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ABSTRACT

Kernel-based smoothers have enjoyed considerable success in the estimation of both probability densities
and event frequencies. Existing procedures can be modified to yield a similar kernel-based estimator
of instantaneous probability over the course of a binomial or multinomial time series. The resulting
nonparametric estimate can be described in terms of one bandwidth per outcome alternative, facilitating
both the understanding and reporting of results relative to more sophisticated methods for binomial
outcome estimation. Also described is a method for sample size estimation, which in turn can be used
to obtain credible intervals for the resulting estimate given mild assumptions. One application of this
analysis is to model response accuracy in tasks with heterogeneous trial types. An example is presented
from a study of transitive inference, showing how kernel probability estimates provide a method for
inferring response accuracy during the first trial following training. This estimation procedure is also
effective in describing the multinomial responses typical in the study of choice and decision making. An
example is presented showing how the procedure may be used to describe changing distributions of
choices over time when eight response alternatives are simultaneously available.

Keywords: proportions, time series analysis, kernel estimation, nonparametric methods, binomial data,
multinomial data

Rates underlying empirical data often do not correspond nicely with the forms of parametric functions.
Just as frequencies often fail to be distributed in a precisely Gaussian manner, so too do rates often fail to
change in strictly linear or logistic ways. Biological processes (whether they be the firing of individual
neurons or the decision-making of organisms) are particularly irregular in this respect. Consequently, there
are considerable benefits to nonparametric methods for estimating rates, as these permit inferences to be
made about data without imposing inappropriate assumptions. In light of this need, a vast literature of
nonparametric methods for such estimation has arisen, much of which concerns kernel-based procedures
that convert discrete clusters of observations into smoothed estimates (Rosenblatt, 1956; Parzen, 1962).

Kernel-based smoothing replaces each observation with a density function (or ‘kernel’), the most
common of which are Gaussian. This replacement has the effect of smearing each observation across
the measurement scale. The resulting collection of density functions are summed, yielding the smoothed
estimate.

In the simplest case, the estimate depends on a single parameter: The kernel’s bandwidth, which
governs its dispersion. The standard deviation, for example, is the bandwidth for Gaussian distributions.
Remarkably, so long as each kernel is symmetric and unimodal, the shape of the kernel matters much less
to the overall accuracy of the estimate than does the bandwidth. Consequently, a great deal of effort has
been devoted to bandwidth selection (Hall and Marron, 1991; Jones et al., 1996).

It is important to distinguish between kernel density estimation and kernel rate estimation, as this
distinction has an impact on the bandwidth selection procedure. Density estimation aims to estimate a
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probability density whose integral is 1.0, whereas rate estimation aims to make instantaneous estimates,
at any point in a time series, of the frequency of events per unit time. Rate estimation is of particular
importance to neuroscience, where it is used to obtain the firing rates of individual neurons (Dayan and
Abbott, 2001; Shimazaki and Shinomoto, 2010). Such procedures can also be used to estimate the rates of
other events, such as button presses, heart beats, or frequency of base pairs over a length of DNA.

PROBABILITY ESTIMATION IN TIMES SERIES

Binomial data (e.g. correct/incorrect responses) reflect a different kind of frequency than those typically
examined by rate estimation procedures. Given a times series of yes/no responses, one might reasonably
wish to estimate the probability of a correct response at each time point, rather than instantaneous estimates
of the frequency of responses. Importantly, unlike frequencies in time, probabilities should not vary as a
function of overall response density: If the probability is 0.5, then the estimate should approximate 0.5
regardless of whether few responses or many are expected to occur at that moment.

This problem is especially pressing when behavior is not only intermittent, but also occurs at different
times in different sessions. For example, in a ‘transitive inference’ procedure, subjects are shown pairs of
stimuli from an ordered set in a randomized order. In one session, a subject might see the pair AB on the
first trial and the pair BC on the second trial, whereas AB might not be seen until the fourth trial in a
subsequent session. Kernel smoothing, in principle, should allow a pooling of information from AB trials
over time, even if a subject sees that pair during a different trial in every session.

A very powerful approach for solving this kind of problem is that of generalized additive models (or
“GAMs,” Hastie and Tibshirani, 1986). These procedures combine local regression techniques (similar
to LOESS regression, Cleveland, 1979) with generalized linear models (Nelder and Wedderburn, 1972),
which in turn permits localized smoothing using logistic regression. This yields a continuous estimation
of a probability.

However, GAMs present analysts with several drawbacks. One difficulty is that GAMs are sophisticated
models, and well beyond the ability of many researchers to implement. Another is that much of the
machinery intrinsic to fitting GAMs relies on numerical approximation, which is implemented differently
by different software packages. Furthermore, many implementations of GAM estimation are prone to
overfitting, a tendency whose correction requires further procedures (Wood, 2008). Thus, although GAMs
may currently represent the gold standard for semiparametric rate estimation in binomial data, there
is nevertheless a need for a rate estimation procedure whose workings can be understood by a broad
audience.

KERNEL PROBABILITY ESTIMATION

In order to make an estimation of the probability of success or failure at any time point, all that is
required is a kernel rate estimate of successes and a separate kernel rate estimate of failures. This procedure
is depicted in Figure 1.

Let T represent the full span of all times t observed during the experiment, whereas R represents the
set of responses ri. Correct trials will be denoted with a subscript plus (R+), whereas incorrect trials
will be denoted with a subscript minus (R−). Let N represent the total number of responses observed,
whereas n represents the total number of sessions. Given this notation, the kernel rate estimates for correct
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Figure 1. Visualization of the kernel probability estimation procedure. (Left) Correct responses (in green) and incorrect
responses (in purple) are treated as independent time series, in which each is assigned a Gaussian distribution with an
optimized bandwidth. This replaces the observed response times (vertical lines) with Gaussian density functions. (Middle) The
Gaussian kernels are summed to yield kernel estimates of the instantaneous rate of each event over time, per Equation 1.
(Right) The relative rate of events is calculated for each time point, per Equation 2. In addition, the 95% credible interval for
the estimate is calculated using Equations 3 and 4 and shown as dashed lines.

outcomes (K+) and incorrect outcomes (K−) are as follows:

K+ (t) =
∑
r∈R+

N (t|r, ω+)

K− (t) =
∑
r∈R−

N (t|r, ω−)
(1)

Here, N (t|r, ω) denotes the density of a normal distribution at time t with a mean of r and a standard
deviation of ω. ω+ and ω− represent the optimal bandwidths for the rate estimates of correct and incorrect
trials, respectively. An efficient procedure for optimal bandwidth selection is described by Shimazaki and
Shinomoto (2010). The Gaussian implementation of this method, with a small correction for continuity,
is detailed in the appendix. Ordinarily, K+ and K− would be scaled by a factor of 1

n
to average across

multiple sessions. In this case, the scaling factor is omitted because it cancels out in the next operation.
The kernel probability estimate (KPE) is obtained by computing the relative proportions of K+ and

K−:

KPE (t) =
K+ (t)

K+ (t) +K− (t)
(2)

Thus, although the estimated rates of K+ and K− may rise and fall (because of uneven sampling of data, or
because of biased estimates near the edges of the observed interval), their relative rates may nevertheless
be compared throughout.
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It is also important to estimate a ‘credible interval’ for the estimated proportion parameter. This can be
accomplished using the Jeffreys interval (Brown et al., 2001), which performs well under both frequentist
and Bayesian interpretations of uncertainty.

The estimate of the credible interval depends on the approximate number of observations contributed to
each estimate (i.e. “On how many points does the estimate at time t depend?”). This can be accomplished
by converting the normal distributions that act as kernels into unscaled Gaussian functions (whose mode
has a value of 1.0 regardless of bandwidth). Since this requires only the cancelation of the common
normalizing factor across the density function, we may ‘count’ the contribution to each time point as
follows:

C (t) =
√

2π (ω+ ·K+ (t) + ω− ·K− (t)) (3)

Using K+ and K− to estimates of local probability and C (t) to estimate the sample size, the credible
interval is specified using the beta distribution:[

CI−t , CI
+
t |α
]

= Betainv

([α
2
, 1− α

2

]
|A+

1

2
, B +

1

2

)
where

A = KPE(t) · C (t)

B = (1−KPE(t)) · C (t)

I (p|A,B) =
Γ(A+B)

Γ(A)Γ(B)

∫ p

0

xA−1(1− x)B−1dx

Betainv (y|A,B) = {y : I (p|A,B) = y}

(4)

This credible interval should be interpreted with some caution, as will be evident in the examples below.
Its bounds depend on the assumption that the underlying probability does not change faster than can be
captured by the optimized bandwidth. Optimized variable bandwidths (as described by Shimazaki and
Shinomoto, 2010) provide a satisfactory solution to this problem, but yield a more complex model.

Scenario Span Function
Big Step [0 : 149] p = 0.1

[150 : 300] p = 0.9

Step And Ramp [0 : 39, 91 : 179, 281 : 300] p = 0.2
[40 : 90] p = 0.7
[180 : 280] p = 0.8− 3t−540

500

Sine Wave [0 : 300] p = 0.5 + 1
3 sin

(
t
6π

)
Logarithmic Learning [0 : 300] p = (1 + exp (−0.015t))−1

Table 1. Simulation scenarios. Each function specifies a canonical probability p over a span of trials t, given in brackets.
These functions are depicted by the dashed lines in Figure 2.

In order to demonstrate the efficacy and shortcomings of the kernel probability estimate, four scenarios
were used to generate simulated data. These scenarios are described in Table 1, and the estimates based on
the simulated data are depicted in Figure 2. In each case, estimates were based on 30 simulations, over
an interval of 301 trials. For the simulations in the bottom row of Figure 2, every trial was simulated for
every session. However, for the top and middle rows, only 32 and 96 trials were used, selected without
replacement for each simulation from the 301 possible. This demonstrates the efficacy of the estimation
procedure when sampling is sparse over the observed interval.
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Figure 2. Simulation demonstration for the four scenarios (one per column) described in Table 1. Each KPE is based on 30
independently simulated sessions. Canonical functions are plotted as dashed lines, while kernel fits are plotted as solid red lines.
Each 95% credible interval is depicted by a shaded overlay. The fits in the top row are based on subsets of only 32 trials per
session, sampled randomly from a possible 301. The fits in the middle row are based on subsets of 96 trials per session. The fits
in the bottom row are based on the full 301 trials for each session.

Over most ranges of data, the estimated probability closely approximates the canonical function
underlying the simulation. However, certain features are not captured. Sharp discontinuities (such as the
edges of a step function) cannot be rendered precisely, as a result of the static bandwidth used to compute
K+ and K−. In principle, however, the method for calculating KPEs could be implemented for other
kernel-based smoothers that are more sensitive to highly localized features.

An important consideration for the credible intervals is the exchangeability of the sessions. It would
be appropriate, for example, to implement the above credible interval for multiple sessions performed by
the same subject under similar conditions. It would not, however, be an appropriate method for combining
sessions performed by many subjects. Each subject’s estimate at time tmight display dramatically different
uncertainty than that of another subject.

In order to obtain a credible interval across subjects (taking differing uncertainty into account), it is
necessary to convolve the beta distributions for each individual’s estimates. Let the density function of the
beta distribution associated with subject s (out of a total of S subjects) be defined as follows:

gs (x) = Beta (x|As, Bs) =
Γ(As +Bs)

Γ(As)Γ(Bs)
xAs−1(1− x)Bs−1 where

As = KPE(t)C (t)
Bs = (1−KPE(t))C (t)

(5)

The sampling distribution for a sum of two of independent random variables is the convolution of their
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individual uncertainties (here denoted by the ∗ operator):

(g1 ∗ g2) (x) =

∫
g1 (x− τ) g2 (τ) dτ (6)

This process is associative, so the sampling distribution for the sum across all subjects can be accomplished
by further convolution, (((g1 ∗ g2) ∗ g3) ∗ ... ∗ gS) (x). Note, however, that this distribution has no closed-
form general solution, and can be computationally expensive to approximate numerically. If credible
intervals are desired for the entire time series rather than for a single critical time-point, then determining
the sampling distribution by simulating means of random samples drawn from the individual subject beta
distributions is likely to be a more efficient approach.

Note, also, that the approach implied by Equation 6 does not treat subjects as random effects, and
makes no effort to represent the population distribution of possible subjects. A credible interval based
on subject-level convolution yields the uncertainty for the sample mean only, and as such should be
treated as descriptive. Population-level inferences based on KPEs are most tractably undertaken using
bootstrapping, sampling randomly from the subject pool, and then randomly from the sampled subjects’
respective uncertainties.

RESPONSE ACCURACY IN A TRANSITIVE INFERENCE TASK
One of the most common binomial measures in behavior analysis is response accuracy. When task data

consist of strings of correct/incorrect responses, estimating the proportion correct at any given moment is
a problem of general interest.

Within this domain, a specific variety of estimate is consistently problematic: Estimated response
accuracy on the first trial. For example, Jensen et al. (2015) presented rhesus monkeys (Macaca mulatta)
with pairs of stimuli from the ordered list ABCDEFG. During an initial training phase, subjects were
only presented with adjacent pairs (e.g. AB, BC, etc.). After approximately 200 trials, subjects were then
presented with all possible pairs (e.g. BD, CF , etc.). If subjects were able to infer the ordering from
the adjacent-pair training, then they are said to have performed a transitive inference (i.e. if B > C and
C > D, then B > D). Additionally, it is often observed that stimuli whose list positions are more widely
separated yield higher accuracy, a so-called symbolic distance effect.

Testing for transitive inference is trickier than it appears, however, because any post-transition feedback
potentially confounds the interpretation that it was the prior training (and not the new feedback) that
explains the effect. It is thus desirable to have a procedure that permits a principled estimate of performance
at the very first trial after training.

Figure 3 (top) shows the performance of one monkey on adjacent pairs (in red) and non-adjacent pairs
(green, blue, and violet, representing distances of two, three, and four respectively), based on 51 sessions.
Trial number is centered at transfer. ‘Terminal pairs’ (i.e. those that include the terminal items A and G)
are not included in this estimate.

If a subject performs above chance on non-adjacent, non-terminal items following adjacent pair
training, they may be said to have performed a transitive inference. This can be seen clearly in Figure 3
(bottom), which shows the cross section of the sampling distributions for stimuli of all four types. Although
adjacent pairs are only marginally significant (p < .05), the non-adjacent pairs are unambiguously above
chance. Furthermore, the symbolic distance effect is clearly manifest: Distance 4 pairs yield the highest
accuracy, followed by distance 3 pairs, and then by distance 2 pairs.

The clear advantage of using the KPE to estimate performance, relative to existing methods, is that it
permits inferences to be made efficiently (given the data available) and nonparametrically. An incidental

6/11
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1156v1 | CC-BY 4.0 Open Access | rec: 2 Jun 2015, publ: 2 Jun 2015

P
re
P
rin

ts



−200 −150 −100 −50 0 50 100 150 200 250 300 350 400

0.6

0.8

1

Adjacent Pairs Only

All Pairs

Trials

p
(C

or
re

ct
)

Transitive Inference In Of Non-Terminal Stimulus Pairs

Dist. 1
Dist. 2
Dist. 3
Dist. 4

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15
Dist. 1 Pairs:
p ≈ 0.548

Dist. 2 Pairs:
p ≈ 0.662

Dist. 3 Pairs:
p ≈ 0.740 Dist. 4 Pairs:

p ≈ 0.778

p(Correct)

P
ro

ba
bi

lit
y

D
en

si
ty

p(Correct) On First Transfer Trial

Figure 3. Response accuracy by a rhesus monkey performing a transitive inference task over 51 sessions(Jensen et al., 2015).
(Top) Kernel probability estimate of response accuracy to non-terminal stimulus pairs, grouped by symbolic distance (red =
distance one; green = distance two; blue = distance three; violet = distance four). Each estimate’s 95% credible interval is
indicated by the corresponding shaded region. Trial number is centered on the transition from adjacent-pair training to all-pair
testing, also indicated by the solid gray line. Chance performance is indicated by the dashed gray line. (Bottom) Sampling
distribution for each response accuracy at trial 0, showing estimated performance on the first trial following adjacent-pair-only
training.

benefit to these features is the precise description of single subjects. The example presented in Figure 3
showcases fine-grained performance in a single subject, rather than relying on group data to provide
an estimate. This in turn facilitates the consideration of individual differences, which are essential in
distinguishing effective models of individual behavior from ‘learning curves’ that only resemble groups of
subjects (Gallistel et al., 2004).

MULTINOMIAL EXTENSION AND CHOICE BEHAVIOR
In time series with three or more outcomes, kernel probability estimates may be calculated in the same

manner as described above by replacing the outcomes [Success, Failure] with a set of categories [A, B,
C, ... ]. Rate estimates for each category KA, KB, etc. are estimated using the procedure described by
Equation 1. The rate estimates are then set relative to the sum across categories to yield the KPE, and
a perimeter bounding the credible region for the estimates may correspondingly be computed, based on
the Dirichlet distribution (Chafaı̈ and Concordet, 2009). Because the marginal credible intervals for each
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Figure 4. Transition in preference during a 8-item choice procedure performed by a rat (Jensen, 2014a). (Top) Each color
corresponds to one of eight choice alternatives (see Table 2), and the black dashed line marks the boundary between phases.
Observed shifts in behavior are in response to changes in the reward schedule from one session to the next.

proportion in a Dirichlet distribution are governed by the beta distribution, Equation 4 may be used when
plotting intervals for each alternative separately.

Figure 4 (top) presents an example of such a multinomial fit, based on data previously reported by
Jensen (2014a). In this example, one rat made 38164 responses over the course of eight experimental
phases. During each phase, eight response levers were simultaneously available. On every trial, all eight
of these levers secretly had a probability of ‘setting up’ a food reward to be collected, and the subject
was required to forage among these eight options to find this hidden food. Transitions between phases
are denoted in Figure 4 by dashed lines. Furthermore, each lever is plotted in a different color, with a
corresponding column in Table 2.

In ‘concurrent choice’ procedures such as these, a central topic of interest is the relationship between
the scheduled probability of reward associated with a lever (Ri) and the corresponding proportion of
responses devoted to that lever (Bi). One of the more robust models of this relationship is the generalized
matching law (Baum, 1974), whose multinomial form as defined by Jensen (2014b) is as follows:

Bi∏
j∈S Bj

=
κi∏
j∈S κj

(
Ri∏
j∈S Rj

)α

(7)

Here, the parameter κi denotes the ‘bias’ toward a given alternative i, while α denotes the ‘sensitivity’
toward the reward probabilities overall. For schedules of this type, rewards are collected most efficiently
when every κi = 1.0 and α = 1.0, a state of affairs called ‘matching.’ It is routinely observed, however,
that many species ‘undermatch’ (i.e. α < 1.0).
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Phase Lever 1 Lever 2 Lever 3 Lever 4 Lever 5 Lever 6 Lever 7 Lever 8
1 0.0422 0.0357 0.0617 0.0552 0.0097 0.0065 0.0227 0.0162
2 0.0552 0.0162 0.0357 0.0065 0.0617 0.0227 0.0097 0.0442
3 0.0162 0.0617 0.0097 0.0357 0.0227 0.0552 0.0422 0.0065
4 0.0617 0.0422 0.0065 0.0162 0.0552 0.0097 0.0357 0.0227
5 0.0065 0.0097 0.0162 0.0227 0.0357 0.0422 0.0552 0.0617
6 0.0357 0.0227 0.0552 0.0617 0.0422 0.0162 0.0065 0.0097
7 0.0227 0.0065 0.0422 0.0097 0.0162 0.0357 0.0617 0.0552
8 0.0097 0.0552 0.0224 0.0422 0.0065 0.0617 0.0162 0.0357
κi 1.7196 2.0007 0.5504 1.0990 1.2325 1.1908 0.5850 0.5597

Table 2. Programmed probabilities of reward per trial per phase Figure 4. Also included are the κi parameters estimated from
the data in Figure 4.

Without a means of obtaining instantaneous estimates of response proportions, a traditional matching
analysis takes very large sets of data and distills these into a small number of proportions. For example,
given eight response alternatives and eight phases, the 38164 responses underlying Figure 4 would be
compressed into only 64 proportions, yielding a single set of parameters by regression analysis. This
process discards all temporal information, and assumes that all parameters are static over time.

A more granular method for estimating sensitivity is discussed by Jensen (2014a), in which data are
considered as a time series and sensitivity is shown to change over time. If κi is held constant and an
estimate of response proportions can be obtained for time t, then αt can be identified using an approach
called compositional analysis (Aitchison, 1986; Pawlowsky-Glahn and Buccianti, 2011). However, this
requires having instantaneous estimates of Bi, and the procedure used by Jensen to obtain those estimates
was not straightforward.

Figure 4 (top) provides the estimates of Bi using KPEs, and these can then be used to estimate
αt. Figure 4 (bottom) shows how αt changes over time for this subject. During the early stages, the
distributions of responses become relatively extreme, resulting in sensitivities at or above 0.6. As additional
sessions accumulate, the amount of adjustment made by the subject lessens, until the last few sessions
show only slight shifts in responding over time. The subject began the experiment at approximately 10
weeks of age, and the experiment took approximately 16 weeks to perform (about 1

6
the natural lifetime of

a laboratory rat). Consequently, aging is a likely culprit for the gradual reduction in response sensitivity.
Effects such as these can only be detected if the analyst has a reliable method for obtaining instantaneous
estimates of proportions.

Multinomial choice is not merely of interest in laboratory contexts. Many behavioral dynamics unfold
spontaneously outside the lab, and these too are often subject to averaging over long intervals. For example,
Romero et al. (2011) performed an analysis on post-conflict affiliative behavior in chimpanzees, collected
over an eight year period. To take on these data, a generalized linear mixed model (GLMM) was used,
collapsing across time. Kernel probability estimates could provide an inroad for identifying temporal
trends that the reported GLMM would not have been able to detect.

The categorical behaviors that kernel probability estimation stand to clarify are not limited to those
of non-human animals. For example, Flum et al. (2001) report on the change over eleven years of acute
appendicitis treatment in Washington State, USA. Despite having a database of tens of thousands of
patients, their study resolves the frequency of diagnoses only to the year of the incident. These estimated
rates could be resolved to continuous time using a KPE.
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CONCLUSION
Because binomial and multinomial data are widespread in the biomedical sciences, their appropriate

analysis is a high priority. For the most part, data of these types are either not collected as time series (as
in many survey methodologies), or are analyzed in a manner that omits temporal information by averaging
over large groups of events (as in many decision-making paradigms).

At present, temporal information is ignored because it cannot easily be incorporated into familiar
analyses, and this state of affairs will only be remedied using a suite of tools. Sophisticated methods
(such as GAMs) permit statistical inference, but their sophistication limits their current use among applied
researchers. To quote Brown et al. (2001), “It is generally true in statistical practice that only those
methods that are easy to describe, remember and compute are widely used” (p. 115). Kernel probability
estimates are intended to accommodate very basic analytic needs: the description and communication of
categorical data over time.

APPENDIX: OPTIMIZED BANDWIDTHS AND IMPRECISE TEMPORAL MEA-
SUREMENT

Shimazaki and Shinomoto (2010) describe an efficient method for identifying an optimum bandwidth
for kernel rate estimation. They provide a proof that the single optimal bandwidth ω∗ for the Gaussian
kernel minimizes of the following cost function:

Φ (ω|X,n,N) =
1

2
√
πn2

(
N

ω
+

2

ω

∑
i<j

[
exp

(−δi,j
4ω2

)
− 2
√

2 exp

(−δi,j
2ω2

)])
where

δi,j = (Xi −Xj)
2

(8)

Here, X is the set of N distinct times that events occurred over the course of n independent sessions. Their
proof relies on two assumptions: (1) that events in different sessions are independent from one another,
such that the combined list of events approximates a Poisson process even if individual sessions display
temporal dependencies, and (2) that time is measured continuously. Another way to state the second
assumption is that δi,j > 0.

This second assumption is reasonably approximated in electrophysiology (where events are often
recorded with millisecond precision), but is much more problematic when considering trial data. The
odds of two neurons spiking at the same moment in two different sessions is low, but the odds of two
participants making correct responses on the same trial are high. This potentially yields a nontrivial
number of instances of δi,j = 0, which in turn drives ω∗ below its otherwise optimal value.

Let g represent the smallest measurable interval of time in a particular procedure. In trial-based
experiments, g = 1 since half-trials are not meaningfully defined. In electrophysiology, if intervals are
reported in seconds but recorded with millisecond precision, then g = 0.001. To correct Equation 8 for
simultaneous trials, use the following value for δi,j:

δi,j = (Xi −Xj)
2 + 2σ2, where σ =

g

2
(9)

In effect, this replaces eachXi withXi+ε, where ε is an error term drawn fromN
(
0, g

2

)
. If mostXi differ

considerably from one another relative to g, then the effect of this error term is trivial. If, however, the
data contain many tied events due to overly discrete units of time, this adjustment corrects for continuity.
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