
The Charming Code that Error Messages1

are Talking About2

Joshua Charles Campbell1 and Abram Hindle13

1Department of Computing Science, University of Alberta, Edmonton, Canada4

ABSTRACT5

The intent of high test coverage is to ensure that the dark nooks and crannies of code

are exercised and tested. In a language like Python this is especially important as

syntax errors can lurk in unevaluated blocks, only to be discovered once they are

finally executed. Bugs that present themselves as error messages mentioning a line

of code which is unrelated to the cause of the bug can be difficult and time-consuming

to fix when a developer must first determine the actual location of the fault.

A new code metric, charm, is presented. Charm can be used by developers, re-

searchers, and automated tools to gain a deeper understanding of source code and

become aware of potentially hidden faults, areas of code which are not sufficiently

tested, and areas of code which may be more difficult to debug. Charm quantifies the

property that error messges caused by a fault at one location don’t always reference

that location. In fact, error messages seem to prefer to reference some locations far

more often than others. The quantity of charm can be estimated by averaging results

from a random sample of similar programs to the one being measured by a procedure

of random-mutation testing. Charm is estimated for release-quality Python software,

requiring many thousands of similar Python programs to be executed. Charm has

some correlation with a standard software metric, cyclomatic complexity. 21 code fea-

tures which may have some relationship with charm and cyclomatic complexity are

investigated, of which five are found to be significantly related with charm. These

five features are then used to build a linear model which attempts to estimate charm

cheaply.

6

Keywords: Mutation Testing, Software metrics, Complexity7

1 INTRODUCTION8

Complexity measures for software have always enticed software engineers [8, 21]. The9

idea that code can be ranked by its complexity and thus prioritized for testing and code10

inspection has always been interesting.11

This interest later motivated automatic test-case generation, random testing, and12

mutation testing. One of the issues with random search and testing of source code is13

not all mutations or mutation sites are created equal.14

This work introduces the idea of code charm. Code charm is the ability of certain15

kinds of code to attract errors and error messages. Sometimes an error in another part16

of the file will induce an error message that reports the wrong location. It turns out17

1

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



these wrong locations follow a certain distribution, which can be measured. Some of18

the wrong locations that error messages report are surprisingly common.19

Charming code is code that attracts the error messages of other code to itself.

Charming code aggregates error messages, some of which do not belong to the

charming code.

20

Knowing about the properties of both charmless and charming code can help mu-21

tation testing search for good locations to elicit failures in testing. These general prop-22

erties can be used to provide guidelines to developers about code that should be tested23

due to its ability to hide errors.24

1.1 Conceptual Charm25

The following code illustrates an extremely simple Python program which sets two26

variables and then sets a third variable to the sum of the first two variables.27

x = 1

y = 2

total = x + y

If the program has a fault on line 1, for example an incorrect type, then the error28

message will be produced on line 3, as in the following example.29

x = "1" # Oops, wrong type! Charmless!

y = 2

total = x + y # TypeError here! Charmed!

However, if the program had, for example, a misspelled variable on line 3, then the30

error message would also appear on line 3.31

x = 1 # should x be ex? Charmless!

y = 2

total = ex + y # Fault and error here! Charmed!

From these two examples, we can see that there is something different about line32

3 compared to line 1. This difference is apparent even if one does not know what the33

code actually does.34

Charm is a quantification of this property of source code. It does not require careful35

static analysis either by a human or a machine other than executing the software in36

question. Additionally, it is a single number which expresses a property that arises37

from the complex interactions of many pieces in a program and the environment in38

which it is executed.39

2/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



1.2 Technical Introduction40

Charm is a measure, in the mathematical sense, of a particular piece of code. That41

code can be a line, a block, a class, a file, or any other subset of a larger code base. It42

is the difference between the number of errors a piece of code would ideally produce43

under mutation testing (one for each mutation) and the number of errors that same piece44

actually produces under mutation testing, relative to the average piece of code. If charm45

is computed per line, then it is relative to the average line. If charm is computed per46

block, then it is relative to the average block. In the latter scenario, charm is measured47

directly by applying the following formula:48

errors this block−mutations this block

average mutations per block
.

In this formula, mutations per block divided by the average mutations per block is49

determined by the estimation procedure used but approaches, in the limit, the number50

of syntactic elements in this block divided by the average syntactic elements per block.51

• charm> 0−→ Positive charm: for example, if a line has 5 charm, it produces 552

times as many errors as a typical line would have by being mutated. This implies53

that the errors caused by other lines being mutated are showing up on this line.54

• charm = 0 −→ Neutral charm. For example, if a line has 0 charm, it produces55

errors as often as it is mutated.56

• charm< 0−→ Negative charm. For example, if a line has -2 charm, it produces57

few errors and is longer or more complex than an average line of code. This58

indicates that the mutating this line either caused errors on another line, or that59

mutating this line did not always cause an error.60

2 CONTRIBUTIONS61

• A new software metric, charm, used to indicate the error response under mutation62

testing of a subset of program.63

• Comparison of charm with another standard software metric, cyclomatic com-64

plexity.65

• Comparison of charm with easily obtainable software features, such as indenta-66

tion and keywords.67

• Analysis and interpretation examples of charm results.68

• A method for estimating charm cheaply.69

• Recommendation for software engineers on how to use charm when testing their70

software.71

3/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



The data in this paper summarizes the output from 880 000 different programs.72

These programs are each mutations of one of 22 Python programs, but by treating them73

as individual programs we enable exploration of the space of all possible programs.74

Each data point can be analyzed individually, tracing the chain of cause and effect75

through the system, from the code of that individual program to its eventual output. This76

analysis would undoubtedly yield valuable information and it is the type of analysis that77

the field of computer science is based on.78

However, in comparison with the traditions of static program analysis and debug-79

ging, this work presents an attempt to empirically quantify a property of software that80

is relevant to everyday software engineering. Though this property is produced by the81

deterministic behaviour of a system, randomness is introduced artificially and automat-82

ically in order to characterize Python error messages by their average behaviour.83

Each program written by a human represents a significant cost, in terms of that per-84

son’s time and effort if not a direct monetary cost. Therefore, the number of programs85

that humans have written is infinitesimal compared to the infinite number of all possible86

Python programs. Inside that set of all possible Python programs, there are programs87

which are extremely close to each program written by a human programmer. In fact,88

there are a practically unexhaustable number of such near-by programs. It makes sense89

to define what it means for two programs to be close or similar to each other by using90

a standard metric such as edit distance, also known as the Levenshtein distance. This91

metric is not only applied in the field of computer science, but by geneticists to deter-92

mine the similarity of genetic code [24] and by linguists [27] to determine the similarity93

of natural language text.94

In this paper we sample randomly from the neighborhood of programs around 2295

Python programs written by human authors. Then that neighborhood can be charac-96

terized by averaging results from a simple test: whether or not each sampled program97

returns an error on a particular line or block. After averaging, a vector of real numbers98

are obtained that represents a property of that gigantic neighborhood which surrounds99

a single valuable program.100

The procedure used in this paper is not just about characterizing one program. In-101

stead, the procedure used in this paper characterizes a huge number of programs, and102

acquires information which is not obtainable through statically analyzing a single pro-103

gram. This information is relevant to the original program, because the original pro-104

gram at the center of the huge set of programs being characterized, and each one of105

those programs is extremely similar to the original program.106

It is most often the case that a program that is written is close to or extremely similar107

to a desired program that produces the desired results. Closing this gap is one of the108

fundamental goals of software engineering research, and this paper works to close it,109

even if just by one edit, in a novel and hopefully helpful way.110

This paper attempts to achieve that goal by providing a method for software engi-111

neers to become aware of the average behavior of Python error messages. Error mes-112

sages are relevant to the software engineer because they are an important indication of113

a fault in software. Misleading error messages, such as error messages that show the114

wrong location in the code, require the software engineer to find the correct location as115

well as debug the code in that location.116

4/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Another situation that can occur is that no error message is produced at all, even117

though the program has a fault at some location. Charm also captures this information118

in a simple, numerical, way. It is often the case that the original program does produce119

the desired results and that those results should ideally stay the same even while the120

program is developed or extended further. In this situation, Charm can assist software121

engineers by characterizing the pieces of code that could have faults added to them and122

go undetected, even under test suites that achieve 100% coverage.123

3 MOTIVATION124

In Campbell et al. [Campbell et al., 3] a software engineering tool, UnnaturalCode,125

was presented along with a testing framework for that tool and similar tools. This paper126

does not discuss or apply to UnnaturalCode, but it does make use of the random-edit127

mutation testing tool which was developed to test the performance of UnnaturalCode.128

The random-edit mutation testing tool is a Python implementation of the algorithm in129

figure 1.130

While investigating Python error reporting performance, it was noticed that Python131

often likes to report error messages on certain lines far more often than others. These132

errors were caused by mutations that were made at random locations in the source code.133

Therefore, it was expected that Python would report errors randomly throughout the134

source code, but this was not the case.135

After informally investigating where Python commonly reported error messages in136

the source code, a new metric was created to characterize this effect, the charm. Lines137

which Python reports more errors on have a high charm, and lines which Python reports138

fewer errors on have a negative charm.139

4 PRIOR WORK140

This work is situated between the worlds of error detection (discussed in the prior141

section), software complexity metrics, source code structure (indentation), coverage142

based testing, search based software engineering, mutation-based testing and genetic143

programming.144

4.1 Complexity145

Complexity has been a popular topic since the 1970s as authors tried to characterize146

code complexity automatically [8, 21]. McCabe’s cyclomatic complexity [21] is still147

in use today, although some argue it is irrelevant to object-oriented code. Essentially148

McCabe counts all branch points in a block of code. What is a branch point depends on149

the implementer of the metric. While if-statements are clearly branch points, sometimes150

a virtual dispatch operator is a branch, sometimes not. McCabe argues that the more151

branch points in the graph of control flow in a block code, the more complex it is. In152

general, there is a probability that a line of code will contain a branch, thus the number153

of branching lines will often be correlated with the total lines of code. In fact McCabe’s154

cyclomatic complexity correlates with lines of code, across numerous language and155

projects, at 0.407 (Spearman’s correlation) [12].156

5/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Halstead metrics [8] were posed by Maurice Halstead. These metrics count tokens157

and provide insight into size, vocabulary, variable counts, operator count, entropy, and158

information content [25] of code. Halstead metrics have been criticized for being ill-159

formulated, but metrics such as Halstead volume are measures of information density160

versus the number of tokens in a block [25]. Halstead metrics, such as volume, were161

found to correlate with source code readability.162

McCabe’s and Halstead metrics are combined to form theMaintainability index [23],163

which is commonly used to estimate the maintainability of software. There is some164

skepticism that these metrics and other metrics like the OO CKJM metrics [4] actually165

are meaningful [28] and do not overly correlate with size [5].166

4.2 Indentation167

Indentation is an interesting indicator of blocks. In Python indentation is semantically168

meaningful and marks the existence of a block. Hindle et al. [12, 11, 10] found that169

variance in indentation was correlated (Spearman’s ρ = 0.462) with McCabe’s cyclo-170

matic complexity across many programming languages. Hindle et al. found that while171

LOC and McCabe’s often correlate, variance of indentation was more rank correlated172

with McCabe’s cyclomatic complexity than LOC (0.407).173

4.3 Search-Based Software Engineering174

Search based software engineering (SBSE) applies search techniques such as genetic175

algorithms and simulated annealing to software engineering [9]. Genetic algorithms176

and genetic programming applied to source code, testing, and source code generation177

fall under the search-based software engineering umbrella.178

In terms of the scope of search, which this work is concerned with, prior work179

by the authors on corporae-based error location are quite relevant as they engage in180

mutation testing to evaluate error-location [Campbell et al., 3]. Tu et al. [29] find that181

biasing search methods to local scopes improves the performance of some search-based182

techniques.183

4.3.1 Random Mutation Testing184

Mutation testing [16] is a method of checking test-cases and the program itself against185

corruption of the program. If a test-case cannot detect when a program is mutated, that186

is modified arbitrarily, then perhaps the test-case is not achieving the appropriate path187

coverage, furthermore it might indicate that the computation in part of the program has188

limited dependency on its state and output. In both cases it can indicate that faults are189

present. In this paper, charmless code hides these mutations, faults and errors, better190

than charming code. In terms of concrete tools Jester [22] is one of the oldest and most191

famous mutation testing tools. Many tools followed it and compared against Jester192

itself and improved on mutation testing [26, 20, 15].193

Just et al. [17] asked, “Are Mutants a Valid Substitute for Real Faults in Software194

Testing?” Indeed, they found “73% of real faults are coupled to the mutants generated195

by commonly used mutation operators.” This provides support for the methodology196

described in the methodology section that uses mutation operations.197

6/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



4.3.2 Genetic Algorithms and Genetic Programming198

Genetic algorithms are algorithms that represent the search state of a system as set of199

genes (a vector of features). These features act as input to a function that is evaluated200

against a utility function. The gene inputs (vector of features) that perform the best201

against the utility function are selected and mutated further to find possibly better per-202

forming candidates. Genetic programming is the mutation of source code or ASTs of203

source in a fashion inspired by genetic mutations that happen to the DNA of living204

organisms. Genetic programming differs from genetic algorithms in the sense that it205

works on trees (ASTs) rather than on vectors (genetic algorithms).206

Mutation-based Program Repair In the presence of errors it has been suggested207

that possible programs can be mutated and searched to provide mutations that repair208

faulty software. Forrest et al. [6] and Weimer et al. [30] were credited with successfully209

demonstrating that fix-patches could be generated by mutation or genetic programming.210

Programs are mutated and tested against test-cases until they are found to have passed211

the tests. A patch is extracted as the fix-patch. Dongsun et al. [18] found that by biasing212

the search function with prior information, they could make templates that had higher213

immediate performance in certain cases of fix patches.214

4.4 Code Coverage Testing215

Measuring code coverage of a test suite, the proportion of lines executed while testing,216

is a respected and common practice among practitioners. There are many tools [31]217

that measure and extract code coverage from a test-suite. The general belief is that a218

high quality test-suite has high coverage.219

Inozemtseva et al. [14] found that low-moderate correlations between test suite cov-220

erage and effectiveness. They controlled for the number of tests and different kinds221

of coverage. They suggest that this indicates test-code-coverage is a poor indicator of222

test-suite quality. This emphasizes previous results about the effectiveness of coverage-223

based testing [13].224

Gligoric et al. [7] investigated code coverage and how to evaluate test-suites. They225

evaluated many criteria and found branch coverage and an intra-procedural acyclic path226

coverage had good performance. This is relevant to software metrics such as McCabe’s227

cyclomatic complexity because it implies that code that has high McCabe’s cyclomatic228

complexity should be covered.229

Andrews et al. [1] have combined code coverage and mutation analysis/testing.230

They found a clear linear correlation (R2 > 0.90) between mutation detection ratios231

and coverage, as well as fault detection ratios and coverage. Essentially code cover-232

age of test cases correlated with the fault detection ratio from mutation testing. Our233

findings somewhat complicates and complements this result, because charmless code234

is less likely to report errors even if covered.235

5 METHODOLOGY236

RQ1 “Is charming code related to another software metric, McCabe’s Cyclomatic237

Complexity, for each block?” An experiment was performed to determine if the charm238

was correlated with the McCabe Cyclomatic Complexity (MCC) of the source. Since239

7/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



both MCC and charm are quantitative measurements based on subsets of some piece of240

source code, this experiment is designed to determine whether they are capturing the241

same properties of that piece of source code.242

RQ2 “What easily extractable features of Python are relevant to charming code?” An243

experiment was performed to determine what features of a line of Python code were244

significantly related to the charm, such as language keywords, indentation level, line245

length, and block length. A 21-way non-factorial analysis of variance was performed246

using 21 different easily extractable features of each line of code. Each independent247

feature tested is listed in Table 1. Features were selected as having a significant rela-248

tionship with charm if their p-value was less than 0.01.249

RQ3 “Can charm be estimated with minimal computational cost?” An experiment250

was performed to determine whether charm could be estimated using easy-to-compute251

features and measures of source code. In order to investigate how easily extractable252

features such as keywords and indentation related to charm, a 21-way non-factorial253

analysis of variance was performed. Additionally, a linear model was constructed using254

ordinary least-squares regression. The independent variable was taken to be is charm,255

and the dependent variables are easily extractable features.256

An additional 21-way non-factorial analysis of variance was performed with MCC257

as the independent variable was also performed. Each independent feature tested is258

listed in Table 2. Features were selected as having a significant relationship with charm259

or MCC if their p-value, computed with the F-test, was less than 0.01.260

5.1 Direct Estimation261

Direct estimation of charm for each line of a program follows the procedure outlined in262

figure1. This procedure returns a charm value for each line that approximates the true263

charm of that line by using a basic random sampling method. A similar algorithm is264

applied to measure subsets of a program other than lines.265

Unfortunately the direct estimation procedure takes a large amount of computa-266

tional effort. For example, in order to obtain precision to 0.01 charm for a short program267

consisting of 1000 lexical tokens, the procedure must iterate 1000∗1002 = 10 million268

times. Precision of the direct estimate is taken to be the standard error of the mean used269

in the estimate. Thus, 10 million slightly different programs must each be executed!270

While this is an expensive procedure, it can be easily parallelized using map-reduce271

techniques because each iteration is independent apart from the stopping condition.272

5.2 Experiments273

Release-quality Python software was used for the experiments presented in this section.274

The data presented in this paper was obtained from 22 Python 2.7 programs 1 consisting275

of 9807 lines of Python code and 449 code blocks. The data consists of the results of276

880 000 program executions. Every estimated charm results for every line and block is277

significant to 0.1 charm. Gathering this data required one week on a single Intel Core278

i7 3770K CPU.279

1The files/programs used shared at http://github.com/orezpraw/CharmedDataSet

8/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts

http://github.com/orezpraw/CharmedDataSet


1: procedure CHARMPERLINE(p,δmax) ⊲ Measure charm directly for a program p.

2: p1...l ⊲ Treat program p as a vector of lines.

3: T1...n← lex(~p) ⊲ Lexically analyse program p into n lexemes.

4: m1...l←~0 ⊲ Initialize the count of mutations made to each line to 0.

5: P1...l←~0 ⊲ Initialize the count of errors reported on each line to 0.

6: M← 0 ⊲ Initialize mutations made to the program overall to 0.

7: δ ← ∞ ⊲ Initialize the upper bound of the standard error in the mean charm to

infinity.

8: while δ > δmax do ⊲ Iterate until the standard error of the sampled charm falls

below threshold δmax.
9: i← U({1,2, ...,n}) ⊲ Choose a uniformly random position of a lexeme in

the program.

10: j← U({1,2, ...,n})
11: T ′←

{

T1,T2, ...,Ti−2,Ti−1,Tj,Ti+1,Ti+2, ...,Tn
}

12: ⊲ Replace the lexeme at position i with the lexeme at position j.

13: p′← join(T ′) ⊲ Reconstruct an executable program p′.
14: e← executeAndReturnLineOfError(p′) ⊲ Run p′ and record the line

number of the error, if any.

15: mlineof(Ti)
← mlineof(Ti)

+1 ⊲ Record the location of the mutation.

16: Pe← Pe+1 if e ∈ {1,2, ..., l} ⊲ Record the location of the error reported, if

any.

17: M←M+1 ⊲ Increment the total number of mutations made by one.

18: ck← Pk−mk

M/l ∀k ∈ {1,2, ..., l} ⊲ Update the mean charm.

19: δ ← 1·n√
M

⊲ Update the estimate of the standard error in the mean charm.

20: end while

21: return~c ⊲ Return mean charm for all lines.

22: end procedure

Figure 1. Direct estimation algorithm

9/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



The 22 Python programs are release-quality components of the standard Python280

library distributed with Python 2.7 itself. These were collected from the 2.7.8281

release of Python from https://www.Python.org/downloads/release/282

Python-278/.283

Python programs were run in a manner analogous to executing python program.py.284

This parses, evaluates, and executes the python source file. Data was acquired by apply-285

ing the direct estimation algorithmwith 40 000 iterations per program. 40 000 iterations286

was enough to achieve a charm precision of 0.1 or better in every case. Each iteration,287

first, reads the original file, p. Once p is read, it is lexically analyzed and a vector288

of lexemes (lexical tokens) are produced. Associated with each lexeme is information289

such as line number, character position in the line.290

Retaining line numbers and positions of tokens within a line is done in order to pre-291

vent tokens from being on a different line after the mutation process. This is important292

so that when charm is estimated, error messages can be mapped to the correct line and293

block.294

Then, a program p′ is produced by copying p, then choosing one lexeme at random295

from p′ and replacing it by another lexeme chosen at random from p′. The replacement296

token is chosen at random from the same program to maximize the similarity of p′ to297

p. This matches, in some instances, the behavior of tools such as Jester [22], which298

replaces operators such as ++ with --. However, the mutation employed in this paper299

is more flexible.300

Next, p′ is put into a Python file on disk and executed. p′ must be executed in a301

separate process, with a separate memory space in order to prevent it from crashing the302

software collecting the data. Additionally, the software collecting the data waits for at303

most 10 seconds for p′ to crash with an error or exit without an error. Once execution304

time reaches 10 seconds, the program is forcibly killed. This is a rare occurrence, but305

because random programs are being executed, they may not necessarily halt.306

At the end of each iteration, information about the line on which p′ produced an307

error, if any, is recorded along with the position of the mutation and various other308

statistics. These results are ready to be summarized into per-line and per-block data.309

Each Python program is analyzed by the radon[19] Python analysis tool which310

reports which line each block starts on, ends on, and each block’s MCC. This process311

takes less than 1 second for each file.312

Each Python program is also analyzed by a short program to extract the 21 fea-313

tures used for analysis of variance and linear regression modeling. This program is314

comprised of a collection of regular expressions (of the Perl variety, not the theoretical315

variety) and computes values for the 21 features per line and per block in less than 1316

second.317

Finally, mutation data, the output of radon, and the features extracted in the pre-318

vious step are combined and summarized in a per-line and per-block format for easy319

analysis.320

Overall, the most time-consuming part of this process is running each mutant, since321

it involves fork()ing and the Python interpreter process, import-ing and executing322

Python code.323

10/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts

https://www.Python.org/downloads/release/Python-278/
https://www.Python.org/downloads/release/Python-278/


6 RESULTS324

6.1 RQ1: McCabe’s Cyclomatic Complexity325

Block-level charm had a linear (Pearson’s r) correlation with MCC, of −0.13 (p <326

10−8) and a rank correlation (Spearman’s ρ) of −0.44 (p < 10−15). Thus, MCC and327

(negative) charm capture some of the same information about software, but are mostly328

independent measures. Furthermore, it was discovered that using block charm and329

number of lines to estimate MCC with a linear model provided minimal improvement330

over estimating MCC using line count alone. R2 improved from 0.459 to 0.463. Both331

models have p-values less than 0.01. A plot of MCC vs block charm is shown in332

figure 4. Charm is somewhat negatively correlated with MCC, though this correlation333

is not linear.334

The range of the line-level charm, which is simply the difference between the charm335

of the most charming line and the charm of the least charming line, as computed in336

Figure 5, within a block had a stronger correlation with MCC of 0.45 (p < 10−15,337

Spearman’s ρ). A plot of MCC versus charm range is shown in figure 6.338

Complicated blocks often have less average charm than simple blocks, in terms of

cyclomatic complexity, but a greater range of charm when considered line-by-line.
339

6.2 RQ2: Line Structure Relationship340

The most significant impact on charm is created by lines which contain statements341

which are continued on the next line by employing the Python line-continuation char-342

acter ‘\’. An example of this is shown in Figure 3. This is likely due to the fact that343

in Python, new lines usually begin new statements, the fact that blocks are begun by344

increasing indentation and ended by decreasing indentation, and the specific implemen-345

tation of the Python 2.7 parser. Python often reports errors from a multi-line statement346

on the first line of the statement, but this effect is several orders of magnitude too small347

to explain the extremely high charm of lines ending with the line-continuation character348

observed.349

After filtering out the nine multi-line statements in the data, the most significant re-350

lationship with charm was whether or not a line contained any commas (,), assignment351

operators(=, +=, etc.), attribute references (thing.property), or square brackets352

([]), all of which had a negative correlation with charm.353

Charm is related, on a line-by-line basis, to simple syntactic elements such as line-

continuation characters, commas, assignment operators, attribute references and

square brackets.

354

6.3 RQ3: Estimating Charm355

The features used in the 21-way non-factorial analysis of variance and their significance356

to both charm and MCC is listed in Table 2. Then, the significant factors revealed by357

the analysis of variance were used to construct a linear model by ordinary least-squares358

regression. The coefficients for that model are listed in the last column of Table 2, along359

11/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Table 1. Comparison of significant predictors for per-line charm with and without

multi-line expressions

Charm Charm

Property (all lines) (filtered)

Line continuation significant N/A

Colons

Square brackets [] significant

Long strings significant

Numbers

Strings significant

Commas significant significant

Line length

Indentation

Indentation increased

Indentation will increase

Keywords

Branching keywords (if/then/else/try/catch)

Assignment operators significant

Attribute references significant

Tests

Special variables

Arithmetic Operators

Comments

Parentheses ()

Braces {}

with the intercept (fixed offset) and R2 value. Unfortunately, a usable model for esti-360

mating charm would ideally have a R2 near 1, yet the model obtained from the analysis361

of variance for charm has a R2 of only 0.60. The models obtained during experimenta-362

tion do indicate that software metrics such as charm can be estimated cheaply to some363

degree.364

The linear model presented in Table 2 was constructed by first obtaining per-line365

charm values by following the procedure in figure 1 for each file in the data set. Im-366

portantly not only the final charm value was retained, but the number of mutations per367

line, m, the total number of mutations for each file,M, and number of Python errors for368

each line, P, was also retained.369

Then, the radon tool was run in cc mode for each file. The options -js were370

passed to radon so that radon produced output in JSON format (-j) and included371

numerical complexity values (-s). The JSON output by radon is easily parse-able372

and intuitively structured data which includes the name of each block, which line each373

block starts on, which line each block ends on, and each block’s complexity value.374

Then, a routine was created to read the JSON output of radon and construct a map375

from program line to program block by considering the start and end lines of each block.376

12/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Using this map, each block’s number of mutations and number of Python errors was377

computed by summing the number of mutations and number of Python errors for each378

block’s constituent lines. Then a final charm value was computed by subtracting each379

block’s total number of mutations from the total number of Python errors and dividing380

that difference by the average number of mutations per block. The average number of381

mutations per block was computed by dividing the total number of mutations per file382

by the total number of blocks per file.383

In order to extract the values for the independent variables, the number of colons,384

literal numbers, attribute references and parentheses were counted in each block. This385

was done by first removing comments from the block of code and then counting the386

number of colon characters and parentheses characters. Regular expressions were used387

to count the number of literal numbers and attribute references. The regular expression388

for matching attribute references, also known as dot operations, is simply a name fol-389

lowed by a full stop (.) followed by a name. The regular expressions matching names390

and numbers in Python are defined in lib/tokenize.py in the Python source dis-391

tribution.392

Ordinary least-squared regression was then employed by combining the final charm393

values for each block and the counts of colons, parentheses, numbers and attribute394

references into a single data file with one record per block. Then this data file was395

loaded into the R statistical computing environment. Once in R, the regression was396

performed by the built-in lm function by passing the formula:397

lm(charm ~ mle + attributerefs +398

parentheses + numbers + colons)399

as the only argument, where mle is a multi-line expression. Table 2 describes the400

coefficients and intercepts used in this model resulting in an R2 of 0.60.401

Charm can be estimated to some degree using easily obtained code features such

as the number of colons in the code.
402

7 DISCUSSION403

7.1 Charming Code404

Apart from multi-line statements, charming code is often simple statements that intro-405

duce a new block such as try or if, and other features which indicate the beginning406

of a block of code, such as colons, keywords, and equality or inequality tests.407

Charming lines of code are often short, simple that is commonly sprinkled through-

out every Python program and given little thought.
408

This pattern can be clearly seen in figure 2. Consider, for example, the line of code409

in figure 2 that simply says “finally:.” What could possibly go wrong with that line410

of code? Before the experiments presented in this paper, the authors assumed that such411

a line of code would not produce many error messages, even under mutation. However,412

13/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Table 2. Comparison of significant predictors for MCC and per-block charm

MCC Charm Charm LM

Property ANOVA ANOVA Coeff.

Multi-line Expressions significant 6.1

Colons significant significant -0.028

Square brackets [] significant

Long strings significant

Numbers significant significant 0.51

Strings significant

Commas

Lines

Average indentation

Indentation increased

Indentation will increase significant

Keywords significant

Branching keywords

(if/then/else/try/catch)

significant

Assignment operators

Attribute references significant significant -0.026

Tests significant

Special variables significant

Arithmetic Operators

Comments significant

Parentheses () significant significant -0.013

Braces {}

Intercept -0.021

R2 0.60

the data shows that as far as Python error messages are concerned, a lot can go wrong413

with that line of code.414

However, despite this pattern, other surface-level features of the code are better415

predictors of charming code, as was determined by the analsys of variance detailed in416

the previous section. Therefore, on a line-by-line basis, it is not completely clear how417

to best identify charming code quickly and easily by eye. It is possible that a factorial418

analysis of variance would clarify this, but it would involve 51 quintillion factors. It419

is clear, however, that line continuation plays a huge role for Python 2.7. On a block-420

by-block basis, blocks containing multi-line statements and many hard-coded number421

literals are the two best indicators of charming code.422

7.2 Charmless Code423

Indications of hard-coded data such as square brackets (which are used for array data in424

Python), commas, and assignment operators become significant indicators of negative425

charm on a line-by-line basis. Another indicator that becomes significant on the line-426

by-line level, once multi-line statements are removed, are attribute references. All of427

14/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



these features are present in larger quantities on longer, more complicated lines of code.428

Consider, for example, the line of code in figure 2 with the least charm (most negative429

charm):430

431

def __setitem__(self, key, item): self.data[key] = item432

This single line of code defines an entire function with three arguments. There are433

a lot of things that can go wrong on this line, such as misspelled identifiers, arguments434

being in the wrong order, etc.435

Long, complicated statements with many syntacic elements are often charmless.436

Complexity and length are both correlated with negative charm, but they are poorer437

predictors than other easily countable features such as colons, attribute references and438

parentheses. This indicates that while many features may correlate with negative charm,439

it is often the simplest features that perform the best in a linear model.440

For example, high MCC, keywords such as if, then, and else, indentation in-441

creasing on the following line are all associated with negative charm. However, they442

can all be replaced by simply counting colon and parentheses characters.443

7.3 Practical Applications for Software Engineering444

• Extremely charming lines of code pose a threat to the test-ability of the nearby445

code.446

• Large tables of hard-coded numerical values or strings exhibit negative charm.447

• Areas of code which exhibit non-zero charm may have an impact on maintenance448

costs.449

• Charm intuitively corresponds with maintainability since its far easier to debug a450

fault once a software engineer knows what line the fault is on (0 charm).451

• Charm is a relationship between code and related code; including tests covering452

that code.453

Extremely charming lines of code pose an extreme threat to a system’s ability to454

locate a fault. These lines should be rewritten if possible. For example, based on the455

results presented here, the line-continuation character should be avoided in Python 2456

code.457

Consider the following example code. It contains a constant specification of the first458

10 Fibonacci numbers. This code is difficult to check “by eye” and will never cause an459

error on the same line if it is faulty due to a simple mistake such as transposed numbers,460

unless it is tested. Lines such as these exhibit negative charm. Therefore, estimating461

charm line-by-line may be a viable, if expensive, way of locating such lines.462

fibonacci = [ 1, 1, 2, 5, 3,

13, 21, 34, 55, 89 ]

15/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



When authoring software, in some situations, it may be desirable to mitigate the463

effects of areas of code with non-zero charm. Intuitively, because it takes more time to464

locate the actual source of a fault when the fault is reported on the wrong line, areas465

with non-zero charm distribution may cost more to debug.466

Charm should be estimated by executing all relevant tests to a piece of code being467

characterized. Charm can be re-estimated as new tests are introduced to evaluate some468

of their efficacy. This is in line with standard procedures used with Jester [22] and469

similar tools.470

7.4 Recommendations for Genetic Programming471

Genetic programming solutions should consider that errors reported in charming blocks472

might not be caused by those blocks. This is important when multiple mutations are473

applied. The order of mutation application might be irrelevant given the existence of474

charming blocks and mutation in charmless code.475

Dynamic languages like Python pose difficulties, such as allowing syntactically in-476

correct blocks to exist in a program. The existence of a string eval adds many layers of477

difficulty. These difficulties might cause many practitioners to avoid genetic program-478

ming with dynamic languages. Yet programming languages like Python and Javascript479

are very popular and lots of software is written in them. Without the safety of an oracle480

who knows all valid programs [Campbell et al.], such as a compiler, what can one do481

for safe mutations? The concept of code charm allows genetic programmers to lever-482

age known risks of charmless and charming code in the absence of an oracle of valid483

programs.484

With the concept of charm, genetic programming can tune itself to be more careful485

and require more testing of mutations to charmless code while perhaps worrying less486

about unnoticed behaviour in charming code. Charm highlights the issue of mutations487

that testing suites might have a hard time exercising. Search algorithms can leverage the488

concept of charm to avoid combining charming and charmless mutations, thus hiding489

the effect of the charmless code. These result emphasize the need to test charmless code490

thoroughly before genetic programming in order to alleviate the hiding or shedding of491

errors and error messages.492

7.5 Future Work493

This work investigated charm in Python. Python has interesting properties such as de-494

ferring type checking until execution, thus even simple errors may lie dormant until495

execution. This is not the case for statically compiled code with compilers, includ-496

ing languages like Java and C++. What is very charming in Python code might be497

completely charmless in other languages. One possible research question is “how sim-498

ilar and different is charm in other languages, especially compiled statically typed lan-499

guages?” One language that might be interesting to investigate is Fortran 90, since it500

is compiled and statically typed but has multi-line statements with a line-continuation501

character just like Python.502

Charm may be useful as a feature or predictor of bugs, but this has not been evalu-503

ated empirically. If a block of code has very low charm, it is both complex and unlikely504

16/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



to produce error messages. Intuitively, such blocks may be more likely to contain undis-505

covered bugs.506

Charm-based test-suite coverage may improve test suite effectiveness, but this has507

not been evaluated empirically. Compared with test suite effectiveness and code cover-508

age, what improvements can charm bring to test suite quality measurement?509

Cheaply extractable features of source code, that have not been tested here, may pro-510

vide more accurate charm models. Only 21 such features were evaluated in this paper.511

However, it is possible to extract many other features or combinations of features.512

One possible application of this work which has not yet been investigated is em-513

ploying charm to recover the structure of code which cannot be viewed directly. As514

an example, code could hypothetically be encrypted in a way that the encrypted cipher-515

text version of the code can be modified and any error messages produced are publicly516

visible. In that situation, the procedure outlined in this paper can still be employed,517

though not on a line-by-line basis. The results may give a clear indication of some code518

structures, such as multi-line statements in Python.519

8 THREATS TO VALIDITY520

Construct validity Construct validity is hampered by the use of mutations rather than521

actual faults, although there is some prior work to suggest that mutants are good repre-522

sentatives of faults [17].523

Internal Validity Internal validity is threatened by the choice of systems to test and524

choice of mutations to execute, these can result in selection bias. In terms of confound-525

ing this work focuses on the confounding effect of charming code because it motivates526

the entire concept.527

External validity External validity is hampered by the use of a small set of Python528

programs and the sole use of Python. Charm probably is quite relevant to other lan-529

guages dynamic or statically typed, but this work focused solely on Python. External530

validity can also be threatened by the number of mutations tested.531

9 CONCLUSIONS532

Charming code attracts errors and error messages, while charmless code hides errors or533

passes its error on to other code to report. This concept of charming code is relevant to534

mutation testing, code coverage based testing, and genetic programming as it indicates535

that some mutations in charmless areas of the code could be inducing errors that are536

not reported, or reported in the wrong location. The concept of charming code allows537

us to talk about the properties of blocks that we might use in random testing, mutation538

testing and genetic programming.539

Charmless code blocks often have higher MCC than charming or neutral code540

blocks. This makes intuitive sense since it is harder to debug cause and effect rela-541

tionships in complex code with branches and loops than simpler code. Linear models542

can be produced that estimate code charm, though not to an ideal degree. Interestingly,543

charming code blocks are not big or small, they are not moderately or strongly corre-544

17/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



lated with lines of code (LOC). Code charm was demonstrated on a corpus of Python545

software using the Python language.546

Programmers, practitioners, testers, and researchers should consider charming code547

and charmless code when debugging, testing, or mutation testing code. Not only does548

charmless code imply that code-coverage is not enough, but that more work has to be549

done via mutation to tease out errors in charmless code. Furthermore if testers are aware550

of charming code they can second guess error messages and consider other possible551

error generating locations that have been misreported by compilers and interpreters.552

Extremely charming lines of code pose an extreme threat to an interpreter or compiler’s553

ability to locate a fault. Python’s line continuation character ‘\’ should be avoided554

because it creates extremely charming lines of code.555

Thus in this work, the concept of charming code and charmless code has been556

discussed. Its ramifications regarding mutation based testing, and test coverage have557

been explored, and models that estimate charming code have been provided.558

REFERENCES559

[1] Andrews, J. H., Briand, L. C., Labiche, Y., and Namin, A. S. (2006). Using mutation560

analysis for assessing and comparing testing coverage criteria. IEEE Trans. Softw.561

Eng., 32(8):608–624.562

[Campbell et al.] Campbell, J. C., Hindle, A., and Amaral, J. N. Python: Where the mu-563

tants hide or, corpus-based coding mistake location in dynamic languages. http://564

webdocs.cs.ualberta.ca/~joshua2/python.pdf.565

[3] Campbell, J. C., Hindle, A., and Amaral, J. N. (2014). Syntax errors just aren’t566

natural: improving error reporting with language models. In Proceedings of the 11th567

Working Conference on Mining Software Repositories, pages 252–261. ACM.568

[4] Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design.569

IEEE Transactions on Software Engineering, 20(6):476–493.570

[5] El Emam, K., Benlarbi, S., Goel, N., and Rai, S. (2001). The confounding effect of571

class size on the validity of object-oriented metrics. IEEE Transactions on Software572

Engineering, 27(7):630–650.573

[6] Forrest, S., Nguyen, T., Weimer, W., and Le Goues, C. (2009). A genetic program-574

ming approach to automated software repair. In Proceedings of the 11th Annual575

conference on Genetic and evolutionary computation, pages 947–954. ACM.576

[7] Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A., and Marinov, D.577

(2013). Comparing non-adequate test suites using coverage criteria. In Proceedings578

of the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013,579

pages 302–313, New York, NY, USA. ACM.580

[8] Halstead, M. H. (1977). Elements of Software Science (Operating and programming581

systems series). Elsevier Science Inc., New York, NY, USA.582

[9] Harman, M. and Jones, B. F. (2001). Search-based software engineering. Informa-583

tion and Software Technology, 43(14):833–839.584

[10] Hindle, A., Godfrey, M., and Holt, R. (2008a). From indentation shapes to code585

structures. In 8th IEEE Intl. Working Conference on Source Code Analysis and586

Manipulation (SCAM 2008).587

18/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts

http://webdocs.cs.ualberta.ca/~joshua2/python.pdf
http://webdocs.cs.ualberta.ca/~joshua2/python.pdf


[11] Hindle, A., Godfrey, M., and Holt, R. (2008b). Reading beside the lines: Indenta-588

tion as a proxy for complexity metrics. In Proceedings of ICPC 2008.589

[12] Hindle, A., Godfrey, M. W., and Holt, R. C. (2009). Reading beside the lines: Us-590

ing indentation to rank revisions by complexity. Science of Computer Programming,591

74(7):414 – 429. Special Issue on Program Comprehension (ICPC 2008).592

[13] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. (1994). Experiments of the593

effectiveness of dataflow-and controlflow-based test adequacy criteria. In Proceed-594

ings of the 16th international conference on Software engineering, pages 191–200.595

IEEE Computer Society Press.596

[14] Inozemtseva, L. and Holmes, R. (2014). Coverage is not strongly correlated with597

test suite effectiveness. In Proceedings of the International Conference on Software598

Engineering.599

[15] Irvine, S., Pavlinic, T., Trigg, L., Cleary, J., Inglis, S., and Utting, M. (2007). Jum-600

ble java byte code to measure the effectiveness of unit tests. In Testing: Academic601

and Industrial Conference Practice and Research Techniques - MUTATION, 2007.602

TAICPART-MUTATION 2007, pages 169–175.603

[16] Jia, Y. and Harman, M. (2011). An analysis and survey of the development of604

mutation testing. IEEE Transactions on Software Engineering, 37(5):649–678.605

[17] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser, G.606

(2014). Are mutants a valid substitute for real faults in software testing? In Pro-607

ceedings of the Symposium on the Foundations of Software Engineering.608

[18] Kim, D., Nam, J., Song, J., and Kim, S. (2013). Automatic patch generation609

learned from human-written patches. In Proceedings of the 2013 International Con-610

ference on Software Engineering, pages 802–811. IEEE Press.611

[19] Lacchia, M. (2015). Radon 1.2. https://github.com/rubik/radon/612

tree/v1.2.613

[20] Madeyski, L. (2010). Judy – a mutation testing tool for java. IET Software, 4:32–614

42(10).615

[21] Mccabe, T. J. (1976). A complexity measure. IEEE Trans. Software Eng.,616

2(4):308–320.617

[22] Moore, I. (2001). Jester-a junit test tester. Proc. of 2nd XP, pages 84–87.618

[23] Oman, P. W. and Hagemeister, J. (1994). Construction and testing of polynomials619

predicting software maintainability. J. Syst. Softw., 24(3):251–266.620

[24] Ossowski, S., Schneeberger, K., Clark, R. M., Lanz, C., Warthmann, N., and621

Weigel, D. (2008). Sequencing of natural strains of arabidopsis thaliana with short622

reads. Genome research, 18(12):2024–2033.623

[25] Posnett, D., Hindle, A., and Devanbu, P. (2011). A simpler model of software read-624

ability. In Proceedings of the 8th Working Conference on Mining Software Reposito-625

ries, pages 73–82. ACM.626

[26] Schuler, D. and Zeller, A. (2009). Javalanche: Efficient mutation testing for java.627

In Proceedings of the the 7th Joint Meeting of the European Software Engineering628

Conference and the ACM SIGSOFT Symposium on The Foundations of Software629

Engineering, ESEC/FSE ’09, pages 297–298, New York, NY, USA. ACM.630

[27] Serva, M. and Petroni, F. (2008). Indo-european languages tree by levenshtein631

distance. EPL (Europhysics Letters), 81(6):68005.632

19/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts

https://github.com/rubik/radon/tree/v1.2
https://github.com/rubik/radon/tree/v1.2


[28] Sjøberg, D. I., Anda, B., and Mockus, A. (2012). Questioning software mainte-633

nance metrics: A comparative case study. In Proceedings of the ACM-IEEE Inter-634

national Symposium on Empirical Software Engineering and Measurement, ESEM635

’12, pages 107–110, New York, NY, USA. ACM.636

[29] Tu, Z., Su, Z., and Devanbu, P. (2014). On the localness of software. In Pro-637

ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of638

Software Engineering, pages 269–280. ACM.639

[30] Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S. (2009). Automatically640

finding patches using genetic programming. In Proceedings of the 31st International641

Conference on Software Engineering, pages 364–374. IEEE Computer Society.642

[31] Yang, Q., Li, J. J., and Weiss, D. M. (2009). A survey of coverage-based testing643

tools. The Computer Journal, 52(5):589–597.644

20/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Figure 2. Example charm of 50 lines of code from the Python standard library. Most

code is charmless in this example.

21/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Figure 3. Example charm of each line of code from the Python standard library. This

listing shows code which exhibits a line of extremely charming code.

22/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Figure 4. Plot showing Charm vs MCC (density of points corresponds to darkness of

blue background).

Figure 5. Example charm of one block of code from the Python standard library

showing range of charm.

23/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts



Figure 6. Plot showing Charm Range (maximum line charm minus minimum line

charm) vs MCC (density of points corresponds to darkness of blue background).

24/24

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1138v1 | CC-BY 4.0 Open Access | rec: 28 May 2015, publ: 29 May 2015

P
re
P
rin

ts


	Introduction
	Conceptual Charm
	Technical Introduction

	Contributions
	Motivation
	Prior work
	Complexity
	Indentation
	Search-Based Software Engineering
	Random Mutation Testing
	Genetic Algorithms and Genetic Programming

	Code Coverage Testing

	Methodology
	Direct Estimation
	Experiments

	Results
	RQ1: McCabe's Cyclomatic Complexity
	RQ2: Line Structure Relationship
	RQ3: Estimating Charm

	Discussion
	Charming Code
	Charmless Code
	Practical Applications for Software Engineering
	Recommendations for Genetic Programming
	Future Work

	Threats to validity
	Conclusions
	References

