not normalized, with a random

half of the samples subsampled to 500 sequences per sample and the other half to 50

sequences per sample. (b) is colored by subject_ID, (c) is colored by sequences per sample.

Non-parametric ANOVA (PERMANOVA) effect sizes (R2) roughly represent the percent

variance that can be explained by the given variable. Asterisk (*) indicates significance at p

< 0.01. The distance metric of unweighted UniFrac was used for all panels.
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2
Comparison of common distance metrics and normalization methods across library sizes
when low-coverage samples are excluded.

Clustering accuracy is shown for all combinations of five common distance metrics (panels

arranged from left to right) across four library depths (panels arranged from top to bottom;

NL, median library size), six sample normalization methods (series within each panel), and

several effect sizes (x-axis within panels). In all cases, samples below the 15th percentile of

library size were dropped from the analysis in order to isolate the effects of rarifying from the

effects of dropping low-coverage samples. The x-axis ('effect size') within each panel

represents the multinomial mixing proportions of the two sample classes 'Ocean' and 'Feces'.

A higher effect size represents an easier clustering task. The y-axis (‘accuracy’) shows the

accuracy of each classifier, as assessed by the fraction of simulated samples correctly

clustered.
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3
Rarefying clusters more according to biological origin, and diminishes the effect of
library size.

Rarefying exhibits a higher effect size (R2) for biological origin, and a lower effect size (R2) of

original library size. Unweighted UniFrac was used for clustering, and a random half of

samples were subsampled to 10 times fewer sequences per sample. The 45-degree line splits

low from high depth samples in all but the rarefying technique. For each letter (a-f), the left

PCoA plot is colored according to the ‘Canine Feces’, etc. legend, and the right PCoA plot is

colored according to the ‘High/Low Library Size’ legend.
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4
Differential abundance detection performance.

The AUC ('Area Under the Curve') version of the ROC ('Receiver Operator Characteristic’)

curve is the ratio of sensitivity to (1-specificity), or true positive rate vs. false positive rate. A

higher AUC indicates better differential abundance detection performance. The 'effect size'

represents the fold-change of the 'true positive' OTUs from one condition (e.g. case) to

another (e.g. control). The right axis represents the median library size (NL), while the

shading on the graph lines represents the number of samples per class. ‘Model/None’

represents data analyzed with a parametric statistical model (e.g. DESeq), or no

normalization. Blue lines in, e.g. the DESeq column represents the data was rarefied, then

DESeq was applied. Since the fitZIG model depends upon original library size information, the

model does poorly on rarefied data.
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5
The effect of rarefying on power for different OTU relative abundances and library sizes.

The detection power for differentially abundant OTUs of varying levels of relative abundance

(very rare to common). This is for two samples A and B. For power calculations, we assumed

that OTU1 fraction of group B is 85% of the OTU1 fraction of group A. Library type A was

fixed, while library size B was subsampled at different percentages, creating the power

curves calculated with Fisher’s exact test.
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6
Comparison of the most promising differential abundance detection techniques on real
datasets.

Each table’s diagonal represents the number of OTUs found significant (Benjamini &

Hochberg FDR < 0.05) by that technique. The off-diagonal entries represent the number of

shared differentially abundant OTUs between two techniques. The bar charts represents the

percentage of differentially abundant OTUs shared by at least one other technique.
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7
Differential abundance detection performance where one sample group average library
size is 10 times the size of the other.

Labels are the same as in Fig. 4. A significant difference from the results of Fig. 4 was first

observed at 2-3-fold difference in library sizes (see Fig. S6).
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