. The Charming Code that Error Messages
. are Talking About

s Joshua Charles Campbell' and Abram Hindle!

+ 'Department of Computing Science, University of Alberta, Edmonton, Canada

ABSTRACT

o

The intent of high test coverage is to ensure that the dark nooks and crannies of code
are exercised and tested. In a language like Python this is especially important as
syntax errors can lurk in unevaluated blocks, only to be discovered once they are
finally executed. Bugs that present themselves as error messages mentioning a line
of code which is unrelated to the cause of the bug can be difficult and time-consuming
to fix when a developer must first determine the actual location of the fault.
A new code metric, charm, is presented. Charm can be used by developers, re-
searchers, and automated tools to gain a deeper understanding of source code and
become aware of potentially hidden faults, areas of code which are not sufficiently
tested, and areas of code which may be more difficult to debug. Charm quantifies the
6 property that error messges caused by a fault at one location don’t always reference
that location. In fact, error messages seem to prefer to reference some locations far
more often than others. The quantity of charm can be estimated by averaging results
from a random sample of similar programs to the one being measured by a procedure
of random-mutation testing. Charm is estimated for release-quality Python software,
requiring many thousands of similar Python programs to be executed. Charm has
some correlation with a standard software metric, cyclomatic complexity. 21 code fea-
tures which may have some relationship with charm and cyclomatic complexity are
investigated, of which five are found to be significantly related with charm. These
five features are then used to build a linear model which attempts to estimate charm
cheaply.

7 Keywords: Mutation Testing, Software metrics, Complexity

s 1 INTRODUCTION

s Complexity measures for software have always enticed software engineers [8, 21]. The
10 idea that code can be ranked by its complexity and thus prioritized for testing and code
11 inspection has always been interesting.

12 This interest later motivated automatic test-case generation, random testing, and
13 mutation testing. One of the issues with random search and testing of source code is
12 not all mutations or mutation sites are created equal.

15 This work introduces the idea of code charm. Code charm is the ability of certain
16 kinds of code to attract errors and error messages. Sometimes an error in another part
17 of the file will induce an error message that reports the wrong location. It turns out

1
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

18 these wrong locations follow a certain distribution, which can be measured. Some of
19 the wrong locations that error messages report are surprisingly common.

Charming code is code that attracts the error messages of other code to itself.
20 | Charming code aggregates error messages, some of which do not belong to the
charming code.

21 Knowing about the properties of both charmless and charming code can help mu-
22 tation testing search for good locations to elicit failures in testing. These general prop-
23 erties can be used to provide guidelines to developers about code that should be tested
24 due to its ability to hide errors.

» 1.1 Conceptual Charm
26 The following code illustrates an extremely simple Python program which sets two
27 variables and then sets a third variable to the sum of the first two variables.

b4 = 1
y = 2
total = x + vy
28 If the program has a fault on line 1, for example an incorrect type, then the error

20 message will be produced on line 3, as in the following example.

X = """ # Oops, wrong type! Charmless!
y = 2
total = x + y # TypeError here! Charmed!

30 However, if the program had, for example, a misspelled variable on line 3, then the
st error message would also appear on line 3.

b = 1 # should x be ex? Charmless!
y = 2
total = ex + y # Fault and error here! Charmed!
32 From these two examples, we can see that there is something different about line

33 3 compared to line 1. This difference is apparent even if one does not know what the
s« code actually does.

35 Charm is a quantification of this property of source code. It does not require careful
s static analysis either by a human or a machine other than executing the software in
a7 question. Additionally, it is a single number which expresses a property that arises
ss from the complex interactions of many pieces in a program and the environment in
s which it is executed.

2/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

» 1.2 Technical Introduction

s+ Charm is a measure, in the mathematical sense, of a particular piece of code. That
22 code can be a line, a block, a class, a file, or any other subset of a larger code base. It
a3 is the difference between the number of errors a piece of code would ideally produce
s+ under mutation testing (one for each mutation) and the number of errors that same piece
s actually produces under mutation testing, relative to the average piece of code. If charm
s 1s computed per line, then it is relative to the average line. If charm is computed per
a7 block, then it is relative to the average block. In the latter scenario, charm is measured
ss directly by applying the following formula:

errors this block — mutations this block

average mutations per block

49 In this formula, mutations per block divided by the average mutations per block is
so determined by the estimation procedure used but approaches, in the limit, the number
st of syntactic elements in this block divided by the average syntactic elements per block.

52 e charm > 0 — Positive charm: for example, if a line has 5 charm, it produces 5
53 times as many errors as a typical line would have by being mutated. This implies
54 that the errors caused by other lines being mutated are showing up on this line.
55 e charm = 0 — Neutral charm. For example, if a line has 0 charm, it produces
56 errors as often as it is mutated.

57 e charm < 0 — Negative charm. For example, if a line has -2 charm, it produces
58 few errors and is longer or more complex than an average line of code. This
59 indicates that the mutating this line either caused errors on another line, or that
60 mutating this line did not always cause an error.

+ 2 CONTRIBUTIONS

o0

62 e A new software metric, charm, used to indicate the error response under mutation
63 testing of a subset of program.
64 e Comparison of charm with another standard software metric, cyclomatic com-
65 plexity.
66 e Comparison of charm with easily obtainable software features, such as indenta-
67 tion and keywords.
68 e Analysis and interpretation examples of charm results.
69 e A method for estimating charm cheaply.
70 e Recommendation for software engineers on how to use charm when testing their
7 software.

3/24

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

72 The data in this paper summarizes the output from 880 000 different programs.
73 These programs are each mutations of one of 22 Python programs, but by treating them
7+ as individual programs we enable exploration of the space of all possible programs.

75 Each data point can be analyzed individually, tracing the chain of cause and effect
76 through the system, from the code of that individual program to its eventual output. This
77 analysis would undoubtedly yield valuable information and it is the type of analysis that
78 the field of computer science is based on.

79 However, in comparison with the traditions of static program analysis and debug-
so ging, this work presents an attempt to empirically quantify a property of software that
st 1s relevant to everyday software engineering. Though this property is produced by the
&2 deterministic behaviour of a system, randomness is introduced artificially and automat-
ss ically in order to characterize Python error messages by their average behaviour.

84 Each program written by a human represents a significant cost, in terms of that per-
ss son’s time and effort if not a direct monetary cost. Therefore, the number of programs
s that humans have written is infinitesimal compared to the infinite number of all possible
&7 Python programs. Inside that set of all possible Python programs, there are programs
ss which are extremely close to each program written by a human programmer. In fact,
so there are a practically unexhaustable number of such near-by programs. It makes sense
o to define what it means for two programs to be close or similar to each other by using
o1 a standard metric such as edit distance, also known as the Levenshtein distance. This
o2 metric is not only applied in the field of computer science, but by geneticists to deter-
93 mine the similarity of genetic code [24] and by linguists [27] to determine the similarity
o« of natural language text.

95 In this paper we sample randomly from the neighborhood of programs around 22
o6 Python programs written by human authors. Then that neighborhood can be charac-
o7 terized by averaging results from a simple test: whether or not each sampled program
98 returns an error on a particular line or block. After averaging, a vector of real numbers
99 are obtained that represents a property of that gigantic neighborhood which surrounds
100 a single valuable program.

101 The procedure used in this paper is not just about characterizing one program. In-
102 stead, the procedure used in this paper characterizes a huge number of programs, and
103 acquires information which is not obtainable through statically analyzing a single pro-
14 gram. This information is relevant to the original program, because the original pro-
15 gram at the center of the huge set of programs being characterized, and each one of
106 those programs is extremely similar to the original program.

107 It is most often the case that a program that is written is close to or extremely similar
10e to a desired program that produces the desired results. Closing this gap is one of the
100 fundamental goals of software engineering research, and this paper works to close it,
110 even if just by one edit, in a novel and hopefully helpful way.

111 This paper attempts to achieve that goal by providing a method for software engi-
112 neers to become aware of the average behavior of Python error messages. Error mes-
113 sages are relevant to the software engineer because they are an important indication of
114 a fault in software. Misleading error messages, such as error messages that show the
115 wrong location in the code, require the software engineer to find the correct location as
116 well as debug the code in that location.

4/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

7 Another situation that can occur is that no error message is produced at all, even
11s though the program has a fault at some location. Charm also captures this information
119 1n a simple, numerical, way. It is often the case that the original program does produce
120 the desired results and that those results should ideally stay the same even while the
121 program is developed or extended further. In this situation, Charm can assist software
122 engineers by characterizing the pieces of code that could have faults added to them and
123 go undetected, even under test suites that achieve 100% coverage.

1

2« 3 MOTIVATION

125 In Campbell et al. [Campbell et al., 3] a software engineering tool, UnnaturalCode,
126 was presented along with a testing framework for that tool and similar tools. This paper
127 does not discuss or apply to UnnaturalCode, but it does make use of the random-edit
122 mutation testing tool which was developed to test the performance of UnnaturalCode.
120 'The random-edit mutation testing tool is a Python implementation of the algorithm in
130 ﬁgure 1.

131 While investigating Python error reporting performance, it was noticed that Python
132 often likes to report error messages on certain lines far more often than others. These
133 errors were caused by mutations that were made at random locations in the source code.
13« Therefore, it was expected that Python would report errors randomly throughout the
135 source code, but this was not the case.

136 After informally investigating where Python commonly reported error messages in
137 the source code, a new metric was created to characterize this effect, the charm. Lines
138 which Python reports more errors on have a high charm, and lines which Python reports
139 fewer errors on have a negative charm.

w 4 PRIOR WORK

141 This work is situated between the worlds of error detection (discussed in the prior
142 section), software complexity metrics, source code structure (indentation), coverage
113 based testing, search based software engineering, mutation-based testing and genetic
144 programming.

s 4.1 Complexity

146 Complexity has been a popular topic since the 1970s as authors tried to characterize
147 code complexity automatically [8, 21]. McCabe’s cyclomatic complexity [21] is still
148 in use today, although some argue it is irrelevant to object-oriented code. Essentially
149 McCabe counts all branch points in a block of code. What is a branch point depends on
150 the implementer of the metric. While if-statements are clearly branch points, sometimes
151 a virtual dispatch operator is a branch, sometimes not. McCabe argues that the more
152 branch points in the graph of control flow in a block code, the more complex it is. In
153 general, there is a probability that a line of code will contain a branch, thus the number
15« of branching lines will often be correlated with the total lines of code. In fact McCabe’s
155 cyclomatic complexity correlates with lines of code, across numerous language and
156 projects, at 0.407 (Spearman’s correlation) [12].

5/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

157 Halstead metrics [8] were posed by Maurice Halstead. These metrics count tokens
158 and provide insight into size, vocabulary, variable counts, operator count, entropy, and
1ss information content [25] of code. Halstead metrics have been criticized for being ill-
10 formulated, but metrics such as Halstead volume are measures of information density
161 versus the number of tokens in a block [25]. Halstead metrics, such as volume, were
12 found to correlate with source code readability.

163 McCabe’s and Halstead metrics are combined to form the Maintainability index [23],
16 Which is commonly used to estimate the maintainability of software. There is some
15 skepticism that these metrics and other metrics like the OO CKJM metrics [4] actually
1es are meaningful [28] and do not overly correlate with size [5].

17 4.2 Indentation

1es Indentation is an interesting indicator of blocks. In Python indentation is semantically
1e0 meaningful and marks the existence of a block. Hindle et al. [12, 11, 10] found that
170 variance in indentation was correlated (Spearman’s p = 0.462) with McCabe’s cyclo-
171 matic complexity across many programming languages. Hindle et al. found that while
172 LOC and McCabe’s often correlate, variance of indentation was more rank correlated
173 with McCabe’s cyclomatic complexity than LOC (0.407).

7« 4.3 Search-Based Software Engineering

175 Search based software engineering (SBSE) applies search techniques such as genetic
176 algorithms and simulated annealing to software engineering [9]. Genetic algorithms
177 and genetic programming applied to source code, testing, and source code generation
17¢ fall under the search-based software engineering umbrella.

179 In terms of the scope of search, which this work is concerned with, prior work
180 by the authors on corporae-based error location are quite relevant as they engage in
181 mutation testing to evaluate error-location [Campbell et al., 3]. Tu et al. [29] find that
1.2 biasing search methods to local scopes improves the performance of some search-based
183 techniques.

124 4.3.1 Random Mutation Testing

185 Mutation testing [16] is a method of checking test-cases and the program itself against
186 corruption of the program. If a test-case cannot detect when a program is mutated, that
17 1s modified arbitrarily, then perhaps the test-case is not achieving the appropriate path
188 coverage, furthermore it might indicate that the computation in part of the program has
189 limited dependency on its state and output. In both cases it can indicate that faults are
190 present. In this paper, charmless code hides these mutations, faults and errors, better
191 than charming code. In terms of concrete tools Jester [22] is one of the oldest and most
1.2 famous mutation testing tools. Many tools followed it and compared against Jester
193 itself and improved on mutation testing [26, 20, 15].

194 Just et al. [17] asked, “Are Mutants a Valid Substitute for Real Faults in Software
165 Testing?” Indeed, they found “73% of real faults are coupled to the mutants generated
196 by commonly used mutation operators.” This provides support for the methodology
197 described in the methodology section that uses mutation operations.

6/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

1s 4.3.2 Genetic Algorithms and Genetic Programming

199 Genetic algorithms are algorithms that represent the search state of a system as set of
200 genes (a vector of features). These features act as input to a function that is evaluated
201 against a utility function. The gene inputs (vector of features) that perform the best
202 against the utility function are selected and mutated further to find possibly better per-
203 forming candidates. Genetic programming is the mutation of source code or ASTs of
204 source in a fashion inspired by genetic mutations that happen to the DNA of living
205 organisms. Genetic programming differs from genetic algorithms in the sense that it
206 works on trees (ASTs) rather than on vectors (genetic algorithms).

207 Mutation-based Program Repair In the presence of errors it has been suggested
208 that possible programs can be mutated and searched to provide mutations that repair
200 faulty software. Forrest et al. [6] and Weimer et al. [30] were credited with successfully
210 demonstrating that fix-patches could be generated by mutation or genetic programming.
211 Programs are mutated and tested against test-cases until they are found to have passed
212 the tests. A patch is extracted as the fix-patch. Dongsun et al. [18] found that by biasing
213 the search function with prior information, they could make templates that had higher
214 1mmediate performance in certain cases of fix patches.

215 4.4 Code Coverage Testing

216 Measuring code coverage of a test suite, the proportion of lines executed while testing,
217 1S a respected and common practice among practitioners. There are many tools [31]
218 that measure and extract code coverage from a test-suite. The general belief is that a
219 high quality test-suite has high coverage.

220 Inozemtseva et al. [14] found that low-moderate correlations between test suite cov-
221 erage and effectiveness. They controlled for the number of tests and different kinds
222 of coverage. They suggest that this indicates test-code-coverage is a poor indicator of
223 test-suite quality. This emphasizes previous results about the effectiveness of coverage-
224 based testing [13].

225 Gligoric et al. [7] investigated code coverage and how to evaluate test-suites. They
226 evaluated many criteria and found branch coverage and an intra-procedural acyclic path
227 coverage had good performance. This is relevant to software metrics such as McCabe’s
228 cyclomatic complexity because it implies that code that has high McCabe’s cyclomatic
220 complexity should be covered.

230 Andrews et al. [1] have combined code coverage and mutation analysis/testing.
231 They found a clear linear correlation (R? > 0.90) between mutation detection ratios
232 and coverage, as well as fault detection ratios and coverage. Essentially code cover-
233 age of test cases correlated with the fault detection ratio from mutation testing. Our
234 findings somewhat complicates and complements this result, because charmless code
235 1S less likely to report errors even if covered.

x 5 METHODOLOGY

27 RQ1 “Is charming code related to another software metric, McCabe’s Cyclomatic
238 Complexity, for each block?” An experiment was performed to determine if the charm
239 was correlated with the McCabe Cyclomatic Complexity (MCC) of the source. Since

7/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

220 both MCC and charm are quantitative measurements based on subsets of some piece of
241 source code, this experiment is designed to determine whether they are capturing the
242 same properties of that piece of source code.

23 RQ2 “What easily extractable features of Python are relevant to charming code?” An
224 experiment was performed to determine what features of a line of Python code were
25 significantly related to the charm, such as language keywords, indentation level, line
246 length, and block length. A 21-way non-factorial analysis of variance was performed
247 using 21 different easily extractable features of each line of code. Each independent
28 feature tested is listed in Table 1. Features were selected as having a significant rela-
2e9 tionship with charm if their p-value was less than 0.01.

250 RQ3 “Can charm be estimated with minimal computational cost?” An experiment
251 was performed to determine whether charm could be estimated using easy-to-compute
252 features and measures of source code. In order to investigate how easily extractable
253 features such as keywords and indentation related to charm, a 21-way non-factorial
254 analysis of variance was performed. Additionally, a linear model was constructed using
255 ordinary least-squares regression. The independent variable was taken to be is charm,
256 and the dependent variables are easily extractable features.

257 An additional 21-way non-factorial analysis of variance was performed with MCC
258 as the independent variable was also performed. Each independent feature tested is
259 listed in Table 2. Features were selected as having a significant relationship with charm
260 or MCC if their p-value, computed with the F'-test, was less than 0.01.

2 5.1 Direct Estimation

262 Direct estimation of charm for each line of a program follows the procedure outlined in
263 figurel. This procedure returns a charm value for each line that approximates the true
264+ charm of that line by using a basic random sampling method. A similar algorithm is
265 applied to measure subsets of a program other than lines.

266 Unfortunately the direct estimation procedure takes a large amount of computa-
267 tional effort. For example, in order to obtain precision to 0.01 charm for a short program
265 consisting of 1000 lexical tokens, the procedure must iterate 1000 * 100> = 10 million
260 times. Precision of the direct estimate is taken to be the standard error of the mean used
270 in the estimate. Thus, 10 million slightly different programs must each be executed!
271 While this is an expensive procedure, it can be easily parallelized using map-reduce
272 techniques because each iteration is independent apart from the stopping condition.

a3 5.2 Experiments

274 Release-quality Python software was used for the experiments presented in this section.
2 The data presented in this paper was obtained from 22 Python 2.7 programs ! consisting
276 of 9807 lines of Python code and 449 code blocks. The data consists of the results of
277 880 000 program executions. Every estimated charm results for every line and block is

278 significant to 0.1 charm. Gathering this data required one week on a single Intel Core
279 17 3770K CPU.

IThe files/programs used shared at http: //github.com/orezpraw/CharmedDataSet

8/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

http://github.com/orezpraw/CharmedDataSet

1: procedure CHARMPERLINE(p, 8,,4x) > Measure charm directly for a program p.
2: P11 > Treat program p as a vector of lines.
3: Ty » < lex(p) > Lexically analyse program p into n lexemes.
4: mp |+ 0 > Initialize the count of mutations made to each line to O.
5: P+ 0 > Initialize the count of errors reported on each line to O.
6: M <0 > Initialize mutations made to the program overall to O.
7: 0 <+ oo > Initialize the upper bound of the standard error in the mean charm to
infinity.
8: while 8 > 6,,,, do 1> Iterate until the standard error of the sampled charm falls
below threshold 6,4
9: i+ U({l,2,...,n}) > Choose a uniformly random position of a lexeme in
the program.
10: < U({1,2,...,n})
11: T« {N, T, ... T—2,T;-1,Tj,Tix1, Ti42, ..., Tn }
12: > Replace the lexeme at position i with the lexeme at position j.
13: p' + join(T") > Reconstruct an executable program p’.
14: e + executeAndReturnLineOfError(p’) > Run p’ and record the line
number of the error, if any.
15: Mineof(r;) < "ineof(r;) T 1 > Record the location of the mutation.
16: P, P,+1ife€ {1,2,...,1} > Record the location of the error reported, if
any.
17: M—M+1 > Increment the total number of mutations made by one.
18: Cr P’;W';”‘ Vk e {1,2,....0} > Update the mean charm.
19: 0+ m > Update the estimate of the standard error in the mean charm.
20: end while
21: return ¢ > Return mean charm for all lines.

22: end procedure

Figure 1. Direct estimation algorithm

9/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

300

301

302

303

304

305

306

307

308

309

311

312

313

314

315

316

317

318

319

320

321

322

323

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

The 22 Python programs are release-quality components of the standard Python
library distributed with Python 2.7 itself. These were collected from the 2.7.8
release of Python from https://www.Python.org/downloads/release/
Python—-278/.

Python programs were run in a manner analogous to executing python program.

This parses, evaluates, and executes the python source file. Data was acquired by apply-
ing the direct estimation algorithm with 40 000 iterations per program. 40 000 iterations
was enough to achieve a charm precision of 0.1 or better in every case. Each iteration,
first, reads the original file, p. Once p is read, it is lexically analyzed and a vector
of lexemes (lexical tokens) are produced. Associated with each lexeme is information
such as line number, character position in the line.

Retaining line numbers and positions of tokens within a line is done in order to pre-
vent tokens from being on a different line after the mutation process. This is important
so that when charm is estimated, error messages can be mapped to the correct line and
block.

Then, a program p’ is produced by copying p, then choosing one lexeme at random
from p’ and replacing it by another lexeme chosen at random from p’. The replacement
token is chosen at random from the same program to maximize the similarity of p’ to
p. This matches, in some instances, the behavior of tools such as Jester [22], which
replaces operators such as ++ with ——. However, the mutation employed in this paper
is more flexible.

Next, p’ is put into a Python file on disk and executed. p’ must be executed in a
separate process, with a separate memory space in order to prevent it from crashing the
software collecting the data. Additionally, the software collecting the data waits for at
most 10 seconds for p’ to crash with an error or exit without an error. Once execution
time reaches 10 seconds, the program is forcibly killed. This is a rare occurrence, but
because random programs are being executed, they may not necessarily halt.

At the end of each iteration, information about the line on which p’ produced an
error, if any, is recorded along with the position of the mutation and various other
statistics. These results are ready to be summarized into per-line and per-block data.

Each Python program is analyzed by the radon[19] Python analysis tool which
reports which line each block starts on, ends on, and each block’s MCC. This process
takes less than 1 second for each file.

Each Python program is also analyzed by a short program to extract the 21 fea-
tures used for analysis of variance and linear regression modeling. This program is
comprised of a collection of regular expressions (of the Perl variety, not the theoretical
variety) and computes values for the 21 features per line and per block in less than 1
second.

Finally, mutation data, the output of radon, and the features extracted in the pre-
vious step are combined and summarized in a per-line and per-block format for easy
analysis.

Overall, the most time-consuming part of this process is running each mutant, since
itinvolves fork () ing and the Python interpreter process, import-ing and executing
Python code.

10/24

Py.

https://www.Python.org/downloads/release/Python-278/
https://www.Python.org/downloads/release/Python-278/

»« 6 RESULTS

25 6.1 RQ1: McCabe’s Cyclomatic Complexity

a6 Block-level charm had a linear (Pearson’s r) correlation with MCC, of —0.13 (p <
27 107%) and a rank correlation (Spearman’s p) of —0.44 (p < 10~15). Thus, MCC and
328 (negative) charm capture some of the same information about software, but are mostly
329 independent measures. Furthermore, it was discovered that using block charm and
s number of lines to estimate MCC with a linear model provided minimal improvement
st over estimating MCC using line count alone. R? improved from 0.459 to 0.463. Both
sz models have p-values less than 0.01. A plot of MCC vs block charm is shown in
sss figure 4. Charm is somewhat negatively correlated with MCC, though this correlation
s34 1S not linear.

335 The range of the line-level charm, which is simply the difference between the charm
sss of the most charming line and the charm of the least charming line, as computed in
w7 Figure 5, within a block had a stronger correlation with MCC of 0.45 (p < 10713,
s Spearman’s p). A plot of MCC versus charm range is shown in figure 6.

Complicated blocks often have less average charm than simple blocks, in terms of

e cyclomatic complexity, but a greater range of charm when considered line-by-line.

ao 6.2 RQ2: Line Structure Relationship

st The most significant impact on charm is created by lines which contain statements
a2 which are continued on the next line by employing the Python line-continuation char-
a3 acter ‘\’. An example of this is shown in Figure 3. This is likely due to the fact that
a4 1n Python, new lines usually begin new statements, the fact that blocks are begun by
a5 increasing indentation and ended by decreasing indentation, and the specific implemen-
ae tation of the Python 2.7 parser. Python often reports errors from a multi-line statement
a7 on the first line of the statement, but this effect is several orders of magnitude too small
as to explain the extremely high charm of lines ending with the line-continuation character
a9 observed.

350 After filtering out the nine multi-line statements in the data, the most significant re-
351 lationship with charm was whether or not a line contained any commas (,), assignment
352 operators(=, +=, etc.), attribute references (thing.property), or square brackets
a3 ([1), all of which had a negative correlation with charm.

Charm is related, on a line-by-line basis, to simple syntactic elements such as line-
s« | continuation characters, commas, assignment operators, attribute references and
square brackets.

s 6.3 RQ3: Estimating Charm

s The features used in the 21-way non-factorial analysis of variance and their significance
357 to both charm and MCC is listed in Table 2. Then, the significant factors revealed by
sss the analysis of variance were used to construct a linear model by ordinary least-squares
sse regression. The coefficients for that model are listed in the last column of Table 2, along

11/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

Table 1. Comparison of significant predictors for per-line charm with and without

multi-line expressions

Property

Charm
(all lines)

Charm
(filtered)

Line continuation

significant

N/A

Colons

Square brackets []

significant

Long strings

significant

Numbers

Strings

significant

Commas

significant

significant

Line length

Indentation

Indentation increased
Indentation will increase
Keywords

Branching keywords (if/then/else/try/catch)
Assignment operators
Attribute references
Tests

Special variables
Arithmetic Operators
Comments

Parentheses ()

Braces {}

significant
significant

se0 with the intercept (fixed offset) and R? value. Unfortunately, a usable model for esti-
st mating charm would ideally have a R? near 1, yet the model obtained from the analysis
sz of variance for charm has a R? of only 0.60. The models obtained during experimenta-
se3 tion do indicate that software metrics such as charm can be estimated cheaply to some
se4 degree.

365 The linear model presented in Table 2 was constructed by first obtaining per-line
a6 charm values by following the procedure in figure 1 for each file in the data set. Im-
37 portantly not only the final charm value was retained, but the number of mutations per
ses line, m, the total number of mutations for each file, M, and number of Python errors for
se0 each line, P, was also retained.

370 Then, the radon tool was run in cc mode for each file. The options —js were
sn passed to radon so that radon produced output in JSON format (- j) and included
sz numerical complexity values (—s). The JSON output by radon is easily parse-able
a7 and intuitively structured data which includes the name of each block, which line each
a74 block starts on, which line each block ends on, and each block’s complexity value.

375 Then, a routine was created to read the JSON output of radon and construct a map
a7 from program line to program block by considering the start and end lines of each block.

12/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

a7 Using this map, each block’s number of mutations and number of Python errors was
s7s computed by summing the number of mutations and number of Python errors for each
are block’s constituent lines. Then a final charm value was computed by subtracting each
a0 block’s total number of mutations from the total number of Python errors and dividing
ss1 that difference by the average number of mutations per block. The average number of
32 mutations per block was computed by dividing the total number of mutations per file
ss3 by the total number of blocks per file.

384 In order to extract the values for the independent variables, the number of colons,
sss literal numbers, attribute references and parentheses were counted in each block. This
sss was done by first removing comments from the block of code and then counting the
sz number of colon characters and parentheses characters. Regular expressions were used
sss to count the number of literal numbers and attribute references. The regular expression
ss0 for matching attribute references, also known as dot operations, is simply a name fol-
a0 lowed by a full stop (.) followed by a name. The regular expressions matching names
st and numbers in Python are defined in 1ib/tokenize.py in the Python source dis-
392 tribution.

393 Ordinary least-squared regression was then employed by combining the final charm
s« values for each block and the counts of colons, parentheses, numbers and attribute
ses references into a single data file with one record per block. Then this data file was
a6 loaded into the R statistical computing environment. Once in R, the regression was
sz performed by the built-in 1m function by passing the formula:

398 Im(charm ~ mle + attributerefs +
399 parentheses + numbers + colons)

a0 as the only argument, where mle is a multi-line expression. Table 2 describes the
w1 coefficients and intercepts used in this model resulting in an R? of 0.60.

Charm can be estimated to some degree using easily obtained code features such

402 .
as the number of colons in the code.

« 7 DISCUSSION

w4 7.1 Charming Code

a5 Apart from multi-line statements, charming code is often simple statements that intro-
a6 duce a new block such as try or if, and other features which indicate the beginning
a7 of a block of code, such as colons, keywords, and equality or inequality tests.

Charming lines of code are often short, simple that is commonly sprinkled through-
out every Python program and given little thought.

409 This pattern can be clearly seen in figure 2. Consider, for example, the line of code
a0 1n figure 2 that simply says “finally:.” What could possibly go wrong with that line
a1 of code? Before the experiments presented in this paper, the authors assumed that such
412 aline of code would not produce many error messages, even under mutation. However,

13/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

Table 2. Comparison of significant predictors for MCC and per-block charm

MCC Charm Charm LM
Property ANOVA ANOVA Coeff.
Multi-line Expressions significant 6.1
Colons significant | significant -0.028
Square brackets [] significant
Long strings significant
Numbers significant | significant 0.51
Strings significant
Commas
Lines
Average indentation
Indentation increased
Indentation will increase significant
Keywords significant
Branching keywords significant
(if/then/else/try/catch)
Assignment operators
Attribute references significant | significant -0.026
Tests significant
Special variables significant
Arithmetic Operators
Comments significant
Parentheses () significant | significant -0.013
Braces {}
Intercept -0.021
R? 0.60

s13 the data shows that as far as Python error messages are concerned, a lot can go wrong
sa - with that line of code.

415 However, despite this pattern, other surface-level features of the code are better
s16 predictors of charming code, as was determined by the analsys of variance detailed in
417 the previous section. Therefore, on a line-by-line basis, it is not completely clear how
a8 to best identify charming code quickly and easily by eye. It is possible that a factorial
a19 analysis of variance would clarify this, but it would involve 51 quintillion factors. It
a0 1s clear, however, that line continuation plays a huge role for Python 2.7. On a block-
221 by-block basis, blocks containing multi-line statements and many hard-coded number
a2 literals are the two best indicators of charming code.

23 7.2 Charmless Code

224 Indications of hard-coded data such as square brackets (which are used for array data in
225 Python), commas, and assignment operators become significant indicators of negative
a6 charm on a line-by-line basis. Another indicator that becomes significant on the line-
227 by-line level, once multi-line statements are removed, are attribute references. All of

14/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

a8 these features are present in larger quantities on longer, more complicated lines of code.
229 Consider, for example, the line of code in figure 2 with the least charm (most negative
430 charm):

431

w2 def _ setitem__ (self, key, item): self.datalkey] = item

433 This single line of code defines an entire function with three arguments. There are
3¢ alot of things that can go wrong on this line, such as misspelled identifiers, arguments
435 being in the wrong order, etc.

a6 | Long, complicated statements with many syntacic elements are often charmless.

437 Complexity and length are both correlated with negative charm, but they are poorer
a8 predictors than other easily countable features such as colons, attribute references and
s39 parentheses. This indicates that while many features may correlate with negative charm,
a0 it is often the simplest features that perform the best in a linear model.

441 For example, high MCC, keywords such as if, then, and else, indentation in-
a2 creasing on the following line are all associated with negative charm. However, they
a3 can all be replaced by simply counting colon and parentheses characters.

ws 7.3 Practical Applications for Software Engineering

445 e Extremely charming lines of code pose a threat to the test-ability of the nearby
446 code.

447 e Large tables of hard-coded numerical values or strings exhibit negative charm.
448 e Areas of code which exhibit non-zero charm may have an impact on maintenance
449 costs.

450 e Charm intuitively corresponds with maintainability since its far easier to debug a
451 fault once a software engineer knows what line the fault is on (0 charm).

452 e Charm is a relationship between code and related code; including tests covering
453 that code.

454 Extremely charming lines of code pose an extreme threat to a system’s ability to

a5 locate a fault. These lines should be rewritten if possible. For example, based on the
a6 results presented here, the line-continuation character should be avoided in Python 2
457 code.

458 Consider the following example code. It contains a constant specification of the first
sso 10 Fibonacci numbers. This code is difficult to check “by eye” and will never cause an
a0 error on the same line if it is faulty due to a simple mistake such as transposed numbers,
st unless it is tested. Lines such as these exhibit negative charm. Therefore, estimating
a2 charm line-by-line may be a viable, if expensive, way of locating such lines.

fibonacci = [1, 1, 2, 5, 3,
13, 21, 34, 55, 89]

15/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

463 When authoring software, in some situations, it may be desirable to mitigate the
a4 effects of areas of code with non-zero charm. Intuitively, because it takes more time to
ses locate the actual source of a fault when the fault is reported on the wrong line, areas
a6 With non-zero charm distribution may cost more to debug.

467 Charm should be estimated by executing all relevant tests to a piece of code being
a8 characterized. Charm can be re-estimated as new tests are introduced to evaluate some
a9 Of their efficacy. This is in line with standard procedures used with Jester [22] and
470 similar tools.

1 7.4 Recommendations for Genetic Programming

a2 Genetic programming solutions should consider that errors reported in charming blocks
473 might not be caused by those blocks. This is important when multiple mutations are
474 applied. The order of mutation application might be irrelevant given the existence of
475 charming blocks and mutation in charmless code.

476 Dynamic languages like Python pose difficulties, such as allowing syntactically in-
477 correct blocks to exist in a program. The existence of a string eval adds many layers of
478 difficulty. These difficulties might cause many practitioners to avoid genetic program-
a9 ming with dynamic languages. Yet programming languages like Python and Javascript
a0 are very popular and lots of software is written in them. Without the safety of an oracle
a8t who knows all valid programs [Campbell et al.], such as a compiler, what can one do
a2 for safe mutations? The concept of code charm allows genetic programmers to lever-
ss3 age known risks of charmless and charming code in the absence of an oracle of valid
s8¢ programs.

485 With the concept of charm, genetic programming can tune itself to be more careful
a6 and require more testing of mutations to charmless code while perhaps worrying less
se7 about unnoticed behaviour in charming code. Charm highlights the issue of mutations
sss that testing suites might have a hard time exercising. Search algorithms can leverage the
ass9 concept of charm to avoid combining charming and charmless mutations, thus hiding
a0 the effect of the charmless code. These result emphasize the need to test charmless code
91 thoroughly before genetic programming in order to alleviate the hiding or shedding of
a2 errors and error messages.

w3 7.5 Future Work

s94 This work investigated charm in Python. Python has interesting properties such as de-
a5 ferring type checking until execution, thus even simple errors may lie dormant until
a6 execution. This is not the case for statically compiled code with compilers, includ-
a7 ing languages like Java and C++. What is very charming in Python code might be
a9s completely charmless in other languages. One possible research question is “how sim-
s99 1lar and different is charm in other languages, especially compiled statically typed lan-
soo guages?” One language that might be interesting to investigate is Fortran 90, since it
s 1s compiled and statically typed but has multi-line statements with a line-continuation
so2 character just like Python.

503 Charm may be useful as a feature or predictor of bugs, but this has not been evalu-
so+ ated empirically. If a block of code has very low charm, it is both complex and unlikely

16/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

s05 to produce error messages. Intuitively, such blocks may be more likely to contain undis-
sos covered bugs.

507 Charm-based test-suite coverage may improve test suite effectiveness, but this has
ss not been evaluated empirically. Compared with test suite effectiveness and code cover-
so0 age, what improvements can charm bring to test suite quality measurement?

510 Cheaply extractable features of source code, that have not been tested here, may pro-
511 vide more accurate charm models. Only 21 such features were evaluated in this paper.
sz However, it is possible to extract many other features or combinations of features.

513 One possible application of this work which has not yet been investigated is em-
514 ploying charm to recover the structure of code which cannot be viewed directly. As
515 an example, code could hypothetically be encrypted in a way that the encrypted cipher-
si6 text version of the code can be modified and any error messages produced are publicly
si7 visible. In that situation, the procedure outlined in this paper can still be employed,
st though not on a line-by-line basis. The results may give a clear indication of some code
st9 structures, such as multi-line statements in Python.

= 8 THREATS TO VALIDITY

s21 Construct validity Construct validity is hampered by the use of mutations rather than
s22 actual faults, although there is some prior work to suggest that mutants are good repre-
s23 sentatives of faults [17].

s2« Internal Validity Internal validity is threatened by the choice of systems to test and
s2s choice of mutations to execute, these can result in selection bias. In terms of confound-
s26 1ng this work focuses on the confounding effect of charming code because it motivates
s27 the entire concept.

s2s External validity External validity is hampered by the use of a small set of Python
529 programs and the sole use of Python. Charm probably is quite relevant to other lan-
s0 guages dynamic or statically typed, but this work focused solely on Python. External
s31 validity can also be threatened by the number of mutations tested.

== 9 CONCLUSIONS

s33 Charming code attracts errors and error messages, while charmless code hides errors or
s34 passes its error on to other code to report. This concept of charming code is relevant to
535 mutation testing, code coverage based testing, and genetic programming as it indicates
ss6 that some mutations in charmless areas of the code could be inducing errors that are
ss7 not reported, or reported in the wrong location. The concept of charming code allows
sss us to talk about the properties of blocks that we might use in random testing, mutation
s39 testing and genetic programming.

540 Charmless code blocks often have higher MCC than charming or neutral code
ss1 blocks. This makes intuitive sense since it is harder to debug cause and effect rela-
se2 tionships in complex code with branches and loops than simpler code. Linear models
se3 can be produced that estimate code charm, though not to an ideal degree. Interestingly,
s« charming code blocks are not big or small, they are not moderately or strongly corre-

17/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

ses lated with lines of code (LOC). Code charm was demonstrated on a corpus of Python
ss6 software using the Python language.

547 Programmers, practitioners, testers, and researchers should consider charming code
ss and charmless code when debugging, testing, or mutation testing code. Not only does
ss9 charmless code imply that code-coverage is not enough, but that more work has to be
sso done via mutation to tease out errors in charmless code. Furthermore if testers are aware
st of charming code they can second guess error messages and consider other possible
ss2 error generating locations that have been misreported by compilers and interpreters.
ss3 Extremely charming lines of code pose an extreme threat to an interpreter or compiler’s
ss¢ ability to locate a fault. Python’s line continuation character ‘\’ should be avoided
s55 because it creates extremely charming lines of code.

556 Thus in this work, the concept of charming code and charmless code has been
ss7 discussed. Its ramifications regarding mutation based testing, and test coverage have
sss been explored, and models that estimate charming code have been provided.

= REFERENCES

s0 1 Andrews, J. H., Briand, L. C., Labiche, Y., and Namin, A. S. (2006). Using mutation
561 analysis for assessing and comparing testing coverage criteria. IEEE Trans. Softw.
562 Eng., 32(8):608-624.

ses [Campbelletall camphel], J. C., Hindle, A., and Amaral, J. N. Python: Where the mu-
564 tants hide or, corpus-based coding mistake location in dynamic languages. http://
565 webdocs.cs.ualberta.ca/~joshua2/python.pdf.

566 L3 Campbell, J. C., Hindle, A., and Amaral, J. N. (2014). Syntax errors just aren’t
567 natural: improving error reporting with language models. In Proceedings of the 11th
568 Working Conference on Mining Software Repositories, pages 252-261. ACM.

seo 41 Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design.
570 IEEE Transactions on Software Engineering, 20(6):476—493.

s 31 El Emam, K., Benlarbi, S., Goel, N., and Rai, S. (2001). The confounding effect of
572 class size on the validity of object-oriented metrics. /[EEE Transactions on Software
573 Engineering, 27(7):630-650.

s.4 0] Forrest, S., Nguyen, T., Weimer, W., and Le Goues, C. (2009). A genetic program-
575 ming approach to automated software repair. In Proceedings of the 11th Annual
576 conference on Genetic and evolutionary computation, pages 947-954. ACM.

sz 7] Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A., and Marinov, D.
578 (2013). Comparing non-adequate test suites using coverage criteria. In Proceedings
579 of the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013,
580 pages 302-313, New York, NY, USA. ACM.

set 191 Halstead, M. H. (1977). Elements of Software Science (Operating and programming
562 systems series). Elsevier Science Inc., New York, NY, USA.

sss] Harman, M. and Jones, B. F. (2001). Search-based software engineering. Informa-
584 tion and Software Technology, 43(14):833—-839.

s 101 Hindle, A., Godfrey, M., and Holt, R. (2008a). From indentation shapes to code
586 structures. In 8th IEEE Intl. Working Conference on Source Code Analysis and
587 Manipulation (SCAM 2008).

18/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

http://webdocs.cs.ualberta.ca/~joshua2/python.pdf
http://webdocs.cs.ualberta.ca/~joshua2/python.pdf

sss 11 Hindle, A., Godfrey, M., and Holt, R. (2008b). Reading beside the lines: Indenta-
589 tion as a proxy for complexity metrics. In Proceedings of ICPC 2008.

s 121 Hindle, A., Godfrey, M. W., and Holt, R. C. (2009). Reading beside the lines: Us-
591 ing indentation to rank revisions by complexity. Science of Computer Programming,
592 74(7):414 — 429. Special Issue on Program Comprehension (ICPC 2008).

ses 13 Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. (1994). Experiments of the
594 effectiveness of dataflow-and controlflow-based test adequacy criteria. In Proceed-
595 ings of the 16th international conference on Software engineering, pages 191-200.
596 IEEE Computer Society Press.

s 141 Inozemtseva, L. and Holmes, R. (2014). Coverage is not strongly correlated with
598 test suite effectiveness. In Proceedings of the International Conference on Software

599 Engineering.
s0 131 Trvine, S., Pavlinic, T., Trigg, L., Cleary, J., Inglis, S., and Utting, M. (2007). Jum-
601 ble java byte code to measure the effectiveness of unit tests. In Testing: Academic

602 and Industrial Conference Practice and Research Techniques - MUTATION, 2007.
603 TAICPART-MUTATION 2007, pages 169—175.

eos 18 Jia, Y. and Harman, M. (2011). An analysis and survey of the development of
605 mutation testing. IEEE Transactions on Software Engineering, 37(5):649-678.

s 171 Just, R, Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser, G.
607 (2014). Are mutants a valid substitute for real faults in software testing? In Pro-
608 ceedings of the Symposium on the Foundations of Software Engineering.

o0 181 Kim, D., Nam, J., Song, J., and Kim, S. (2013). Automatic patch generation
610 learned from human-written patches. In Proceedings of the 2013 International Con-
611 ference on Software Engineering, pages 802—811. IEEE Press.

sz 191 Lacchia, M. (2015). Radon 1.2. https://github.com/rubik/radon/
613 tree/vl.2.

s1a 29 Madeyski, L. (2010). Judy — a mutation testing tool for java. IET Software, 4:32—
615 42(10).

es 21l Mccabe, T. J. (1976). A complexity measure. IEEE Trans. Software Eng.,
617 2(4)2308—320.

sis 1221 Moore, 1. (2001). Jester-a junit test tester. Proc. of 2nd XP, pages 84—87.

sio 231 Oman, P. W. and Hagemeister, J. (1994). Construction and testing of polynomials
620 predicting software maintainability. J. Syst. Softw., 24(3):251-266.

e2r 241 Ossowski, S., Schneeberger, K., Clark, R. M., Lanz, C., Warthmann, N., and
s Weigel, D. (2008). Sequencing of natural strains of arabidopsis thaliana with short
623 reads. Genome research, 18(12):2024-2033.

e2« 251 Posnett, D., Hindle, A., and Devanbu, P. (2011). A simpler model of software read-
625 ability. In Proceedings of the 8th Working Conference on Mining Software Reposito-
626 ries, pages 73-82. ACM.

sz 261 Schuler, D. and Zeller, A. (2009). Javalanche: Efficient mutation testing for java.
628 In Proceedings of the the 7th Joint Meeting of the European Software Engineering
629 Conference and the ACM SIGSOFT Symposium on The Foundations of Software
630 Engineering, ESEC/FSE 09, pages 297-298, New York, NY, USA. ACM.

es1 27] Serva, M. and Petroni, F. (2008). Indo-european languages tree by levenshtein
632 distance. EPL (Europhysics Letters), 81(6):68005.

19/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

https://github.com/rubik/radon/tree/v1.2
https://github.com/rubik/radon/tree/v1.2

e3s 28] Sjgberg, D. 1., Anda, B., and Mockus, A. (2012). Questioning software mainte-
634 nance metrics: A comparative case study. In Proceedings of the ACM-IEEE Inter-
635 national Symposium on Empirical Software Engineering and Measurement, ESEM
636 12, pages 107-110, New York, NY, USA. ACM.

7 291 Tu, Z., Su, Z., and Devanbu, P. (2014). On the localness of software. In Pro-
638 ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
639 Software Engineering, pages 269-280. ACM.

s10 39 Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S. (2009). Automatically
641 finding patches using genetic programming. In Proceedings of the 31st International
642 Conference on Software Engineering, pages 364-374. IEEE Computer Society.

oaz 31 Yang, Q., Li, J. J., and Weiss, D. M. (2009). A survey of coverage-based testing
644 tools. The Computer Journal, 52(5):589-597.

20/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

nun

"""A more or less complete user-defined wrapper[around dictionary objects.
class UserDict:
def __init_ (self, dict=None, **kwargs):
self.data = {}
if dict is not None:
self.update(dict)
if len(kwargs):
self.update(kwargs)
def __repr__(self): return repr(self.data)
def __cmp__(self, dict):
if isinstance(dict, UserDict):
return cmp(self.data, dict.data)
else:
return cmp(self.data, dict)
__hash__ = None # Avoid Py3k warning
def __len_ (self): return len(self.data)
def __ getitem__(self, key):
if key in self.data:
return self.data[key]
if hasattr(self.__class__, " _missing "):
return self._class_ ._missing_ (self, key)
raise KeyError(key)
def _ setitem_ (self, key, item): self.data[key] = item
def __delitem__(self, key): del self.data[key]
def clear(self): self.data.clear()
def copy(self):
if self.__class__ is UserDict:
return UserDict(self.data.copy())
import copy
data = self.data
try:
self.data = {}
c = copy.copy(self)
finally:
self.data = data
c.update(self)
return c
def keys(self): return self.data.keys()
def items(self): return self.data.items()
def iteritems(self): return self.data.iteritems()
def iterkeys(self): return self.data.iterkeys()
def itervalues(self): return self.data.itervalues()
def values(self): return self.data.values()
def has_key(self, key): return key in self.data
def update(self, dict=None, **kwargs):
if dict is None:
pass
elif isinstance(dict, UserDict):
self.data.update(dict.data)
elif isinstance(dict, type({})) or not hasattr(dict, 'items'):

I I I I I I I
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Charm (per line)

Figure 2. Example charm of 50 lines of code from the Python standard library. Most
code is charmless in this example.

21/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

[IRTRT]

|"""Python part of the warnings subsystem.
|import linecache
|import sys
|import types
|_—all__ = ["warn", "showwarning", "formatwarning", "filterwarnings",
| "resetwarnings", "catch_warnings"]
|def warnpy3k(message, category=None, stacklevel=1):
| """Issue a deprecation warning for Python 3.x related changes.
| if sys.py3kwarning:
| if category is None:
| category = DeprecationWarning
[warn(message, category, stacklevel+1)
[def _show_warning(message, category, filename, lineno, file=None, line=None):
| """Hook to write a warning to a file; replace if you like."""
| if file is None:
| file = sys.stderr
| try:
| file.write(formatwarning(message, category, filename, lineno, line))

except IOError:

pass # the file (probably stderr) is invalid - this warning gets lost.

showwarning = _show_warning
def formatwarning(message, category, filename, lineno, line=None):

"""Function to format a warning the standard way.

"once"), "invalid action: %r" % (action,)
assert isinstance(message, basestring), "message must be a string"
assert isinstance(category, (type, types.ClassType)), \
"category must be a class"

I

I

I

|

0 s = "%s:%s: %s: %s\n" % (filename, lineno, category.__name__, message)
| line = linecache.getline(filename, lineno) if line is None else line

| if line:

| line = line.strip()

| s += " %s\n" % line

| return s

[def filterwarnings(action, message="", category=Warning, module="", lineno=0,
| append=0):

| """Insert an entry into the list of warnings filters (at the front).

| import re

I assert action in ("error", "ignore", "always", "default", "module",

I

I

filters.insert(0, item)
def simplefilter(action, category=Warning, lineno=0, append=0):
"""Insert a simple entry into the list of warnings filters (at the front).

|

0 assert issubclass(category, Warning), "category must be a Warning subclass"
| assert isinstance(module, basestring), "module must be a string"
0 assert isinstance(lineno, int) and lineno >= 0, \

| "lineno must be an int >= 0"

0 item = (action, re.compile(message, re.I), category,

| re.compile(module), lineno)

| if append:

I filters.append(item)

| else:

I
I

I

[I I I I I I
0 50 100 150 200 250 300

Charm (per line)

Figure 3. Example charm of each line of code from the Python standard library. This
listing shows code which exhibits a line of extremely charming code.

22/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

[]
°
[J
([] []
.
[]
3 e
—_ []
o ;.. [] L
T < . *
= 9 ! o 3!, o®
€ g { | °* o .
8 A
VoS : o . . s S
! [
] . .8. °
— =
OQ ([]
@ * ." o B
) :.o...
o ° _ — e
.
[I I I I I I
1 2 5 10 20 50 100

McCabe's Cyclomatic Complexity

Figure 4. Plot showing Charm vs MCC (density of points corresponds to darkness of
blue background).

Charm Range:f 1.1765

def _ getitem__ (self, key):
if key in self.data:
return self.data[key]
if hasattr(self._ classy" I missing_ "):
return self.__class_ ._missing_ (self, key)
raise KeyError(key)

I I I I I I
-0.8 -0.6 -0.4 -0.2 0.0 0.2

Charm (per line)

Figure 5. Example charm of one block of code from the Python standard library
showing range of charm.

23/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

o ° e o °
°
’ o.: ° : ot
: .: o« S ° .
s 33 o
[] ... ®)
. 28eee .®
g oo *®eq d
° 20:3.0
% b,
r% ' .: °
o
: -
S °
<
)
°
°
N °
S
H
—
=
| | | | | | |
1 2 5 10 20 50 100

McCabe's Cyclomatic Complexity

Figure 6. Plot showing Charm Range (maximum line charm minus minimum line
charm) vs MCC (density of points corresponds to darkness of blue background).

24/24
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

	Introduction
	Conceptual Charm
	Technical Introduction

	Contributions
	Motivation
	Prior work
	Complexity
	Indentation
	Search-Based Software Engineering
	Random Mutation Testing
	Genetic Algorithms and Genetic Programming

	Code Coverage Testing

	Methodology
	Direct Estimation
	Experiments

	Results
	RQ1: McCabe's Cyclomatic Complexity
	RQ2: Line Structure Relationship
	RQ3: Estimating Charm

	Discussion
	Charming Code
	Charmless Code
	Practical Applications for Software Engineering
	Recommendations for Genetic Programming
	Future Work

	Threats to validity
	Conclusions
	References

