
A Gauge Model for Analysis of Biological 

Systems 
 

Imadol V. Jeff-Eke 

 

           Abstract 

For this initial work, we shall focus on introducing a biological model for utilization [mainly] as a descriptive 

framework on which future analyses will be based. The model includes a definition of a biological system as a 

composite of properties that occupy defined states. We also introduce a concept of failure, in addition to a 

hypothetical mechanism by which failure occurs. We then define a functional response as a means of preventing the 

system from reaching failure state. We also define such functional responses as properties of the system. We discuss 

determinants of the rate of- and measures of systemic failure. We conclude with two assumptions on the principal 

significance of biological phenomenon. 

 

 

Introduction 

An essential feature of a computable biological model with universal application is that it 

negates intention. Thus it can be applied to biological systems devoid of all perceptual 

experiences (e.g. cells, non-neuronal tissues, etcetera). Perception, as used here, refers to a 

conscious appreciation that can eventually lead to a goal-directed outcome. The misguided 

use of intention in describing biological systems, irrespective of level of organization, can 

affect conclusions that derive from them. For example, to state that a mediator is secreted 

from cells in order to…, implies that the cell has an objective to prevent or facilitate events 

that may occur or may not occur, respectively, in an absence of such a mediator. Instead, 

for the gauge model, we shall apply the term significance when describing biological 

responses. For the following analyses, we repeatedly use the word attempt, when 

describing biological phenomena. However, attempt as used here, refers to initiation of 

phenomena that may or may not affect a defined outcome.  

 

 

We begin by reintroducing a well-known concept in the field of physiology: the homeostatic 

principle. A revolutionary idea by Claude Bernard, to whom discovery of the concept is 

credited, and Walter Cannon who is arguably its greatest contributor. The principle holds 

that organisms are inclined to assume certain state(s) of being than they do others; and if 

left unaffected by external factors, will tend to occupy such homeostatic state(s). Thus, 
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homeostatic state(s) assume the role of the “preferred” state(s). For such systems, 

deviations from homeostasis can therefore be considered temporary as the system 

responds in a way that favors re-establishment of said state(s). For simplicity, we shall 

consider homeostatic state(s) a solitary state. Due to the success of this principle in 

applications across diverse fields of biological sciences, we suppose that it stands as a 

general principle governing the patterns of biological systems. However, it does not give a 

quantifiable working mechanism for reconciliation of effects of individual homeostatic 

variables on other variables of the system in question. Neither does it yield reconciliation of 

effects of homeostatic variables on the system as a whole. These shortcomings limit both its 

analytical power and usage as a descriptive tool for processes of biological systems. Thus a 

revision or addenda is required.  Here we introduce a gauge model for biological systems.  

 

                               

Figure 1.1. Depicts the sequence of changes following disturbance at a single variable of a biological system. (A) The 

variable is shown to initially occupy a preferred state (homeostasis). (B) Disturbance at this variable results in change 
from the initial preferred state to an arbitrary state (C) followed by return of the variable toward preferred state, (D) and 
eventual attainment of preferred state (homeostasis). 

 

 

Defining the system and states of its properties 

1. We apply two definitions to a biological system: point and set definitions. Point 

definition of a biological system, ŝ, holds that: system ŝ is a defined property of a set 

that consists of additional properties distinct from ŝ. In addition, it [system ŝ] is our 

primary focus and all occurrences or phenomena outside this focus are considered 

the surroundings with respect to ŝ. Also, all observations are made in relation to the 
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point ŝ. This definition acknowledges the defined system as a property of a second 

but undefined larger system, 𝐒̂𝐮𝐧𝐝𝐞𝐟𝐢𝐧𝐞𝐝.  

𝐒̂undefined ≡ {… , ŝ, … }         

Set definition of a biological system, ŝ, holds that the system is a defined set of 

properties, 𝑋, (system-related information), and the set includes only those 

properties that define ŝ.  

           ŝ ≡ {𝑋1, … , 𝑋Ñ} 

All phenomena involving these properties are considered to occur with respect to ŝ, 

and these phenomena are the challenges to- and responses of the system. We 

suppose the defined system is a collection of all its properties. In addition, we shall 

consider the total number of properties, Ñ, for a system as both a constant value and 

unique to the system in question. That is, two systems may have completely 

different values for Ñ, but the value for each system remains the same. By so doing, 

we exclude considerations of emergent properties, as this complicates the intended 

simplification.  

It may seem unreasonable to assign incongruent phenomena into a single set. For 

example, temperature and hydrogen ion concentration are distinct aspects, but 

based on the proposed approach, we consider both as similar irrespective of these 

differences. The rationale rests in simplifying analyses, by way of generalizing these 

phenomena and grouping them merely as measurable attributes of the system. 

Thus, the property can be likened to a homeostatic variable. 

 

2. We suppose that each property can exist in any one state of a number of potential 

states at any given moment; with most similar states juxtaposed. We suppose that 

we can quantify the state of a property, and we term this quantity the state value, 𝑥𝑖  

of the property (s-value).  With each state of a property having one and only one 

value, and that no two or more states of the same property can have the same value. 

Thus, we shall represent the state of the property in terms of the state value, 𝑥𝑖 .   

 

A suitable measure of s-value is the relative distance, ∆𝑥o, between a reference 

initial state and an arbitrary state; where the distance is the number of intervening 

states between the states in question. For our interests, we shall consider the 

reference initial state of a property its zero-point state; where the zero-point state is 

the state of the property prior to presentation of challenge. Thus by assuming this as 

the state of the property we are supposing that, in its initial state, the property is 

unaffected by external influences. We designate the s-value of the zero-point state as 

𝑥0. Therefore, 𝑥0, represents the zero of the range of possible states, and is read: the 
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s-value of the property when at zero-point state. The subscript represents the value 

of the state occupied by the property. Thus the value of the zero-point state is: 

𝑥0 = 0 

Also, since the distance, ∆𝑥o
, is relative to the zero-point state of the property, it 

should hold that the s-value of the property equals the distance of the given state 

from zero-point. That is, 

∆𝑥o =  𝑥𝑖  

We, therefore, can use these interchangeably. We define the minimum distance 

between states of the property, ∆𝐱̆, as equivalent to the absolute value of the 

difference between the s-value of the zero-point state, 𝑥0, and the s-value of the 

state most proximal to 𝑥0 , 𝑥1.  

∆𝐱̆ = |𝑥1 − 𝑥0|       

           = |1 − 0|               

    = 1                                 

Thus, the s-value of the property when at the 1st most proximal state: 

∆𝑥o = ∆𝐱̆ = 1        

The absolute value of the difference between the s-value of the zero-point state, 𝑥0, 

and the s-value of the state most proximal to 𝑥0 can also be written such that the s-

value of the zero-point is taken into account: 

∆𝑥o =  𝑥0 + ∆𝐱̆ = 1 

The s-value of the property when at the 2nd most proximal state to 𝑥0 is: 

∆𝑥o =  𝑥0 + 2∆𝐱̆ = 2 

The s-value of the property when at the 𝑖𝑡ℎ most proximal state to 𝑥0 is:  

                                                             ∆𝑥o =  𝑥0 + 𝑖∆𝐱̆ = 𝑖                                                         (1) 

Where, 𝑖 is an arbitrary value of the given interval of values: 

0 ≤ 𝑖 ≤ 𝑧 

𝑧 is the s-value of the least proximal state to 𝑥0. Note that 𝑧 can vary for different 

properties. Thus, the s-value of a property can assume any one of the following 

contiguous s-values arranged in order from 𝑥0 to least proximal state to 𝑥0.  

{0, … … 𝑧} 
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3. The s-value of the property when at an arbitrary state is therefore the sum total of 

unit distances. Thus, the s-value of the property when at the 𝑞𝑡ℎ most proximal state 

to 𝑥0 is, 

                                                           ∆𝑥o ≝  𝑥0 + ∑(∆𝐱̆)𝑖

𝑞

𝑖=1

                                                         (2) 

                 𝑥0 + ∑(∆𝐱̆)𝑖

𝑞

𝑖=1

=  𝑥0 + (|𝑥1 − 𝑥0|)1 + ⋯ + (|𝑥𝑞 − 𝑥𝑞−1|)
𝑞

                                 (3) 

= 𝑥𝑞              

        = 𝑞                       

Where, 𝑞 is a specific value within the given interval of possible s-values for the 

given property.  

 

We define a change in s-value, ∆𝑥, of a property as equivalent to the difference 

between the s-value of the state of the property prior to- and the s-value of the state 

of the property following disturbance by factors external to the property. As was 

previously stated, the state of the property prior to challenge presentation is the 

zero-point state. Thus, the change in s-value, ∆𝑥, that follows challenge presentation 

is the change from zero-point to an arbitrary state which is a function of the 

intensity of presenting challenge stimulus. Thus for this work, the stated change, ∆𝑥, 

equals the relative distance between states, ∆𝑥o, of the property. That is, 

∆𝑥 = ∆𝑥o   

We therefore determine the change in s-value from zero-point to the state with s-

value of 𝑥𝑞  by substituiting ∆𝑥 for ∆𝑥o in equation 2. 

                                                                              ∆𝑥 =  𝑥0 + ∑(∆𝐱̆)𝑖

𝑞

𝑖=1

                                                  (4)    

We must reiterate that the choice of initiating challenge when the property is at 

zero-point state is for the convenience of simplicity. Unlike ∆𝑥o which is defined 

with respect to the zero-point state of the property, ∆𝑥 can also be determined for 

any two nonzero-point states of the property. For example, the change in s-value of 

a property from the 𝑖𝑡ℎ to the  (𝑖 + 1)𝑡ℎ state of the property is:   

∆𝑥 =  𝑥0 + (𝑖 + 1)∆𝑥𝑜 −  𝑥0 + (𝑖)∆𝑥𝑜 

=  𝑥0 + [(𝑖 + 1) − (𝑖)]∆𝑥𝑜         

     = ∆𝑥o                                                    
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Where, 

𝑖 ≠ 0               

And 

(𝑖 + 1) ≠ 0                           

 

4. We suppose that states of a given property can be approximated as either discrete 

or a continuum of states. However, equations presented above are only for s-values 

for discrete states. We attempt to present an all inclusive representation for s-values 

for both discrete and continous states. We express ∆𝐱̆ as: 

 

     ∆𝐱̆ = lim
→1

∑ (𝑥(𝑏
⁄ ) − 𝑥(𝑏−1

⁄ ))
𝑏



𝑏=1

 

Substituting unity for   

∆𝐱̆ = ∑ (𝑥(𝑏
1⁄ ) − 𝑥(𝑏−1

1⁄ ))
𝑏

1

𝑏=1

 

 = |𝑥1 − 𝑥0|                       

 

Therefore, we rewrite equation 4 for a property with discrete states: 

                                                      ∆𝑥 =  lim
→1

∑ ∑ (𝑥(𝑏
⁄ ) − 𝑥(𝑏−1

⁄ ))
𝑏,𝑖



𝑏=1

               

𝑞

𝑖=1

               (5) 

                       ≅ ∑ ∑ (𝑥(𝑏
1⁄ ) − 𝑥(𝑏−1

1⁄ ))
𝑏,𝑖

1

𝑏=1

𝑞

𝑖=1

        

 

If, however, we suppose a continuum of states of the property of interest, then  

                            ∆𝐱̆ =  |𝑥1 − 𝑥0| = lim
→∞

∑ (𝑥(𝑏
⁄ ) − 𝑥(𝑏−1

⁄ ))
𝑏



𝑏=1

 

Where,  

𝑥0 = 𝑥(0
⁄ ) < 𝑥(1

⁄ ) < 𝑥(2
⁄ ) < ⋯ < 𝑥(−1

⁄ ) < 𝑥( ⁄ ) = 𝑥1 
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We rewrite equation 4 for a property with continuous states: 

                    ∆𝑥 = lim
→∞

∑ ∑ (𝑥(𝑏
⁄ ) − 𝑥(𝑏−1

⁄ ))
𝑏,𝑖



𝑏=1

      

𝑞

𝑖=1

   

We generalize that: 

  

∆𝑥 = lim
→𝜇

∑ ∑ (𝑥(𝑏
⁄ ) − 𝑥(𝑏−1

⁄ ))
𝑏,𝑖

;



𝑏=1

  

𝑞

𝑖=1

     
𝑖𝑓, 𝜇 = 1, 𝑡ℎ𝑒𝑛 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑠   
𝑖𝑓, 𝜇 = ∞, 𝑡ℎ𝑒𝑛 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

       (6) 

 

 

                               

Figure 1.2. Depicts a gauge scale for measure of the extent of change in the s-value of a property. The zero 
value represents the initial point of the system prior to presentation of a challenging stimulus. 𝒊 is an 
arbitrary s-value along the series of possible s-values. 𝒛 is the maximum possible s-value for the given 
property. Note that unlike figure 1.1 the scale is unidirectional, which is important since we define the 
minimum changes as the absolute value of the difference between the zero-point and most juxtaposed state of 
a given property. 
 
 

 

Overview on challenge stimuli 

5. We suppose constant interactions between the system and its surroundings, hence 
the system is not in isolation. This is in agreement with Bertalanffy’s The theory on 
open systems in Physics and Biology, (Bertalanffy, 1950). In the context of this 
paper, the surroundings are viewed as a single entity consisting of multiple 
challenges, with each challenge bearing an identity or uniqueness defined by its 
ability to directly affect (change the state of) a single property of the system. That is, 
every property of the defined system has a complimentary challenge within the 
surroundings. Hence, we can define a challenge from a defined property, and a 
property from a defined challenge. Henceforth, we shall refer to challenges as 
stimuli. 
 
We suppose that stimuli are externally derived, and therefore are not properties of 

the defined system. On the other hand, we suppose the relationship between stimuli 

and the surrounding is analogous to that of a property and the system to which it is 

defined. Hence a stimulus, in its own right, is a property of the surrounding 

environment, and defines the environment. A given stimulus is said to affect a 
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change in state of the system by its effect(s) on the state of a property. We term such 

a property the primary property. For this work, we shall consider individual 

stimulus and therefore individual primary property; where the initial effect of a 

stimulus on the defined system is a change in state of the primary property from an 

initial state , 𝑥0, to an arbitrary state which is a nonzero-point state.  
 

Failure state 

6. Before we describe responses of biological systems, we must introduce the concept 

of failure. Failure is a technical term that describes an ultimate, detrimental fate of a 

biological system. As an example, we describe a unicellular organism as a biological 

system. Let us suppose such a cell is subjected to high osmotic conditions such that 

cellular rupture occur, with concomitant dissolution of intracellular components. It 

should follow therefore that cellular processes can no longer occur. We term such a 

state of the organism a failure state. Also, it is important to note that such a 

phenomenon is irreversible. That is, the cellular organism cannot spontaneously 

return to its unaffected state. Hence we conclude that attainment of a failure state is 

an irreversible event. 

 

Biological systems and their response(s) to stimuli 

We suppose that following presentation of a stimulus are two responses that affect the 

state of the system: a deviation response which affects deviation of both primary and non-

primary properties in the direction away from their respective zero-point states; and 

functional responses which attempt to prevent further deviation of affected properties. To 

address the above responses, we assume two hypothetical biological systems based on 

their response capacities following stimuli. These are obligate conformers and obligate 

regulators. Although both systems are assumed to have respective potentials for deviation 

response, we suppose that only obligate regulators elicit functional responses. Thus, 

obligate conformers are devoid of such [functional] responses. Regulators and conformers 

are useful categorizations with principal usage in physiology as applied by Hill et al, 2004a. 

 

Effects of stimuli on obligate conformers: A delta drift hypothesis for 

deviation response towards failure state 

7. Let us suppose that following presentation of a stimulus, the state of a primary 

property of a defined system undergoes a change from an initial zero-point state, 𝑃0 

to a non-zero-point state at 𝑃𝑖 . Where, 

𝑃0 ≠ 𝑃𝑖 
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An example is the change in temperature (primary property) of a system following a 

stimulus –increase in ambient temperature. To demonstrate how such a change 

affects the system, let us examine a hypothetical obligate conformer system. The 

supposed advantage of observing an obligate conformer, as opposed to an obligate 

regulator, is that it does not possess any intrinsic means or active mechanisms to 

counteract the effect of the stimulus, and therefore we suppose that the 

unadulterated manifestations of a stimulus can be observed.  

An increase in ambient temperature would result in change in the s-value of the 

temperature property of the system, such that the temperature of the system 

becomes elevated. If ambient temperature is increased further, the internal 

temperature of the system should also increase in proportion.  

If we assume that systemic properties are independent of one another –meaning 

that changes to the state of the primary property has negligible (if any) effect on 

other properties of the defined system– then, it should hold that changes to a 

primary property would occur in isolation. However, we suppose these properties 

are instead interwoven such that a change in s-value of one property affects others; 

which is in agreement with Bertalanffy’s position(s) on the connectedness of 

systemic parts, (Trewavas, 2006)1. Thus, we suppose that continuous increments in 

ambient temperature will affect changes in s-values of additional properties.  

To illustrate this, let us define an enzyme and its activity as two separate properties 

of a defined system. Where the activity of an enzyme is a measure of the amount of 

reactant substrates converted by the enzyme into products over a given interval of 

time. It is known that this activity depends (in part) on the temperature of the 

system, which we have previously defined as the primary property. Hence, changes 

in temperature of the system should affect a change in the activity of the enzyme 

(secondary property). The working explanation is that the temperature of the 

surroundings wherein an enzyme is located is one of multiple determinants of its 

[enzyme] structural conformation (Hill et al, 2004b). We can suppose therefore that 

if an enzyme activity is initially at its possible maximum, a continuum of miniscule 

deviations in s-value of temperature would affect a proportional deviation in 

enzymatic activity. Since we already assumed an initial maximum, such shifts must 

therefore be in a direction away from maximum enzyme activity.  

To appreciate the impact of such changes in the state of temperature property, let us 

imagine what happens when multiple enzymatic activities are affected. Loss of 

enzymatic activities should yield an accumulation and/or depletion of metabolites 

(substrates and products), and such changes can affect the state of the system. For 

                                                           
1 The cited position and work had negligible influence on the assumptions that properties are connected. The citation 

merely reflects acknowledgement of precedence of the related works of Ludwig Von Bertalanffy as the initial mention of 
such connectedness; and Trewavas, 2006 as the initial source of this finding. The assumptions, as used here, derive 
from inferences on already established phenomena such as the stated example on effects of temperature on enzyme 

activity, and loss of enzyme activity on reactant substrate/product content.  
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example, let us suppose a decline in the activity of an enzyme whose function can be 

ascribed to that of a polymerase, and whose monomeric substrates are osmolytes. It 

should follow that such decline would therefore produce an increased osmolarity 

(tertiary property) if the rate of occurrence of monomers is in excess of enzyme 

activity. One can begin to appreciate how this can have an impact on a cellular 

organism. Note how an initial stimulus effect–change in state of a primary property– 

provokes concomitant state changes at other properties of the system. We shall 

refer to this phenomenon as delta drift. 

         

Figure 1.3. Illustrates the delta drift hypothesis. For an obligate conformer, a change in a primary property (∆𝑃) is 

shown to incite change in a secondary property (∆𝑆), and ∆𝑆 in turn incites change in a tertiary property (∆𝑇), up until 

the entire set of systemic properties are affected. Note that this illustration is not drawn to scale. 

 

Thus, a change in the s-value for a primary property can directly incite changes in s-

values of multiple properties (secondary properties). These secondary properties 

may themselves each incite changes in s-values of additional properties (tertiary 

properties). Since the state of the system is said to be a composite of the states of its 

properties, a delta drift which involves s-value changes at multiple properties (as a 

result of a primary change) should result in change in state of the system. Next, we 

describe in detail the relationship between property and systemic states. 

 

Drift number as a measure of the systemic state: 

8. We suppose that, at any given moment, the system can exist in any one state of a 

number of potential states. We suppose that we can quantify the state of the defined 

system and we term this quantity the state value, 𝑁𝑗 , of the system (s-value).  With 

each state of the system having one and only one value, and that no two or more 

states of the system can have the same value. Thus, we shall represent the state of 
the system in terms of the s-value, 𝑁𝑗. 
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According to the delta drift hypothesis, progressive deviation of a system to failure 

state is related to the number of properties whose states are altered from their 

respective zero-point states. We define the drift number, 𝑵, as the total number of 

properties of the defined system whose states are altered from zero-point state. The 

closer the drift number is to the total number of properties of the system (property 

number, Ñ), the greater extent of deviation in the direction toward failure. The 

system reaches failure state when the drift number equals the property number for 

the system. Thus, a reasonable measure of the state of the system is the drift 

number. That is, 

  

𝑵 = 𝑁𝑗 

 

9. We define the zero-point state of the system, 𝑁0, as the state of the system when all 

properties are at respective zero-point states. In other words, the zero-point state of 

the system is the state of the system prior to presentation of stimulus. By assuming 

this as the state of the system we are supposing that at this initial state, the system 

is unaffected by external influences. Thus, the concept of zero-point state of the 

system is tantamount to the concept of homeostatic state. As was for properties, the 

subscript represents the value of the state occupied by the system. Thus, 

 

𝑁0 = 0 

 

10. We define the standard change, ∆𝑁𝑜 , in s-value of the system as the difference 

between the s-value of an initial zero-point state and s-value of an arbitrary state. 

Also, since ∆𝑁𝑜 is relative to the zero-point state of the system, it should hold that 

the standard change in s-value of the system equal the s-value of the system. That is,  

∆𝑁𝑜 = 𝑁𝑗  

We define the unit difference, ∆𝐍,̆ between s-values of states of the defined system as 

equivalent to the absolute value of the difference between the s-value of the zero-

point state, 𝑁0, and the s-value of the state of the system when only one property 

occupies a nonzero-point state. In other words, when the system occupies a state 

with an s-value of 𝑁1.  

∆𝐍̆ = |𝑁1 − 𝑁0|       

           = |1 − 0|                

    = 1                              

 

The standard change in s-value of the system when at  𝑁1: 
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∆𝑁o = ∆𝐍̆ = 1   

 

The absolute value of the difference between the s-value of the zero-point state, 𝑁0, 

and the s-value when the system occupies a state with an s-value of 𝑁1 can also be 

written such that the s-value of the zero-point state is taken into account:  

∆𝐍̆ = 𝑁0 + ∆𝐍̆ = 1 

The standard change in s-value of the system when two properties have non 

zero s-value is: 

∆𝑁o = 𝑁0 + 2∆𝐍̆ = 2 

The standard change in s-value of the system when 𝑗 properties have non 

zero s-value is: 

                                                                ∆𝑁o
= 𝑁0 + 𝑗∆𝐍̆ = 𝑗                                                                (7) 

Where, 𝑗 is the value for an arbitrary state and is of the given interval of s-values: 

0 ≤ 𝑗 ≤ Ñ 

As noted, Ñ is the property number for the defined system. Thus, the s-value of the 

system can assume any one of the following contiguous s-values arranged in order 

from the value at zero-point state of the system to the value of the state when all 

properties of the system are at nonzero-point states.  

{0, … … , Ñ} 

 

11. The s-value of an arbitrary state of the system is therefore the sum total of unit 

differences. Thus, the standard change in s-value of the system to the 𝑚𝑡ℎ state is, 

 ∆𝑁o
≝ 𝑁0 + ∑(∆𝐍̆)𝑗

𝑚

𝑗=1

 

                                     𝑁0 + ∑(∆𝐍̆)
𝑗

𝑚

𝑗=1

= 𝑁0 + (|𝑁1 − 𝑁0|)1 + ⋯ + (|𝑁𝑚 − 𝑁𝑚−1|)𝑚                 (8) 

= 𝑁𝑚              

        = 𝑚                       

Where, 𝑚 is a specific value within the given interval of possible s-values for the 

defined system.  
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12. We define change in s-value of the defined system, ∆𝑁, as equivalent to the 

difference between the s-value of the state of the defined system prior to- and 

following disturbance by factors external to the defined system. For this analysis, we 

suppose that the state of the system prior to stimulus presentation is the zero-point 

state. Thus, ∆𝑁 that follow stimulus presentation is the change from s-value of zero-

point to s-value of an arbitrary state which is a function of the intensity of the 

stimulus. Thus the change in s-value of the system, ∆𝑁, equals the standard change 

in s-value of the defined system, ∆𝑁o. That is, 

∆𝑁 = ∆𝑁o 

 

We, therefore, can determine the change in s-value of the system from zero-point to 

the 𝑁𝑚 state by substituiting ∆𝑁 for ∆𝑁o in equation 8. 

                                                ∆𝑁 =  𝑁0 + ∑(∆𝐍̆)𝑗

𝑚

𝑗=1

                                                                 (9) 

 

Unlike the standard change in s-value, the change in s-value, ∆𝑁, of the defined 

system can be determined for any two nonzero-point states of the system. For 

example, the change in s-value of the system from the 𝑗𝑡ℎ to the  (𝑗 + 1)𝑡ℎ state of 

the system is: 

  ∆𝑁 =  𝑁0 + ((𝑗 + 1) − 𝑗)∆𝑁o 

= ∆𝑁o       

Where, 

𝑗 ≠ 0               

And 

(𝑗 + 1) ≠ 0                          

 

Order number and the state of the defined system: 

13. We defined the delta drift as involving a series of changes in states of properties; 

with such changes following change in state(s) of [an] initial property(s). For 

example, a change in the state of a primary property may directly result in changes 

in respective states of additional properties (secondary properties). In turn, changes 

in respective states of secondary properties may directly result in changes in 

respective states of tertiary properties. Refer to Figure 1.4 for an illustration. Based 

on this scheme, it is possible that not all properties of a system are directly affected 

by change at a primary property. In essence, there is a network structure to the 
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relationships between properties of the system. For this reason, we categorize each 

affected property into an order-based schematic.  

 

14. Assuming a single primary property. We consider the primary property as occurring 

at the lowest order. In relation to secondary property, we consider the primary 

property as occurring at a lower order. In relation to the primary property, we 

consider secondary properties as occurring at a higher order. We can apply the 

same logic for all other properties: if change in s-value of a property directly affects 

change in s-value of another property, then the former property can be said to incite 

the latter. We designate the former a lower order property, and latter, a higher order 

property.  

 

 

We consider the primary property as occupying a 0th order. We consider all 

secondary properties for a given primary property as occupying a 1st order. We 

consider all tertiary properties as occupying a 2nd order. The pattern of ordering 

may continue up to the highest possible order, ; where the number of properties 

for  orders is the property number, Ñ. Thus, for  orders, the sequence of orders is:  

{0, … … ,} 

Where  is a function of the given primary property. Note that even if the value of  

differs for different primary properties, the number of properties, Ñ, is a constant 

for the defined system. Although we suppose that a change in state of a given 

property can directly affect changes in states of one or multiple properties, this one 

property effect on many does not hold true for multiple property effects on one. 

That is, we assume that a given non-primary property can be directly affected by 

change in the state of only one property. For instance, a given tertiary property can 

only be affected by state changes of a single secondary property, and state changes 

of a given quaternary property derives from state changes of a single tertiary 

property. This, again, is done for simplicity. 
 

15. We define an ordinal drift number, 𝑢𝝎 as the total number of affected properties, 𝑢, 

of a given order, 𝜔. For example, the ordinal drift number for the first order, 𝑢1, is 

the sum total number of secondary properties with altered states –from an initial 

zero-point state – following effects of stimulus at a primary property.  The ordinal 

drift number for the second order, 𝑢2, is the total number of tertiary properties 

whose states are directly affected by changes in states of all secondary properties. 

Since we assume that the zeroth order consist of a single [primary] property, the 

ordinal drift number of the zeroth order, 𝑢0, is therefore: 

𝑢0 = 1 
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The drift number, 𝑵, can therefore be expressed as the sum of ordinal drift numbers 

from all orders of deviation. That is for a primary property and system, the drift 

number when properties of the ℎ𝑡ℎ order are affected is: 

                                𝑵 = 𝑢0 + ∑ 𝑢ℎ

ℎ=1

= 𝑢0 + ⋯ + 𝑢ℎ + ⋯                           

Since,  

𝑵 = 𝑁𝑗 = ∆𝑁   

We can therefore express the change in s-value of the system from zero-point state

 as: 

                                         ∆𝑁 = 𝑢0 + ∑ 𝑢ℎ

ℎ=1

= 𝑢0 + ⋯ + 𝑢ℎ + ⋯                                       (10) 

                                                   

Revised definition of failure state: 

16. From the information presented above, the change in s-value of the system from 

zero-point to failure state is: 

                          ∆𝑁 = 𝑢0 + ∑ 𝑢ℎ



ℎ=1

= 𝑢0 + ⋯ + 𝑢ℎ + ⋯ + 𝑢 =  Ñ − 0                                                  

                                   

 

Drift segment and path: 

17. In some instances, we may want to consider some but not all properties affected by 

delta drift. Thus, it is important we discuss some of the terminologies that we will 

apply to this end. A drift segment is a component of the total number of properties 

affected by change in s-value of a single property. The drift path is a sequence of 

affected properties along contiguous orders and consists of a single property per 

order.  Refer to figure 1.5 for an illustration of drift segment and path. 
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A.  
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B.                

 

Figure 1.4A. A 2-dimensional rendition of the delta drift hypothesis. Unlike figure 1.3, it shows the series of changes 
in states of properties that can originate from stimulus presentation at a single [primary] property of the system. It is 

important to note that although the figure shows symmetric changes at non-primary properties, there is no 
requirement that this must be the case. That is, changing states of properties that follow directly (secondary properties) 
or indirectly (higher order properties) from the primary property can occur in an asymmetric fashion (refer to Figure 
1.4B). In addition, each property may have varied effects or, two or more properties have, convergent effects on other 

properties of the system. Thus, a much more complicated linkage of properties may occur. For both illustrations, 
observe the number designations given to each affected property, we employ this technique as a means of property 
“book-keeping”.  
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Figure 1.5. An illustration of a drift segment (A and B), and drift paths (C and D) for figure 1.4A. 

 

Effects of stimuli on obligate regulators: Functional responses: 

18. Here we define a counterpart to the obligate conformer, an obligate regulator, as a 

biological system with a capacity to elicit, at least a single functional response, 

following deviation of both states of properties and defined system. Hence, for the 

obligate regulator system, all deviation responses are followed by (or occur 

concurrently with) at least a single concomitant functional response.  

 

The output of a functional response, its yield, attempts at preventing from reaching 

failure state. Thus, functional response(s) prevent the drift number from reaching 

the property number. Henceforth we refer to the yield, as the yield of functional 
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response (YFR). We define a second measure, the corrected drift change, ∆𝑁′, as the 

difference between the drift number post-YFR, 𝑁po, and the drift number value 

prior-to-YFR, 𝑁pr. While the latter drift number represents the drift number 

following presentation of stimulus of a given intensity (but not the required YFR), 

the former represents the drift number following both the stimulus and YFR. 

∆𝑁′ = 𝑁po − 𝑁pr 

Note,  

1)  if ∆𝑁′ > 0, then 𝑁po > 𝑁pr;  

2)  if ∆𝑁′ < 0, then 𝑁po < 𝑁pr; 

3)  if ∆𝑁′ = 0, then 𝑁po = 𝑁pr. 

Since functional responses attempt to prevent from reaching failure, we suppose 

that: the effect of YFRs on the system is such that: 

∆𝑁′ ≤ 0 

 

Of the conditions listed above, only 2 and 3 satisfy the requirement. Condition (2) by 

reverting the state of the system in the direction away from failure state in the 

presence or absence of an inciting factor; or (3) stabilizing the state of the system so 

as not to allow for further deviation towards failure. Thus, we can conclude that 

YFRs affect a corrected drift change for the system. If the yield is an appropriate YFR, 

then it returns the system to zero-point state. That is, an appropriate YFR results in: 

𝑁po = 𝑁0 

 

Here we shall define some key features of YFRs: 

a. YFRs affect change in drift number via their effects on the system at the 

property level.  

 

b. No two or more properties are affected by the same functional response 

and/or YFRs. That is, a YFR can directly affect only the change in s-value of a 

single property. 

 

c. On the other hand, two or more functional responses and their YFRs may 

affect the same property. 

 

d. Effects of YFR on an affected property is an attempt at returning the property 

to its zero-point state. This can only prevent further changes in higher order 
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properties with deviation responses that follow from changes in state of said 

property. Refer to the next section for an explanation of this point.  

 

e. YFRs affect s-values of properties such that further changes, and thus the 

degree of change from property zero-point state is diminished. Hence we can 

define the state of a property, 𝑥𝑖 , as a mathematical function of the YFR, 𝑌. 

 

States of both the system and of higher order properties are non-

rectifiable by means of reverse changes to intensity of stimulus and/or 

lower order properties: 

19. Although we state that deviation in the state of the system can occur following 

presentation of stimulus, the same does not hold true for reverse changes. That is, a 

decrease in intensity of stimulus (to conditions prior to stimulus presentation) does 

not drive the systemic state toward zero-point. Similarly, reversal of deviated states 

of all other properties does not result from reversal of the s-value for the inciting 

lower order property. For example, reestablishment of zero-point state of the 

primary property does not affect return of other deviated properties to their zero-

point states. Thus, these properties are non-rectifiable by such means. In order for 

such properties to return to zero-point state, each property must instead be affected 

by one or more functional responses defined for the specific property. It is by such 

means that the system can be returned to its zero-point state. However, as we shall 

discuss later, functional responses are an exception to this rule. 
 

A functional response at a single (primary) property:  

20. For simplicity, we focus on a single functional response and its effect(s) on the 

system. We shall focus on the property which when affected by a functional 

response will affect the minimum corrected drift change.  

 

Although a functional response that returns any one property with a non-zero state 

to zero-point can, in principle, affect the corrected drift change. The degree of such 

change depends on the number of higher order properties whose respective states 

are affected following return to zero-point state of the given lower order property.  

 

Thus, if change in state of a property results in deviation (via delta drift) of states of 

a greater number of systemic properties than a reference, then prevention of further 

deviation away from zero-point state of this property should result a higher 

corrected drift change than if change in state of the property results in deviation of 

states of a smaller number of properties than the reference.  
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Of all properties whose states are either directly or indirectly affected by a given 

stimulus, the primary property affects the maximum number of properties of the 

system. We arrive at this conclusion from realization that changes in states of all 

affected properties must have derived from change in state of primary property. 

Thus, prevention of further deviation from zero-point state of the primary property 

should prevent further deviation of states of all affected properties. Also, since 

change in state of primary property incites changes in states of all affected 

properties, it should also hold that functional responses and appropriate YFRs 

involving this [primary] property at least result in ∆𝑁′ = 0. We shall therefore focus 

the discourse on presenting stimulus, functional response, and YFR at primary 

properties. 

 

Functional responses and YFRs as properties of the system: 

21. Since Functional responses and their YFRs are derived from the system, it should 

follow then that these are themselves properties of the system, and thus have 

defined zero-point states. Functional responses following after a stimulus and 

change in property state are themselves deviated from their respective zero-point 

states. These properties can be returned to their respective zero-point states via 

either one or all of the following means: other functional responses and YFRs; 

indirect and self-rectifying –by reverting states of properties whose initial state 

changes incited the functional response; or a combination of these means.  

 

Natural stimulus-functional response pairing: 

22. Since a given stimulus affects a system at a single property, and a functional 

response affects reverse deviation of the state of a single property, it should follow 

then that for a given property, we can define a stimulus and its functional 

response(s). By way of their shared relationships to the property, we term these 

natural stimulus-functional response pairs. That is, occurrence of a stimulus is 

always followed by occurrence of the functional response, as long as the system is 

an obligate regulator and there is change in state of the given property. If a given 

stimulus presents, and change in state of a property follows presentation of 

stimulus, then the natural functional response must also follow in attempts to revert 

the state of the property to zero-point. If change in s-value of property and 

functional response, then natural stimulus for the functional response must have 

occurred. We shall discuss variations to these pairings in a different work. It must 

also be stated that a natural stimulus and its functional response affect inverse 

changes in the state of the property. For example, if increase in ambient 

temperature affects an increase in temperature of the system, and a functional 

response to the property defined as temperature reduces the s-value of this 

property, then both increase in ambient temperature and the functional response 
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that decreases systemic temperature make up a natural stimulus-functional 

response pair. 

 

The Rate of delta drift and determinants of the deviation 

interval 

Let presentation of a stimulus at a property of an obligate conformer system occur when 

drift number of the system is zero, 𝑵 = 0. Let us also suppose that the intensity of the given 

stimulus is such that it results in deviation from zero-point to failure state. Thus, the rate at 

which the drift number, 𝑵, approaches the property number, Ñ, is the ratio of the difference 

between these measures to the duration of drift. We shall refer to the duration of delta drift 

toward failure state as the delay interval. The delay interval is therefore the interval of time 

that must elapse for transition from a zero-point state of the system, (𝑵 = 0), to failure 

state (𝑵 = Ñ), following presentation of stimulus. That is, it is the length of time from the 

initial change in state of the primary property, 𝑡𝑑𝑖
 to the moment, 𝑡𝑑𝑓

, when a change in 

states of all properties of the system is affected; with all changes resulting in nonzero-point 

states at all properties. Thus, the drift rate from zero-point state of the system is: 

Drift rate =
(Ñ − 0)

(𝑡𝑑𝑓
− 𝑡𝑑𝑖

)
 

The drift rate from any given initial state of the system is: 

Drift rate =
(Ñ − 𝑁)

(𝑡𝑑𝑓
− 𝑡𝑑𝑖

)
 

Factors that affect the drift rate following presentation of stimulus at a single property are 

the intensity of presenting stimulus and the number of orders for the primary property. 
 

On the intensity of presenting stimulus: 

23. Let us suppose an obligate regulator system, with capacity to rectify systemic state 

following stimuli. That is, following presentation of stimulus, an appropriate YFR 

returns both the affected property and system to respective initial zero-point states. 

It should follow that the corrected drift change, ∆𝑁′, is: 

∆𝑁′ < 0 

We define a stimulus pulse as a brief period of stimulus presentation that has the 

same duration at every presentation. We suppose that presentation of a single pulse 

is such that it just provokes a quantifiable YFR, albeit indirectly.  

 

We shall quantify the intensity of the presenting stimulus to a primary property 
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with respect to the YFR that follows stimulus presentation at the property and 

attempts reversion of systemic state. Thus, the intensity of a single stimulus pulse 

can be considered to be equal in magnitude to the resultant YFR that follows the 

given pulse. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝐼, 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑢𝑙𝑠𝑒 = 𝑌 

 

Let us suppose a tandem of 𝑛 stimulus pulses are presented to an obligate 

conformer system. Since there are no functional responses for the conformer 

system, the length of the interval of time between pulses, pulse interval, does not 

determine whether or not the system reaches failure state. That is, following 

presentation of stimulus pulse(s) the drift number of the system increases and 

remains at the given value. Thus, no matter the pulse interval chosen, there is an 

aggregate effect of stimulus pulses. The intensity of stimulus for 𝑛 pulses is 

therefore: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝐼, 𝑜𝑓 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 = 𝑛𝑌 

 

Let us suppose the same tandem of 𝑛 stimulus pulses are presented to an obligate 

regulator system. For simplicity, we suppose that following stimulus presentation, 

sufficient time is allowed for appropriate YFR. In other words, the property must be 

allowed to return to zero-point state following each pulse and prior to presentation 

of a subsequent pulse. Hence, the pulse interval must be equal-to or greater-than the 

lag interval for functional response. We define the lag interval as a measure from the 

moment of initial onset of functional response, 𝑡𝐿𝑖
, at the primary property, to the 

moment at which effects of an appropriate YFR occur, 𝑡𝐿𝑓
. Since the system is 

rectifiable, and thus returned to zero-point state before presentation of a 

subsequent stimulus pulse, it should follow that effect(s) of each stimulus pulse is 

isolated from those of subsequent pulses. Thus, the aggregate intensity of such 

stimulus pulses is equal in magnitude to the intensity of a single pulse. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝐼, 𝑜𝑓 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 = 𝑌 

 

Let us now suppose gradual reduction in pulse interval, with no change to the length 

of lag interval. It should hold that with such reductions a point would be reached at 

which the pulse interval is just less than lag interval.  
 

At this point the system no longer returns to a zero-point state before onset of 

subsequent pulses. That is, the effect of a preceding pulse is not completely rectified 

before onset of a subsequent pulse. The degree to which these effects are corrected 
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should decrease with decreasing pulse interval. We define a measure, Q𝑝𝐿 , as the 

ratio of pulse interval to lag interval, Q𝑝𝐿 .  

Q𝑝𝐿 ≝
(𝑡𝑝𝑓

− 𝑡𝑝𝑖
)

(𝑡𝐿𝑓
− 𝑡𝐿𝑖

)
 

With further reduction in pulse interval, a point at which the pulse interval 

approaches zero would be reached. When pulse interval equals zero, stimulus 

pulses would occur simultaneously. Since the pulse interval does not determine 

whether an obligate conformer system reaches failure state, the intensity of 

stimulus for 𝑛 stimulus pulses occurring simultaneously and presented to an 

obligate conformer system is: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝐼, 𝑜𝑓 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 = 𝑛𝑌 

Similarly, since presentation of simultaneous pulses to an obligate regulator precede 

initiation of functional responses, the obligate regulator system would be no 

different from the obligate conformer. Thus, for the obligate regulator, the intensity 

of stimulus for 𝑛 pulses occurring simultaneously is: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠, 𝐼, 𝑜𝑓 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 = 𝑛𝑌 

 

24. To factor in overlap of stimulus pulses in determination of intensity of stimulus 

presenting to an obligate regulator system, we define a cumulative factor. The 

cumulative factor, 𝐶𝑓 , is a measure of the overlapping effect of stimulus pulses.  

𝐶𝑓 ≝ 𝑒−Q𝑝𝐿 

Since the initial pulse is not preceded by pulse(s), we describe its effect as an initial 

to which all other effects are added. Thus, for 𝑛 pulses, the number of pulses which 

have a potential cumulative effect must be the difference between the total number 

of pulses and the initial pulse. That is: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑙𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 = 𝑛𝑌 − 𝑌 

The cumulative intensities of 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 is therefore: 
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 = (𝑛𝑌 − 𝑌)𝐶𝑓 

Substituting for 𝐶𝑓,  

               𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑛 𝑝𝑢𝑙𝑠𝑒𝑠 = (𝑛𝑌 − 𝑌)𝑒−Q𝑝𝐿       

                                                                             = 𝑌(𝑛 − 1)𝑒−Q𝑝𝐿  

Total intensity of 𝑛 pulses, 𝐼, is therefore the sum of intensity of initial pulse and 

cumulative intensity of 𝑛 pulses. 
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                                  𝐼 = 𝑌 + 𝑌(𝑛 − 1)𝑒−Q𝑝𝐿         

                                                                            = 𝑌[1 + (𝑛 − 1)𝑒−Q𝑝𝐿]                                   (11) 

 

 

                                                

 

Figure 1.6. Shows the relationship between stimulus pulses and a functional response interval, the pulse interval and 

lag interval, respectively. Here we suppose a fixed lag interval for a functional response, and a decreasing pulse 
interval. (A) Note that the lag interval is less than the pulse interval, but eventually (B), (C) the pulse interval decreases 
to a value less than the lag interval. (D) Simultaneous presentation of two pulses. Note that this illustration is not 
drawn to scale. 

 

Thus, the drift rate is proportional to the intensity of stimulus: 

Drift rate ∝ 𝐼 

 

Total number of orders affected by changes in state of primary property: 

Let initial changes in respective states of lower order properties occur earlier than those of 
higher order properties. We can think of this as a wave of changes propagating outwards 

from the primary property to the highest order which may be 𝑡ℎ order for an obligate 
conformer system. Thus, for the obligate conformer, as   increases so too would the length 
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of time required for drift from zeroth to 𝑡ℎ order. Thus, the drift rate is proportional to the 

total number of orders for the given primary property. 

Drift rate ∝
1


 

We refer to those properties that may affect extremely high drift rates, by way of affecting a 
lower  value, as critical properties. The drift rate can therefore be expressed as: 

                                                                    Drift rate =
𝑘𝐼


                                                                    (12)  

Where, 

𝑘 = Proportionality constant  

 

Substituting  for 𝐼 in equation 12 

                                         Drift rate =
(Ñ − 𝑁)

(𝑡𝑑𝑓
− 𝑡𝑑𝑖

)
=

𝑘𝑌[1 + (𝑛 − 1)𝑒−Q𝑝𝐿]


                                

Solving for the delay interval: 

 

                                                                 (𝑡𝑑𝑓
− 𝑡𝑑𝑖

) =  
(Ñ − 𝑁)

𝑘𝑌[1 + (𝑛 − 1)𝑒−Q𝑝𝐿]
                               (13) 

 

 

 

First measure of systemic failure: Delay-lag interval quotient, 

QdL as a measure of the inverse likelihood of failure: 

25. Let us suppose that both a deviation response and at least one functional response 

follow immediately after presentation of a stimulus. The delay and lag intervals 

were previously defined. Here we define a measure the quotient of delay and lag 

interval, 𝑄𝑑𝐿 , as the ratio of delay interval to lag interval: 

𝑄𝑑𝐿 =
(𝑡𝑑𝑓

− 𝑡𝑑𝑖
)

(𝑡𝐿𝑓
− 𝑡𝐿𝑖

)
 

 

We use this as a measure of the likelihood that a regulator system does reaches 

failure state, 𝐓1. In other words, 𝐓1 is the inverse likelihood of systemic failure: 
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𝐓1 = {
0, 𝑄𝑑𝐿 < 1
1, 𝑄𝑑𝐿 ≥ 1

 

If the lag interval is greater than the delay interval, then the inverse likelihood of 

systemic failure, 𝐓𝟏 is: 

𝐓1 = 0 

This is the highest likelihood that the system will reach failure state following a 

stimulus of a given intensity. Refer to figure 1.7A for illustration. On the other hand, 

if the length of lag interval is less than or equal to the delay interval, then the inverse 

likelihood of failure, 𝐓1 is: 

𝐓1 = 1 

This is the least likelihood that the system will reach failure state following stimulus 

of a given intensity. Refer to figure 1.7B and C for illustration. 

We can conclude then that in order to prevent a regulator system from reaching 

failure state, the required functional response(s) must affect the appropriate YFR 

before the full extent of delay interval. In other words, the length of lag interval must 

be less than or equal the delay interval.  
 

Second measure of systemic failure: A measure of the inverse 

predisposition to failure. 

26. The measure of inverse likelihood of systemic failure, is a binary measure and 

therefore fails to appropriately differentiate between two 𝑄𝑑𝐿 values greater than 1. 

For example, suppose we aim to compare the rates of two 𝑄𝑑𝐿 values: 𝑄𝑑𝐿1
 and 

𝑄𝑑𝐿2
with: 

𝑄𝑑𝐿1
> 1 

and 

𝑄𝑑𝐿2
> 1 

but 

𝑄𝑑𝐿1
≫ 𝑄𝑑𝐿2

 

The inverse likelihood of failure for both quotient values is: 

𝐓1 = 1 
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However, there is no information about the state of the system following a stimulus 

presentation and YFR. That 𝑄𝑑𝐿1
is greater than 𝑄𝑑𝐿2

 is not accounted for. Secondly, 

in the case of a 𝑄𝑑𝐿 value equal to unity, that is: 

𝑄𝑑𝐿 = 1 

the inverse likelihood of systemic failure is considered to be the same as for a 𝑄𝑑𝐿 

value far greater than unity. However, for the 𝑄𝑑𝐿 value of unity, an appropriate YFR 

occurs just at the moment when a change in states of all properties of the system is 

to be affected. That is, the state of the system has approximated the failure state. 

To assess the consequence of such differences on the state of the system, we 

introduce a second measure, an inverse predisposition to systemic failure, 𝐓2 which 

assesses the state of a system following both stimulus and YFR. In addition, 𝐓2 gives 

an indication of how well the system can tolerate a subsequent stimulus at its 

current state. Hence the term “predisposition”. We defined a measure of the 

distance to failure as the difference between the property number and the drift 

number. We can gauge the distance to failure as the ratio of the difference between 

property number and drift number to the property number. That is, 

Ñ − 𝑁

Ñ
= 1 −

𝑁

Ñ
 

Note that when: 

𝑁

Ñ
= 0 

Then, 𝑁 = 0, 

And 

1 −
𝑁

Ñ
= 1 

 

In other words, the system is least likely to reach failure state if a second stimulus is

 presented. On the other hand, when:  

𝑁

Ñ
= 1 

Then, 𝑁 = Ñ, 

And 
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1 −
𝑁

Ñ
= 0 
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Figure 1.7. Compares interval lengths between delay interval (gray arrow bounded by red boxes) and lag interval (black 
arrow bounded by red boxes). (A) Depicts a situation wherein the lag interval is greater than the delay interval, thus 

the rate of drift (and therefore deviation response) is greater than the rate of functional response and availability of 
appropriate YFR. (B) Depicts a situation wherein the lag interval equals the delay interval, thus the deviation response 
occurs at the same rate as functional response and availability of appropriate YFR. (C) Depicts a situation wherein the 
lag interval is less than the delay interval, thus the rate of deviation response is less than the rate of functional 

response and availability of appropriate YFR. Note that this illustration is not drawn to scale. 
 

In other words, the system is most likely to reach failure state if a second stimulus is 

presented. Note that unlike the first measure, the second measure can take on other 

values between zero and unity, with the minimum and maximum predisposition 

values occurring at zero and unity respectively. That is: 

𝐓2 = 0,    𝑖𝑓 1 −
𝑁

Ñ
= 0 

 

𝐓2 = 1,    𝑖𝑓 1 −
𝑁

Ñ
= 1 

 

 If used alone, this measure gives no information on the delay interval, which carries 

information on the intensity of the inciting stimulus. Thus, we resolve the issue by 

taking an aggregate measure of failure, ℶ:  

                                                                        ℶ = 1 − 𝐓1𝐓2                                                                    (14) 

 

Conclusion 

From the above discussions, we introduce a set of assumptions that would guide how we 

approach future work(s). 

1. The ultimate significance of biological functions is prevention of failure of the system:  

To demonstrate this, we have repeatedly compared two hypothetical systems, 

obligate conformers and regulators, with the former described as a system without 

functional responses, and thus no YFRs. Therefore, for such a system, the aggregate 

measure of failure depends on the nature and intensity of stimulus. On the other 

hand, the regulator, which only differs from the conformer by its ability to elicit a 

functional response and YFR, would have a lower aggregate measure, than its 

conformer counterpart. Thus, the significance of these biological functions to the 

systems that possess them are their ability to prevent systemic failure. 

 

2. Real biological systems attempt the functionality of ideal regulator systems:  

An ideal regulator system is a system that is constantly at zero-point state: 

irrespective of nature, intensity, or spontaneity of presented stimulus. Thus, the 

inverse likelihood of failure is always at a maximum for an ideal regulator. Since the 
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increase in intensity of stimulus results in a decrease in delay interval, it should 

follow that for a constant lag interval, the 𝑄𝑑𝐿 ratio decreases, hence a decrease in 

inverse likelihood of failure. It must hold that for an ideal regulator to maintain 

systemic zero-point state even with such varying delay intervals, it must affect 

functional responses with lag intervals always less than delay intervals. Thus, 𝑄𝑑𝐿 is 

always greater than unity irrespective of the extent of reduction in delay interval. A 

second attribute of an ideal regulator is that the inverse predisposition to systemic 

failure following a subsequent stimulus is at a maximum, since ideal regulators 

maintain their systemic zero-point state. Thus, the aggregate measure is at a 

minimum value of zero. 

 ℶ = 1 − 𝐓1𝐓2 = 0 

As stated in the opening, attempt refers to initiation of phenomena that may or may 

not affect a defined outcome. Functionality refers to the effectiveness of all 

functional responses; which is the extent to which all functional responses prevent 

changes in states of respective properties. Since a zero-point state is maintained for 

all properties of an ideal regulator, irrespective of the nature and intensity of 

presented stimulus, it should follow that this is the maximum functionality that can 

be attained. It is obvious that real systems do not attain such functionality, however 

we assume that functional responses of real systems approach, but do not reach, 

this maximum.  
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My apologies for any errors that may be present in the mathematical formulations and overall outline. Please notify 

the corresponding author if such errors are appreciated and limit comprehension of the material.  
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