

A peer-reviewed version of this preprint was published in PeerJ
on 2 January 2014.

View the peer-reviewed version (peerj.com/articles/241), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Simi M, Campagne F. 2014. Composable languages for bioinformatics:
the NYoSh experiment. PeerJ 2:e241 https://doi.org/10.7717/peerj.241

https://doi.org/10.7717/peerj.241
https://doi.org/10.7717/peerj.241

鈀 1鈀

Composable languages for bioinformatics: the NYoSh experiment 1鈀

Manuele Simi1,2, Fabien Campagne1,2*, 2鈀
 3鈀
1 The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational 4鈀

Biomedicine, The Weill Cornell Medical College, New York, New York, United States of 5鈀
America. 2 Department of Physiology and Biophysics, The Weill Cornell Medical College, 6鈀

New York, New York, United States of America. 7鈀
 8鈀

*Correspondence to: Fabien Campagne, fac2003@campagnelab.org. 9鈀
 10鈀
 11鈀

Abstract鈀 鈀 12鈀

Language鈀 WorkBenches鈀 (LWBs)鈀 are鈀 software鈀 engineering鈀 tools鈀 that鈀 help鈀 domain鈀 13鈀

experts鈀 develop鈀 solutions鈀 to鈀 various鈀 classes鈀 of鈀 problems.鈀 Some鈀 of鈀 these鈀 tools鈀 focus鈀 on鈀 14鈀

non괄Ѐtechnical鈀 users鈀 and鈀 provide鈀 languages鈀 to鈀 help鈀 organize鈀 knowledge鈀 while鈀 other鈀 15鈀

workbenches鈀 provide鈀 means鈀 to鈀 create鈀 new鈀 programming鈀 languages.鈀 A鈀 key鈀 advantage鈀 16鈀

of鈀 language鈀 workbenches鈀 is鈀 that鈀 they鈀 support鈀 the鈀 seamless鈀 composition鈀 of鈀 17鈀

independently鈀 developed鈀 languages.鈀 This鈀 capability鈀 is鈀 useful鈀 when鈀 developing鈀 18鈀

programs鈀 that鈀 can鈀 benefit鈀 from鈀 different鈀 levels鈀 of鈀 abstraction.鈀 We鈀 reasoned鈀 that鈀 19鈀

language鈀 workbenches鈀 could鈀 be鈀 useful鈀 to鈀 develop鈀 bioinformatics鈀 software鈀 solutions.鈀 In鈀 20鈀

order鈀 to鈀 evaluate鈀 the鈀 potential鈀 of鈀 language鈀 workbenches鈀 in鈀 bioinformatics,鈀 we鈀 tested鈀 a鈀 21鈀

prominent鈀 workbench鈀 by鈀 developing鈀 an鈀 alternative鈀 to鈀 shell鈀 scripting.鈀 To鈀 illustrate鈀 22鈀

what鈀 LWBs鈀 and鈀 Language鈀 Composition鈀 can鈀 bring鈀 to鈀 bioinformatics,鈀 we鈀 report鈀 on鈀 our鈀 23鈀

design鈀 and鈀 development鈀 of鈀 NYoSh鈀 (Not鈀 Your鈀 ordinary鈀 Shell).鈀 NYoSh鈀 was鈀 implemented鈀 24鈀

as鈀 a鈀 collection鈀 of鈀 languages鈀 that鈀 can鈀 be鈀 composed鈀 to鈀 write鈀 programs鈀 as鈀 expressive鈀 and鈀 25鈀

concise鈀 as鈀 shell鈀 scripts.鈀 This鈀 manuscript鈀 offers鈀 a鈀 concrete鈀 illustration鈀 of鈀 the鈀 advantages鈀 26鈀

and鈀 current鈀 minor鈀 drawbacks鈀 of鈀 using鈀 the鈀 MPS鈀 LWB.鈀 For鈀 instance,鈀 we鈀 found鈀 that鈀 we鈀 27鈀

could鈀 implement鈀 an鈀 environment괄Ѐaware鈀 editor鈀 for鈀 NYoSh鈀 that鈀 can鈀 assist鈀 the鈀 28鈀

programmers鈀 when鈀 developing鈀 scripts鈀 for鈀 specific鈀 execution鈀 environments.鈀 This鈀 editor鈀 29鈀

further鈀 provides鈀 semantic鈀 error鈀 detection鈀 and鈀 can鈀 be鈀 compiled鈀 interactively鈀 with鈀 an鈀 30鈀

automatic鈀 build鈀 and鈀 deployment鈀 system.鈀 In鈀 contrast鈀 to鈀 shell鈀 scripts,鈀 NYoSh鈀 scripts鈀 can鈀 31鈀

be鈀 written鈀 in鈀 a鈀 modern鈀 development鈀 environment,鈀 supporting鈀 context鈀 dependent鈀 32鈀

intentions鈀 and鈀 can鈀 be鈀 extended鈀 seamlessly鈀 by鈀 end괄Ѐusers鈀 with鈀 new鈀 abstractions鈀 and鈀 33鈀

language鈀 constructs.鈀 We鈀 further鈀 illustrate鈀 language鈀 extension鈀 and鈀 composition鈀 with鈀 34鈀

LWBs鈀 by鈀 presenting鈀 a鈀 tight鈀 integration鈀 of鈀 NYoSh鈀 scripts鈀 with鈀 the鈀 GobyWeb鈀 system.鈀 35鈀

The鈀 NYoSh鈀 Workbench鈀 prototype,鈀 which鈀 implements鈀 a鈀 fully鈀 featured鈀 integrated鈀 36鈀

development鈀 environment鈀 for鈀 NYoSh鈀 is鈀 distributed鈀 at鈀 http://nyosh.campagnelab.org.鈀 鈀 37鈀

38鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 2鈀

Introduction鈀 1鈀
 2鈀
Bioinformatics is a scientific field concerned with storing, organizing and analyzing various 3鈀
types of biological and clinical data and information. Bioinformaticians make daily use of 4鈀

computational abstractions, using a variety of systems, programs and scripting languages to 5鈀
process data. Abstractions help scientists by eliminating details when they have no impact 6鈀

on the solution of a problem. For instance, arithmetic offers abstractions to work with 7鈀
quantities, strings and sequences are useful abstractions to represent biopolymer molecules. 8鈀

Abstractions are similar to ideas or concepts, but in this manuscript, we are concerned with 9鈀
formal abstractions that can be implemented in software. We can find many examples of 10鈀

abstractions in the bioinformatics field. For example, systems built with relational database 11鈀
management systems use the relational data abstraction. Groups who develop ontologies for 12鈀

specific domains rely on specific abstractions for representing knowledge (e.g., OWL 13鈀
(Bechhofer et al. 2004)). Software frameworks extend programming languages with 14鈀

abstractions specific for an application domain (Holland et al. 2008; Stajich et al. 2002). 15鈀
Several bioinformatics frameworks have been developed to improve productivity when 16鈀

writing bioinformatics analysis software (Campagne et al. 2013; McKenna et al. 2010). 17鈀
While frameworks and application programming interfaces (API) are useful, they have 18鈀

limitations. Foremost, frameworks and APIs are written in a target programming language 19鈀
and as such, abstractions implemented as a framework must be written in the syntax of this 20鈀

language. This often makes programs more verbose than would be convenient. The 21鈀
technology we evaluated in this manuscript overcomes this limitation by making it possible 22鈀

to define new languages specifically tailored to work with their specific abstractions. 23鈀
 24鈀

Language workbenches are software engineering tools developed in the last ten years that 25鈀
help their users create new languages and the tools to write programs in these languages. 26鈀

Some of these tools focus on non-technical users and provide languages to help organize 27鈀
knowledge. Intentional Software (http://www.intentsoft.com/) is a commercial Language 28鈀

Workbench that falls in this category (Simonyi 1995; Simonyi et al. 2006). Another 29鈀
prominent language workbench aimed at software programmers is the Jetbrains Meta 30鈀

Programming System (MPS) (Dmitriev 2004; Voelter 2013; Voelter & Solomatov 2010). 31鈀
MPS is developed as an open-source project (source code is available at 32鈀

https://github.com/JetBrains/MPS). This workbench was developed to provide the tools 33鈀
necessary to design new programming languages. In our opinion, Language Workbenches 34鈀

(LWBs) represent a true paradigm shift from traditional knowledge management and 35鈀
programming approaches. In this manuscript, we present how we used the MPS LWB to 36鈀

help solve problems related to the development of bioinformatics analysis pipelines. This 37鈀
presentation highlights the advantages of using a modern LWB. The key advantage that we 38鈀

realized in this study is the ability to create very dynamic, interactive program editors that 39鈀
support the script programmers (e.g., bioionformatician developing analysis scripts) by 40鈀

removing many of the difficulties common with traditional scripting languages. This 41鈀
manuscript provides concrete examples in the result section. 42鈀

 43鈀
We have recently presented the GobyWeb system to help with analysis of gene expression or 44鈀
DNA methylation data from high-throughput sequencing (Dorff et al. 2013). GobyWeb consists 45鈀

of a web-front end providing access to a compute grid where analyses are performed. The 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 3鈀

GobyWeb system can be extended to support new types of analysis. Extension consists in 1鈀
developing plugins. Plugins contain a configuration (in XML format) and analysis logic written 2鈀

in the BASH (Bourne Again SHell) language (Fox 1989; Stallman 1998). BASH is a widely used 3鈀
scripting language in bioinformatics developed in 1987-1989. The key strength of a scripting 4鈀

language is that it makes it easy to call other programs in order to automate simple analyses, yet 5鈀
is flexible enough than more complicated logic can be expressed if necessary to construct input 6鈀

arguments, process program outputs, or conditionally execute certain steps of the script. While 7鈀
widely used, BASH has limitations that become apparent when trying to develop robust analysis 8鈀

scripts. In this manuscript, we present how we developed a modern alternative to the BASH 9鈀
language with the MPS LWB. We use this example to highlight how LWBs can be used to 10鈀

develop domain or application specific languages that can help bioinformaticians be more 11鈀
productive by using specialized abstractions. 12鈀

 13鈀
This manuscript is organized as follows. In material and methods, we give a brief 14鈀

introduction to LWB technology and to the MPS LWB. We explain how MPS can be used 15鈀
to create Composable Languages (CLs). In the results section, we then describe the 16鈀

requirements for the design of NYoSh, the Shell scripting language that we will use as a 17鈀
working example in this manuscript. We present the CLs that we designed to implement 18鈀

NYoSh in the MPS LWB. We present examples of their use to write GobyWeb plugin 19鈀
scripts. Finally, we discuss the limitations and advantages of LWB technology. 20鈀

 21鈀

Materials鈀 and鈀 Methods鈀 22鈀

鈀 23鈀

Introduction to Language Workbenches. Readers interested in a general overview of 24鈀
Language Workbenches are referred to the book DSL Engineering (Markus Voeleter et al. 25鈀

2013). 26鈀
 27鈀

The MPS Language Workbench. The term “Language Workbench” was coined in 2005 28鈀
by Martin Fowler (Fowler 2005) to describe an emerging set of tools to build software using 29鈀

Domain Specific Languages (DSLs). In this project, we used the JetBrains Meta 30鈀
Programming System (MPS) LWB (Dmitriev 2004). A deciding factor in choosing MPS 31鈀

among other possible LWBs is that MPS is developed as an open-source project project 32鈀
(source code is available at https://github.com/JetBrains/MPS), and offers strong features for 33鈀

creating Composable Languages and the tools needed to work with them. The MPS LWB is 34鈀
distributed with a set of core platform languagues. The set of core languages includes 35鈀

BaseLanguage, a language very similar to Java that can be compiled and executed. 36鈀
 37鈀

Abstract Syntax Tree. In the traditional programming paradigm, a program is written by a 38鈀
programmer in a Concrete Syntax (CS), specified with a formal grammar, and then 39鈀

translated with a parser into an equivalent memory tree-based representation, called the 40鈀
Abstract Syntax Tree (AST). The AST is a memory representation of a program that can 41鈀

be further manipulated by a compiler or interpreter. The MPS LWB does not use a parser, 42鈀
but instead provides the means to create tools, such as Projectional Editor(s), or PE(s), that 43鈀

make it possible for programmers to directly create and modify the AST in memory. 44鈀
Removing the need for a parser makes it possible to edit programs using several languages 45鈀

in ways that would not be possible with programs written in a concrete syntax. 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 4鈀

 1鈀
Language. In the context of the MPS LWB, a language consists of a several aspects, 2鈀

including a structure aspect that determines what AST instances can be created in the 3鈀
language, an editor aspect, which makes it possible to specify how the AST should be 4鈀

presented to the programmer, and various other aspects that help implement language 5鈀
behaviors (e.g., actions, constraints, behavior, typesystem, intentions). 6鈀

 7鈀
Structure Aspect. The structure of a language is defined by a set of language concepts. 8鈀

Each concept represents a type of no de of the AST. Each concept of a language can have 9鈀
properties (primitive type string, integer, float), children (aggregation) and references (link 10鈀

with 0..1 cardinality) to other concepts. A concepts can also extend another concept and 11鈀
implement concept interfaces. 12鈀

 13鈀
Editor Aspect. Working with AST requires that the tree is visualized (projected) in some 14鈀

form to the programmer and she/he is able to modify it. The MPS LWB greatly simplifies 15鈀
the process of developing a robust projectional editor (PE) for a new language. Full 16鈀

language editors are created seamlessly by the MPS LWB. It does so by combining all the 17鈀
mini-editors associated with each type of concepts that is defined in a language into an 18鈀

interactive PE. 19鈀
 20鈀

Generator Aspect. MPS supports so called “model to model tranformations” and these 21鈀
transformations can be implemented in a generator aspect. Briefly, an AST expressed in 22鈀

language A (a model) can be converted to another AST expressed in language B (the “to 23鈀
model”) via some set of transformations. We developed language generators that translate 24鈀

the concepts of the NYoSh languages into BaseLanguage concepts. In some cases, we 25鈀
developed generators that transform some concept instance into other NYoSh concept 26鈀

instances. For instance, the push and pull GobyWeb language statements are transformed 27鈀
into execute command statements to execute the GobyWeb plugin SDK command line. This 28鈀

was possible because the MPS LWB supports model to model transformations across 29鈀
arbitrary languages. 30鈀

 31鈀
Language Behavior and Semantic. The behavior and semantic aspects of a language were 32鈀

implemented with the typesystem, constraint and intention aspects of the MPS LWB. 33鈀
Semantic error detection was implemented by creating several typesystem “checking rules”. 34鈀

 35鈀
Environment-aware Editor. To create the GobyWeb NYoSh EAE, we developed a 36鈀

dedicated language for modeling environment sources. This language supports the 37鈀
EnvironmentSource concept and EnvironmentVariable concepts. An environment source is 38鈀

set of information available at script execution time. By adding a source to the script, the 39鈀
names of environment variables are made available at script design time in the PE. An 40鈀

intention attached to the source makes it possible to reload information from the source. 41鈀
Upon reload, environment variable declarations are created and attached to the AST (as 42鈀

children of the source). Mechanisms for accessing the injected information are provided 43鈀
with the language and misusages and unauthorized accesses to the information are detected 44鈀

and prevented. Auto-completion from the editor assists the programmer to discover which 45鈀
environment variables can be accessed. Sources for importing the local user environment 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 5鈀

and loading environment definitions from files are also provided with the language. Other 1鈀
languages can define their own configurable environment sources. For instance, the 2鈀

GobyWeb language defines a GobyWeb source that, when added to the script, collects and 3鈀
injects in the editor environment variables extracted from the plugin configuration and the 4鈀

execution platform, allowing to refer to them when writing the plugin script in the PE. 5鈀

Micro-parsing Technique.鈀 The result section and Figure 7 present how the micro-parsing 6鈀

technique can be used to work-around some of the difficulties of using a PE to enter BASH 7鈀
commands. 鈀 The micro-parsing technique consists in (1) defining in a string property in a 8鈀

concept, (2) extending the concept editor to show the string property (this makes it possible for 9鈀
end users to paste the text into the property) (3) creating an intention that parses the text in the 10鈀

property and modifies the concept or local AST context of the concept according to the content 11鈀
of the text. (4) clearing the string if step 3 did not yield any errors. 鈀 12鈀

Results鈀 13鈀

 14鈀

Focus on shell scripting. We evaluated the MPS LWB for bioinformatics by focusing on 15鈀
the common problem of developing analysis shell scripts. Writing shell scripts is a popular 16鈀

approach to automate data analyses that need to be performed with several command line 17鈀
programs. We used shell scripts extensively in the GobyWeb system (Dorff et al. 2013). 18鈀

While developing this system, we became aware of some important limitations of BASH 19鈀
shell scripting that hinder programmer productivity when developing new scripts and create 20鈀

serious maintenance problems for existing scripts (other shell scripting dialects than BASH 21鈀
suffer from similar limitations). We describe some of these limitations in the following 22鈀

section. 23鈀
 24鈀

Limitations of shell scripting. Shell scripts are executed with a Unix Shell interpreter. 25鈀
Unix Shell interpreters like BASH, KSH, CSH, TCSH or Bourne Shell all have common 26鈀

limitations. For instance, shell interpreters: 27鈀

• Are not compilers – scripting languages are interpreted. This means that if a 28鈀

programmer introduces a syntax or type error in an existing script, it is not possible 29鈀

to detect the error without extensive testing. Indeed, the shell interpreter will only 30鈀
discover and report the error if and when an execution of the script gets to the line 31鈀

that contains the error. This means that when trying to develop robust clinical data 32鈀
analysis pipelines with shell scripts, it is necessary to run the program and exercise 33鈀

all the possible input parameter combinations that could trigger alternate 34鈀
interpretation flows in the script to make sure the script is syntactically valid. Clearly 35鈀

this is non-trivial, time consuming, and sub-optimal when trying to develop robust 36鈀
analysis programs. 37鈀

• Offer limited tool support– Modern integrated development environment offers 38鈀
features that improve programmer productivity, such as keyword highlighting, 39鈀

syntax error detection, type error detection, code refactoring and intentions. Editors 40鈀
suitable to edit shell scripts at best offer keyword highlighting. Lack of tool support 41鈀

limits the productivity of the bioinformatics script programmer. 42鈀

• Lack syntax elements for structuring the code – GobyWeb requires that shell scripts 43鈀

defined in its plugins have a structure compliant with an interface (a contract). There 44鈀
is no way to enforce such a constraint with a scripting language. 45鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 6鈀

• Lack mechanisms to promote code reuse – reusable code is code that can be used, 1鈀

without modification, from different programs, or from different parts of the same 2鈀
program. The ability to reuse code is crucial to productivity. Writing (or copying) 3鈀

again and again the same piece of code across multiple programs is not desirable 4鈀
because any problem in the code is duplicated with the code and needs to be fixed in 5鈀

every copy in existence. Object-oriented languages, for instance, provide 6鈀
mechanisms to express contracts and interface for components of a program, but 7鈀

these features are lacking from shell languages. Beyond these mechanisms, reusable 8鈀
code needs to be supported by appropriate tools that, for instance, create standard 9鈀

packages (such as JARs for Java programs) and software repositories (such as 10鈀
Maven) to manage dependencies among packages. 11鈀

 12鈀
Requirements for an improved scripting language. Considering the limitations of Unix 13鈀

Shell interpreters, we decided to evaluate the MPS LWB by designing an alternative 14鈀
scripting language. To start this process, we assembled a list of requirements that the 15鈀

language should fulfill: 16鈀
 17鈀

Initially, we created the following list of high-level requirements for NYoSh: 18鈀

• Composition – in order to test language composition in the MPS LWB, we decided 19鈀

that NYoSh would be implemented by extending existing languages offered by the 20鈀
MPS platform with, small, focused languages, aimed at fulfilling specific 21鈀

programmer needs. 22鈀

• Abstracting away implementation details – implementation details not affecting the 23鈀

final result of a computation should be hidden from the script programmer as much 24鈀

as possible. We aimed to create reusable abstractions supported by concise, albeit 25鈀
readable notations. 26鈀

• Ability to execute command pipelines expressed in the BASH syntax. BASH and 27鈀
other shell scripts have very strong language features for executing sets of 28鈀

commands (e.g., pipelines). Since we still use BASH for interactive command 29鈀
development in the shell, we aimed to provide a simple way to import BASH 30鈀

commands into a NYoSh script. 31鈀
 32鈀

Language Design. Figure 1 provides an overview of the tool that we developed to fulfill 33鈀
these requirements. Using the MPS LWB, we were able to develop an integrated 34鈀

development environment (the NYoSh Workbench) that supports scripting by writing 35鈀
programs expressed with composable languages. These languages include: 36鈀

 37鈀

• BaseLanguage – part of the MPS LWB platform, BaseLanguage provides 38鈀

many features found in a general programming language (e.g., variables, 39鈀

loops, object-oriented data structures). BaseLanguage provides most of the 40鈀
capabilities of Java 1.6 (Gosling et al. 2005) and can be seamlessly extended 41鈀

with other languages in the MPS platform such as to offer closures, for 42鈀
instance, which are not offered by the Java programming language. 43鈀

• New languages that we designed when developing NYoSh: 44鈀
o NYoSh – the scripting language. The NYoSh language has several roles: 45鈀

to provide abstractions to represent command pipelines, to offer named 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 7鈀

entry points into a script, to offer mechanisms to record script execution 1鈀
and error logs. 2鈀

o GString – a language for working with Groovy-like strings. Groovy 3鈀
strings support lazy evaluation of variable references embedded in the 4鈀

literal. GString adds a similar syntax and functionality to BaseLanguage 5鈀
in the MPS LWB. For instance, writing a GString literal as “${b}” is 6鈀

possible when a variable b is in the scope of the literal. The GString 7鈀
abstraction make string literal more expressive than the regular 8鈀

BaseLanguage string literals. 9鈀
o PathPatterns – a language that implements pattern matching of file and 10鈀

directory names. Filenames and paths can be matched with wildcards or 11鈀
regular expressions to produce list of filenames. 12鈀

o GobyWeb – an extension of the NYoSh language that provides types of 13鈀
scripts with entry points suitable to write plugin logic for a GobyWeb 14鈀

system. 15鈀
o Environment – a language to manage arbitrary sources of configuration. 16鈀

It allows loading and accessing information from a variety of sources and 17鈀
exposes the loaded information in a uniform way. For instance, 18鈀

environment variables for the process can be loaded and refered to as 19鈀
${var} where var is the name of the environment variable. The same 20鈀

syntax is used to retrieve the value of a variable available at runtime for a 21鈀
GobyWeb plugin. 22鈀

o TextOutput – a utility language for translating MPS concepts to text 23鈀
output. This language is used when generating configuration files for 24鈀

GobyWeb plugins. 25鈀

鈀 26鈀

Each of these languages provides a set of abstractions designed for a specific purpose. This 27鈀
is an advantage because it helps keep each language small and focused. When combined 28鈀

through language composition, these focused languages provide complementary features 29鈀
and make it possible to write NYoSh programs as concise as BASH scripts, albeit compiled 30鈀

and with strong development environment support. Figure 2 shows a snapshot of the NYoSh 31鈀
workbench, an integrated development environment that supports the development of 32鈀

NYoSh programs. The languages presented in Figure 1 are bundled in this environment. 33鈀
 34鈀

In the next sections, we describe a few of these languages in detail to illustrate some of the 35鈀
advantages of LWB technology. 36鈀

 37鈀
Language Composition. Figure 3 presents an example of language composition. In this 38鈀

figure, we present a language concept diagram to illustrate the relationships among concepts 39鈀
of different languages. The diagram follows the convention of the Unified Modeling 40鈀

Language, a popular graphical modeling language (Rumbaugh et al. 1999). Each grey or 41鈀
blue box in Figure 3 groups the concepts that belong to a language (the color blue highlights 42鈀

core languages provided with the MPS platform). See material and methods for a brief 43鈀
description of MPS languages and concepts. Inheritance (or generalization) relationships 44鈀

across concepts of two languages are a primary mechanism to compose these languages. For 45鈀
instance, Figure 3 shows that the GString concept of the GString language extends the 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 8鈀

Expression concept of BaseLanguage. This makes it possible to use instances of the GString 1鈀
concept everywhere that an instance of the BaseLanguage Expression concept is expected. 2鈀

Reference is another mechanism to compose languages through reuse. In Figure 4, we 3鈀
present the same language composition from the point of view of the script programmer. In 4鈀

this example, we show how a GString instance can be used as initializer to a variable 5鈀
declaration of type string. This is possible because of the is-a relationship between the 6鈀

GString concept and the fact that variable initializers are of type Expression in 7鈀
BaseLanguage. This example of language composition would not be possible with 8鈀

traditional programming language technology and is a key motivation for using a LWB. It is 9鈀
important to note that the script programmer can determine what languages can be used in 10鈀

the projectional editor on a program-by-program basis. 11鈀
 12鈀

Interactive Editing. The GString language, like other languages developed with a LWB, 13鈀
offers more than just a concise syntax. For instance, we were able to endow the language 14鈀

with Intentions. An intention is simple method to extend the user interface of the 15鈀
Projectional Editor (PE, see Material and Methods) by adding menu items that are shown to 16鈀

the end user when the cursor is positioned in the editor on certain instances of a concept. 17鈀
Selecting the menu item of the intention applies some changes to the program(s) under 18鈀

editing. Changes can be made to the AST being displayed in the window, but can also create 19鈀
other ASTs if necessary (e.g., the equivalent or creating new files in a text editor). Intentions 20鈀

can defined with concepts of a language, or for concepts of other languages. Another 21鈀
substantial advantage of LWB and PE is that it is possible and straightforward to add 22鈀

semantic error detection to a language. This capability is absent from traditional languages 23鈀
and can only be added at great cost by creating an integrated development environment for 24鈀

each language. In a LWB, detecting errors in a language is as simple as writing logic to 25鈀
detect error conditions in the AST. The PE takes care of highlighting the part of the program 26鈀

presentation and displaying the error message to the programmer. The MPS LWB makes it 27鈀
possible to build an interactive PE in a very modular manner. 28鈀

 29鈀
Creating a Command Execution Statement. A LWB makes it possible to seamlessly 30鈀

extend a language with new language constructs. We took advantage of this capability by 31鈀
developing an ExecuteCommand concept in the NYoSh language. We designed the 32鈀

ExecuteCommand concept to provide a LWB equivalent to BASH command pipelines. 33鈀

Figure鈀 5鈀 presents the concept diagram for this language extension. ExecuteCommand 34鈀

extends the BaseLanguage Statement concept, and can therefore be used everywhere in 35鈀
programs where a statement would be expected. Figure 6 shows how the execute command 36鈀

appears to the script programmer. In designing the syntax of the ExecuteCommand, we 37鈀
aimed for a similar expressiveness than that experienced by BASH script programmers. 38鈀

Commands can be separated by the familiar command binary operators (i.e., | & || && ;) and 39鈀
these operators provide the same semantic as the BASH interpreter at runtime. Semantic 40鈀

errors (such as two consecutive binary operators) are recognized and highlighted in the PE. 41鈀
 42鈀

Language Compilation. We have implemented language generators that make it possible to 43鈀
compile NYoSh programs into pure Java programs. While MPS BaseLanguage is already 44鈀

endowed with a suitable generator, any language extension introduced in a language must 45鈀
reduce the AST to the target implementation language with a custom generator. When a 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 9鈀

programmer (re)builds a NYoSh program, the NYoSh Workbench invokes all language 1鈀
generators and produces target platform files. With the set of generators that we developed, 2鈀

NYoSh programs are compiled to one or more Java classes or Java Archive (JAR). All 3鈀
extended language constructs are reduced to the Java 1.6 language and to a small set of 4鈀

open-source Java libraries. The GobyWeb language includes generators that also create the 5鈀
shell scripts necessary to execute the NYoSh JAR files in a GobyWeb system and build 6鈀

system rules to deploy these files automatically to a GobyWeb plugin repository. 7鈀
 8鈀

Micro-Parsing Technique. In working with the MPS LWB, we devised a technique that can 9鈀
sometimes facilitate the development of programs in the projectional editor. We used this 10鈀

technique successfully for two types of data entry. Figure 7 illustrates the micro-parsing 11鈀
technique when entering BASH commands with references to variables (a-d) and when entering 12鈀

BASH commands that contain operators (e-f). The technique is useful to enter code or semi-13鈀
structured text fragments that would be tedious to enter directly with the projectional editor. 14鈀

Briefly, the micro-parsing technique consists in storing text in a string property of the concept 15鈀
and to create an intention that parses the text, adjusts the AST according to the content of the 16鈀

string, and clears the string. In Figure 7, the text of a BASH command line is entered in the text 17鈀
property of a GStringLiteral. The intention parses the text to extract a sequence of string literals 18鈀

and variable references. It then replaces the GStringLiteral with an equivalent list of 19鈀
GStringComponent sub-concepts. Finally, the intention also defines variables for each 20鈀

GStringVarReference immediately before the statement that contains the GString. In our 21鈀
experience, the micro-parsing technique speeds up entry of existing BASH commands into a 22鈀

NYoSh script. We have also used the technique in the TextOuput language to capture mostly 23鈀
unstructured text in a property, parse it at new lines, and parse the text of select lines at a 24鈀

character delimiter. Since the intention is applied on select lines only, only these lines need to be 25鈀
parsed into Phrase concept instances. Replacing text phrases with Phrase concept instances 26鈀

makes it possible to create text output that varies with the properties of an input concept (this is 27鈀
done in MPS by creating a mapping rule and template in a generator aspect). This technique is 28鈀

simpler to implement than parsing every word of the unstructured text and representing it as a 29鈀
concept instance. 30鈀

 31鈀
NYoSh and GobyWeb: Integration Through Composition. Figure 8 illustrates how we 32鈀

were able to combine NYoSh scripts with the GobyWeb system. The NYoSh script logic for 33鈀
a GobyWeb aligner plugin is shown. We achieved a tight integration through language 34鈀

composition. The MPS LWB supports embedding the editor of one concept in the editor of 35鈀
another concept in a straightforward manner. We took advantage of this capability to 36鈀

provide a structured header on top of a GobyWeb NYoSh script that makes it possible to 37鈀
enter information about where the script belongs in the GobyWeb plugin system. Users of 38鈀

the NYoSh workbench can create new GobyWeb NYoSh scripts by selecting the type of 39鈀
plugin among the GobyWeb supported plugin types (aligner, alignment analysis, resource, 40鈀

artifact installation script, task). A GobyWeb NYoSh script template is then created that 41鈀
provides the empty entry points needed to implement the type of plugin specified. This 42鈀

ability to provide pre-configured scripts is a strong substitute for the usual practice of 43鈀
providing text templates for empty scripts and another advantage of using a LWB. Figure 8 44鈀

also illustrates how the different languages we have developed are composed with 45鈀
BaseLanguage and Java libraries to write a complete script. Rebuilding this script in the 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 10鈀

NYoSh workbench will automatically compile and deploy the jar packages to the GobyWeb 1鈀
plugin location specified in the header. We have provided in supplementary material the 2鈀

complete listing of the configuration files and Java source code that are automatically 3鈀
generated when the script shown in Figure 8 is compiled in the NYoSh Workbench. 4鈀

Comparing the script in Figure 8 and the pure-Java source code equivalent in supplementary 5鈀
material provides a compelling justification for the design of concise domain specific 6鈀

languages. 7鈀

Summary of LWB Drawbacks. We found a few drawbacks when working with the MPS 8鈀

LWB. The first and most noticeable drawback is that LWBs require the programmers to 9鈀
adapt and learn how to work with a projectional editor (PE, see Material and Methods). In 10鈀

our experience, the process can be particularly frustrating for about half a day, in this period 11鈀
of time when experienced programmers will wonder why they are putting themselves 12鈀

through the pain of learning how to enter code in the PE when they were perfectly efficient 13鈀
with a text editor. As experienced programmers, we started to feel quite comfortable with 14鈀

the PE of the MPS LWB in about one week. The second important drawback of LWB 15鈀
technology is that programs are persisted in data structures that cannot be easily edited 16鈀

without tool support. This makes the stability of the specific LWB tool of primary 17鈀
importance when programming with a LWB, because if the LWB fails to persist correct data 18鈀

structures to disk, the programs may become corrupted and non-editable. We only 19鈀
encountered minor problems of this kind on two occasions with the MPS LWB, presumably 20鈀

because we were working with an early access program release (EAP 3.0). In each case, we 21鈀
were either able to fix the problem by (1) editing the model files directly, or (2) recovering 22鈀

an earlier version of the program in source control repository. The last drawback is specific 23鈀
of the MPS LWB. We noted the absence of dependency management capability in the MPS 24鈀

tool. Integration with tools such as Maven or Ivy would be useful to develop projects that 25鈀
reuse many components, Java packages and languages, but is currently lacking from the 26鈀

MPS LWB. 27鈀

鈀 28鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 11鈀

Summary of LWB advantages. Figure 9 provides a summary of important and unique 1鈀
advantages of LWB technology. These advantages include: use of intentions, seamless 2鈀

execution and debugging, domain and application-specific error detection and messages, 3鈀
and code completion. 4鈀

Environment-aware Editor. Using these abilities we were able to create an environment-5鈀
aware editor (EAE) for GobyWeb NYoSh scripts. Figure 9E shows that the GobyWeb 6鈀

NYoSh EAE makes it possible to: 7鈀

- View environment variable names at the time when the script is being designed 8鈀

(design time). Variable names are contributed both from the JVM environment and 9鈀
by the GobyWebSource concept, which is aware of resources available to the 10鈀

specific plugin being developed (GobyWeb resources are a special kind of plugin 11鈀
that encapsulates software or data installed on the compute nodes (Dorff et al. 2013)). 12鈀

- View the name of input/output slots in the editor that are defined in the GobyWeb 13鈀

plugin config.xml file. 14鈀

Discussion鈀 15鈀

鈀 16鈀

Domain and Application Specific Languages. Languages have been designed to facilitate 17鈀
the development of specific application programs or for programming in domains where 18鈀

programs share similar requirements. In the high-performance scientific domain, the Swift 19鈀
Parallel Scripting language has been developed to facilitate the parallelization of large-scale 20鈀

data processing on compute grids (Wilde et al. 2011). Swift provides a compelling 21鈀
motivation or developing domain-specific languages when the language can abstract the 22鈀

complexity of parallel processing. Swift was developed with traditional programming 23鈀
language technology and therefore does not benefit from an integrated development 24鈀

environment or any of the LWB advantages we highlighted in this manuscript. In the 25鈀
bioinformatics domain, AndurilScript was developed as part of the Anduril project to 26鈀

provide a concise language to express the logic of data processing components 27鈀
(AndurilScript is an application-specific language) (Ovaska et al. 2010). Both Swift and 28鈀

AndurilScript illustrate how domain or application specific scripting languages can increase 29鈀
the productivity of programmers working in a particular domain or with a specific 30鈀

application program. Because Swift or AndurilScript were developed with traditional 31鈀
programming language technology it would be cumbersome to reuse parts of the 32鈀

implementation of these languages to develop languages with related requirements (such as 33鈀
extending Swift with a new language statement type). This is not the case with languages 34鈀

developed with LWB technology since language extension and composition is the raison 35鈀
d’être of these tools. 36鈀

 37鈀
Who needs another Programming Language? A large number of programming languages 38鈀

have been developed along the years and it is reasonable to ask if there is a real need for 39鈀
more languages. The last sixty years since the design of FORTRAN have seen a 40鈀

proliferation of programming languages that mostly provide similar computing abstractions, 41鈀
while innovating in one or a few aspects, and that are difficult to use together (e.g., using a 42鈀

combination of Python, Perl and Java to develop an analysis program is neither practically 43鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 12鈀

simple, nor very useful, because the languages mostly share similar capabilities). LWBs 1鈀
make it possible to develop new languages, but their most important characteristic is that 2鈀

they seamlessly support the design and use of new languages. This is a key point because 3鈀
new languages can be small and focused on providing a small number of unique abstractions. 4鈀

Focus is possible since features missing from a small language can be obtained by 5鈀
composing this language with other languages that provide complementary features. The 6鈀

composition mechanisms offered by LWB greatly facilitate language reuse and separation 7鈀
of concern between languages. We have provided examples of this throughout this 8鈀

manuscript. For instance, we did not create completely new scripting language syntax, but 9鈀
instead reused the capabilities of the robust BaseLanguage implementation provided by the 10鈀

MPS system. We extended BaseLanguage with small languages that provide the 11鈀
abstractions that were needed to produce the unique functionality that our application 12鈀

required. We expect that widespread use of LWB will result in a multiplication of small 13鈀
languages, but in a manner that will increase language reuse and interoperability, rather than 14鈀

in the historical language fragmentation that has been observed with traditional language 15鈀
technology. 16鈀

 17鈀
Increased Productivity. Most Unix Shell interpreters have been developed over many 18鈀

years (for instance, BASH was developed across a period of two years from 1987 to 1989). 19鈀
In 2013, using LWB technology and the MPS platform, we were able to assemble a 20鈀

prototype of an alternative scripting language in about two months (the summer 2013). 21鈀
Since our team of two was new to the MPS platform at the beginning of the project, it seems 22鈀

clear that the MPS LWB provided increased productivity for this project. A clear factor in 23鈀
increasing our productivity was that the MPS platform offers strong mechanisms for reusing 24鈀

and composing languages. These mechanisms, illustrated in the result section of this 25鈀
manuscript, made it possible to extend a fully featured general programming language 26鈀

already offered by MPS (BaseLanguage) with capabilities that make the language feel more 27鈀
like a scripting language. The concise syntax of the NYoSh languages helps programmers 28鈀

increase productivity when reading and writing scripts. 29鈀
 30鈀

Differences with traditional Languages. Python and Perl are programming languages also 31鈀
frequently used in bioinformatics to automate analyses. Importantly, Python or Perl 32鈀

programs can be compiled, thus helping to avoid many of the limitations of shell script 33鈀
interpreters. However, similarly to other traditional programming languages, neither Python 34鈀

nor Perl can be extended with new language syntax to offer domain dependent abstractions 35鈀
of the type that we were able to create with LWB technology. It is also usually not 36鈀

straightforward to endow text editors with semantic error detection for these languages. 37鈀
 38鈀

Software Frameworks. Software frameworks can be developed to extend general 39鈀
programming languages with abstractions such as data structures and algorithms adapted to 40鈀

a scientific field or application domain. Languages developed in a LWB support a similar 41鈀
extension, but have a key advantage: they can provide new language constructs that 42鈀

integrate seamlessly with the rest of the language. This is not possible with traditional 43鈀
programming languages where frameworks must be expressed using the syntax of the host 44鈀

language. 45鈀
 46鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 13鈀

Projectional Editor. A projectional editor is different from a textual editor and most users 1鈀
need a few weeks of practice to become familiar with the editor. While we have found that 2鈀

the process of adapting to a PE can be frustrating, we have found that after a period of 3鈀
intense development with the MPS PE, switching back to a text editor can also be frustrating. 4鈀

Overall, we felt that the longer-term advantages of using LWB technology far outweigh the 5鈀
minor discomfort and effort needed when switching from a text editor to a PE. Based on 6鈀

anecdotal evidence, we would hypothesize that users who have never worked with a text 7鈀
editor for programming tasks may find it easier to learn a PE that programmers who have 8鈀

only worked with text editors for a long time. We believe this would be possible because a 9鈀
PE offers a more controlled environment where mistakes are harder to make and also offers 10鈀

mechanisms that greatly enhance interactive development (such as intentions and semantic 11鈀
error detection). In a sense, the projectional editors are closer to the user interfaces that non-12鈀

technical users are already familiar with than they are to the text editors that more 13鈀
experienced programmers are used to. Testing this hypothesis would require a well-designed 14鈀

human subject study and is beyond the scope of this manuscript. 15鈀
 16鈀

More human readable programs. When designing language constructs for NYoSh we 17鈀
found that PE technology makes it possible to present language constructs as English 18鈀

phrases. For instance, the ExecuteCommand statement is rendered as “execute: <pipeline>”, 19鈀
the EnvironmentSource statement is rendered as “load environment sources”, the GobyWeb 20鈀

error management attribute is called “error management: “. We think that these presentation 21鈀
choices make programs more readable by humans. Traditional programming languages have 22鈀

been designed around the constraints of Lexer and Parser technology, which is not 23鈀
compatible with the use of natural language-like phrases. LWBs do not have these 24鈀

limitations because they work directly with the AST (see Materials and Methods). We 25鈀
recommend using natural-language-like phrases to design languages aimed at less technical 26鈀

users. 27鈀

Conclusion鈀 鈀 28鈀

By and large, we found that the advantages of LWB technology outweigh their drawbacks. Using 29鈀
this technology, we were able to quickly build a set of composable languages that together 30鈀

provide a replacement for shell scripting. We were able to take this language one step further and 31鈀
integrate the new languages tightly with GobyWeb. In this process, we created an environment-32鈀

aware editor that facilitates the writing of GobyWeb plugin script logic (because the editor can 33鈀
provide automatic completion for aspects of the development that otherwise would require 34鈀

frequent lookups in the documentation). Through this experience, we feel as if we have looked 35鈀
into the future of programming, and saw a technology that is ripe for widespread adoption. We 36鈀

think that because LWBs make it possible to design new languages with their own syntax, they 37鈀
are a great fit for scientific programming problems where programmers frequently need to devise 38鈀

and compute with new abstractions. This is particularly true in the field of bioinformatics where 39鈀
many types of abstractions are developed to compute about biology. 40鈀

41鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 14鈀

鈀 1鈀

Figures鈀 2鈀

Figure 1. NYoSh Overview and Use Cases. Bionformatics pipeline programmers interact with the NYoSh
workbench through a projectional editor. The editor allows composing languages and developing solutions. Once

a solution is ready, language generators are invoked to produce software to be executed on the target platform.

Depending on the kind of solution, the platform is the local computer (for NYoSh scripts) or the compute grid of

a GobyWeb system (for GobyWeb plugins). Execution and debugging can be performed within the workbench.

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 15鈀

Figure 2. The NYoSh Workbench. The workbench is a graphical Integraterd Development E allowing to fully

manage the development lifecycle of solutions based on the included languages. On the left side, a navigation panel
allows to browse the Abstract Syntax Tree (AST) of the composed language concepts. On the right side, the editor

shows the text-like projection for a specific script (this script is the rendering of the AST shown in the left panel, but

this is transparent to the workbench programmer). At the bottom, the version control console reports messages

related to the source control operations performed. Also shown is a Git commit dialog to illustrate that the

workbench provides full source control integration (with Git, or SVN). The NYoSh Workbench desktop application

shown in this figure was generated by the MPS language workbench and packaged for distribution across multiple

operating systems (MacOS, UNIX/LINUX, Windows).

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 16鈀

Figure 3. Composing the GString Language with other Languages. This diagram presents GString

language composition form the point of view of the language designer. The language the concepts belong

to is shown in a grey or blue box labeled with the name of the language. The color blue is used for
language(s) provided by the MPS platform. In the GString language, the GString concept extends the

Expression concept from (the) BaseLanguage (language). This extension relationship makes it possible to

use instances of the GString concept wherever Expression instances are expected. A GString concept

contains GStringComponent children (aggregation link). GStringComponent is an abstract concept whose
concrete sub-concepts, GStringLiteral and GStringReference specialize (generalization link) the

component. GStringLiteral represents a plain string. GStringVarReference represents a reference to a

variable inside a GString. GStringVarReference references a VariableDeclaration from BaseLanguage
(reference link). Specializations can also occur across languages, as shown with the

VariableReaderGStringComponent specialization in the environment language. This specialization makes

it possible to use environment variables inside a GString (See Figure 4 for an example of how these
languages are used from the point of view of the script programmer).

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 17鈀

Figure 4. GString composition from the point of view of the script programmer. Assembling a string
instance to display a message can be done in pure BaseLanguage syntax as shown in panel (a). This code

fragment concatenates string literals with the + concatenation operator. An environment variable value is

retrieved for the variable USER and inserted in the string. The code is similar to the Java syntax and a bit
verbose. (b) In the second panel, we show the same string constructed with BaseLanguage and the GString

language extension. The syntax is more concise than in panel (a), yet will generate equivalent code. The

(b) snapshot from the editor shows how GString instances appear to the script programmer in a textual

representation that many programmers will find natural. (Concepts are underlined with color in this figure
to clearly indicate which parts of the program belong to which languages. Color underlining does not

appear in the NYoSh editor, but text color is as shown). In this example, a GString instance is assigned to

a string variable called composedString. This is possible because the GString concept extends the
Expression concept of BaseLanguage (see Figure 3). The GString instance shown to the right of the equal

sign (=) contains four GStringComponent instances. The first one is a GStringLiteral (This is the), the

second a GStringVarReference to variable in scope (${name}), the third another GStringLiteral (You are

logged in as), and the fourth a VariableReaderGStringComponent (${USER}) that references an
environment variable. This figure illustrates that LWB make it possible to create new syntax constructs

that work seamlessly with other languages.

1鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 18鈀

鈀 1鈀

鈀 2鈀

Figure 5. ExecuteCommand: composition with other languages. The ExecuteCommand concept is

designed to be a container (aggregation link) of AbstractCommand instances. A sub-concept of

AbstractCommand defines a concrete command to be executed. NYoSh provides three basic extensions: (1)

GStringCommand, allowing to directly type commands with GString instances, (2) BynaryOperator, an

abstract concept for defining BASH command separators, (3) ConsumeOutput, another abstract concept to

be extended for redirecting the output of the preceding commands (for instance in a file, as showed in the
figure). Other languages can provide their own commands. For instance, the GobyWeb language defines two

AbstractCommand extensions: FetchCommand (to obtain the names of input files for a plugin) and

PushCommand (to push output files produced by a plugin to the GobyWeb system). These commands are
offered as Commands to make it possible to use them in command pipelines.

Figure 6. ExecuteCommand from the point of view the script programmer. A fragment of NYoSh
program is shown with two statements. The first statement is a variable declaration statement and the second

an execute statement. Note that an execute statement contains a list of commands separated by binary

operators. In this example, three GStringCommand concept instances are shown, separated by a pipe
operator. The last command of the list is an instance of RedirectToFile concept configured to write to an md-

alignment.sam filename. GStringCommand benefits from the ability of GString to access environment

variable values to construct each command.

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 19鈀

鈀
Figure 7. The micro-parsing technique helps enter BASH commands into NYoSh. This figure illustrates how

intentions can be used to facilitate inputting or reusing complicated BASH command lines into a well-formed

NYoSh program. Consider the BASH command line shown in (a). This command line would typically have been
developed interactively in the BASH interpreter, possibly trying the command with test data until it functioned as

desired. (b) Here we pasted the text of the command as a GStringLiteral and assigned it to a variable

(bashCommand). (c) Activating a pre-defined GString intention (Extract ${var} as variables) converts the literal into

(d) a GString where variable references in the format ${name} have been replaced with references to program
variable declarations. The intention implements a micro-parsing operation that substantially simplifies the

conversion of BASH commands into NYoSh scripts. As expected, changing the value of the variables before the

GString evaluation will change the value of the literal produced. A similar micro-parsing technique is illustrated in
panel (e) where we pasted a BASH command pipeline into a NYoSh execute statement. Activating the micro-parsing

intention called “Parse literal into command expressions” parses the sequence of individual commands and operators

and generates a corresponding AST fragment in the execute statement. If each fragment contained a ${var} pattern,
the intention shown in (c) could be used to introduce the corresponding variables before the execute statement. The

micro-parsing technique greatly simplifies adapting existing BASH command pipelines to NYoSh.

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 20鈀

鈀 1鈀

Figure 8. Tight integration between NYoSh scripting and the GobyWeb plugin system achieved with language

composition. Using the MPS LW, we have been able to tightly integrate NYoSh scripts with the GobyWeb plugin
system. Specifically, users of the NYoSh workbench can use NYoSh scripts to implement GobyWeb plugins logic (1) At

the top of the editor, the GobyWeb plugin information can be provided to associate the script (dashed box) to a specific

GobyWeb plugin. The fields are defined by the GobyWeb language structure and just need to be filled in via the editor.

Once the programmer has filled in the information, the NYoSh script becomes aware of the environment the plugin will
execute in. This plugin script illustrates the tight integration that can be achieved between languages in the MPS LW. The

GobyWeb language extends the NYoSh language and adds new structure not present in NYoSh scripts. (2) For instance,

the error management information is specific to GobyWeb (it can be added with an intention). (3) GobyWeb script entry
points are created with instructions that load the plugin environment into the script. The GobyWeb source can load the

plugin environment using information provided in (1). (4) Java libraries can be used in the script (shown is using the

Apache Commons-IO open source library. (5) GString is used to create string values that embed values from the plugin
runtime environment. (6) GStrings values can be used as environment variable names in a concise syntax. (7) NYoSh

execute statements provide a convenient way to execute programs in the script. The arrow indicates that execute

statements use the current environment, which was modified by the load environment sources statement.

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 21鈀

鈀 1鈀

 2鈀

Figure 9. Key Advantages of the NYoSh Workbench. Because the NYoSh Workbench was implemented with the

MPS LW, it benefits from the capabilities offered by this robust LW (panels a-d). (a) The workbench supports
intentions, which are interactive ways to modify the AST being edited. In NYoSh, for instance, intentions are used to

automate the creation of boiler-plate code, as shown here, or to implement the micro-parsing technique shown in

Figure 7 (b) NYoSh scripts can be executed or debugged seamlessly from within the workbench. This capability

makes NYoSh scripts behave almost as if they were interpreted because although compilation is required, it is
triggered automatically when the program has changed and the programmer requests execution. (c) We implemented

domain and application specific error detection to provide syntax error highlighting. In the example shown, the error

message indicates that the GobyWeb environment requires a valid plugin configuration (location must be filled in
under “plugin system”). (d) At any point in a NYoSh script, the programmer can activate auto-completion in the

editor (control+space key combination). The auto-completion dialog then suggests which concepts are valid in the

specific context being edited. In the example shown, auto-completion is invoked after entering an execute statement.
The completions offered include available sub-concepts of AbstractCommand commands in the languages imported

in the editor. (e) In NYoSh, we have used auto-completion and intentions to implement an environment-aware editor

(EAE). An EAE is an editor that is aware of the environment in which the program will execute, and offers

completion suggestions to the programmer that are adapted to the target environment. In panel (e, top and bottom), we
show how the NYoSh EAE is aware of the environment variables available to a GobyWeb plugin when the plugin

will execute; (e, middle) auto-completion suggests the output slot names that are defined in the GobyWeb plugin that

the programmer is working on (slots represent the possible outputs of a plugin).

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 22鈀

 1鈀
 2鈀

 3鈀
References 4鈀

Jetbrains鈀 Meta鈀 Programming鈀 System.鈀 Available鈀 at鈀 http://www.jetbrains.com/mps/2013).鈀 5鈀

Bechhofer鈀 S,鈀 Van鈀 Harmelen鈀 F,鈀 Hendler鈀 J,鈀 Horrocks鈀 I,鈀 McGuinness鈀 DL,鈀 Patel괄ЀSchneider鈀 PF,鈀 6鈀

and鈀 Stein鈀 LA.鈀 2004.鈀 OWL鈀 web鈀 ontology鈀 language鈀 reference.鈀 W3C鈀 recommendation鈀 7鈀

10:2006괄Ѐ2001.鈀 8鈀

Campagne鈀 F,鈀 Dorff鈀 KC,鈀 Chambwe鈀 N,鈀 Robinson鈀 J.T.,鈀 and鈀 Mesirov鈀 JP.鈀 2013.鈀 Compression鈀 of鈀 9鈀

structured鈀 high괄Ѐthroughput鈀 sequencing鈀 data.鈀 PLoS鈀 ONE鈀 8:e79871.鈀 10鈀

Dmitriev鈀 S.鈀 2004.鈀 Language鈀 oriented鈀 programming:鈀 The鈀 next鈀 programming鈀 paradigm.鈀 11鈀

Available鈀 at鈀 http://www.onboard.jetbrains.com/is1/articles/04/10/lop/.鈀 12鈀

Dorff鈀 KC,鈀 Chambwe鈀 N,鈀 Zeno鈀 Z,鈀 Simi鈀 M,鈀 Shaknovich鈀 R,鈀 and鈀 Campagne鈀 F.鈀 2013.鈀 GobyWeb:鈀 13鈀

Simplified鈀 Management鈀 and鈀 Analysis鈀 of鈀 Gene鈀 Expression鈀 and鈀 DNA鈀 Methylation鈀 14鈀

Sequencing鈀 Data.鈀 PLoS鈀 ONE鈀 8:e69666.鈀 15鈀

Fowler鈀 M.鈀 2005.鈀 Language鈀 workbenches:鈀 The鈀 killer괄Ѐapp鈀 for鈀 domain鈀 specific鈀 languages.鈀 16鈀

Available鈀 at鈀 http://martinfowler.com/articles/languageWorkbench.html.鈀 17鈀

Fox鈀 B.鈀 1989.鈀 Bash鈀 is鈀 in鈀 beta鈀 release!鈀 Available鈀 at鈀 18鈀

https://groups.google.com/forum/?hl=en#!msg/gnu.announce/hvhlR1Vn1P0/NYwpː킭19鈀

4_0CaUJ鈀 (accessed鈀 Nov鈀 25鈀 2013鈀 2013).鈀 20鈀

Gosling鈀 J,鈀 Joy鈀 B,鈀 Steele鈀 G,鈀 and鈀 Bracha鈀 G.鈀 2005.鈀 The鈀 Java#鈀 Language鈀 Specification.鈀 21鈀

Holland鈀 RC,鈀 Down鈀 TA,鈀 Pocock鈀 M,鈀 Prlic鈀 A,鈀 Huen鈀 D,鈀 James鈀 K,鈀 Foisy鈀 S,鈀 Drager鈀 A,鈀 Yates鈀 A,鈀 Heuer鈀 22鈀

M鈀 et鈀 al.鈀 .鈀 2008.鈀 BioJava:鈀 an鈀 open괄Ѐsource鈀 framework鈀 for鈀 bioinformatics.鈀 23鈀

Bioinformatics鈀 24:2096괄Ѐ2097.鈀 24鈀

Markus鈀 Voeleter,鈀 Sebastian鈀 Benz,鈀 Christian鈀 Dietrich,鈀 Birgit鈀 Engelmann,鈀 Mats鈀 Helander,鈀 25鈀

Lennart鈀 Kats,鈀 Eelco鈀 Visser,鈀 and鈀 Washmuth鈀 G.鈀 2013.鈀 DSL鈀 Engineering.鈀 Lexington,鈀 KY:鈀 26鈀

Markus鈀 Voelter.鈀 27鈀

McKenna鈀 A,鈀 Hanna鈀 M,鈀 Banks鈀 E,鈀 Sivachenko鈀 A,鈀 Cibulskis鈀 K,鈀 Kernytsky鈀 A,鈀 Garimella鈀 K,鈀 28鈀

Altshuler鈀 D,鈀 Gabriel鈀 S,鈀 Daly鈀 M鈀 et鈀 al.鈀 .鈀 2010.鈀 The鈀 Genome鈀 Analysis鈀 Toolkit:鈀 a鈀 29鈀

MapReduce鈀 framework鈀 for鈀 analyzing鈀 next괄Ѐgeneration鈀 DNA鈀 sequencing鈀 data.鈀 Genome鈀 30鈀

research鈀 20:1297괄Ѐ1303.鈀 31鈀

Ovaska鈀 K,鈀 Laakso鈀 M,鈀 Haapa괄ЀPaananen鈀 S,鈀 Louhimo鈀 R,鈀 Chen鈀 P,鈀 Aittomaki鈀 V,鈀 Valo鈀 E,鈀 Nunez괄Ѐ32鈀

Fontarnau鈀 J,鈀 Rantanen鈀 V,鈀 Karinen鈀 S鈀 et鈀 al.鈀 .鈀 2010.鈀 Large괄Ѐscale鈀 data鈀 integration鈀 33鈀

framework鈀 provides鈀 a鈀 comprehensive鈀 view鈀 on鈀 glioblastoma鈀 multiforme.鈀 Genome鈀 34鈀

Med鈀 2:65.鈀 35鈀

Rumbaugh鈀 J,鈀 Jacobson鈀 I,鈀 and鈀 Booch鈀 G.鈀 1999.鈀 The鈀 unified鈀 modeling鈀 language鈀 reference鈀 36鈀

manual.鈀 37鈀

Simonyi鈀 C.鈀 1995.鈀 The鈀 death鈀 of鈀 computer鈀 languages,鈀 the鈀 birth鈀 of鈀 intentional鈀 programming.鈀 38鈀

NATO鈀 Science鈀 Committee鈀 Conference.鈀 39鈀

Simonyi鈀 C,鈀 Christerson鈀 M,鈀 and鈀 Clifford鈀 S.鈀 2006.鈀 Intentional鈀 software.鈀 ACM鈀 SIGPLAN鈀 Notices:鈀 40鈀

ACM.鈀 p鈀 451괄Ѐ464.鈀 41鈀

Stajich鈀 JE,鈀 Block鈀 D,鈀 Boulez鈀 K,鈀 Brenner鈀 SE,鈀 Chervitz鈀 SA,鈀 Dagdigian鈀 C,鈀 Fuellen鈀 G,鈀 Gilbert鈀 JG,鈀 42鈀

Korf鈀 I,鈀 Lapp鈀 H鈀 et鈀 al.鈀 .鈀 2002.鈀 The鈀 Bioperl鈀 toolkit:鈀 Perl鈀 modules鈀 for鈀 the鈀 life鈀 sciences.鈀 43鈀

Genome鈀 Res鈀 12:1611괄Ѐ1618.鈀 44鈀

Stallman鈀 R.鈀 1998.鈀 The鈀 GNU鈀 project.鈀 45鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

鈀 23鈀

Voelter鈀 M.鈀 2013.鈀 Language鈀 and鈀 IDE鈀 Modularization鈀 and鈀 Composition鈀 with鈀 MPS.鈀 鈀 Generative鈀 1鈀

and鈀 Transformational鈀 Techniques鈀 in鈀 Software鈀 Engineering鈀 IV:鈀 Springer,鈀 383괄Ѐ430.鈀 2鈀

Voelter鈀 M,鈀 and鈀 Solomatov鈀 K.鈀 2010.鈀 Language鈀 modularization鈀 and鈀 composition鈀 with鈀 3鈀

projectional鈀 language鈀 workbenches鈀 illustrated鈀 with鈀 MPS.鈀 Software鈀 Language鈀 4鈀

Engineering,鈀 SLE.鈀 5鈀

Wilde鈀 M,鈀 Hategan鈀 M,鈀 Wozniak鈀 JM,鈀 Clifford鈀 B,鈀 Katz鈀 DS,鈀 and鈀 Foster鈀 I.鈀 2011.鈀 Swift:鈀 A鈀 language鈀 6鈀

for鈀 distributed鈀 parallel鈀 scripting.鈀 Parallel鈀 Computing鈀 37:633괄Ѐ652.鈀 7鈀

鈀 8鈀

 9鈀

PeerJ PrePrints | https://peerj.com/preprints/112v2/ | v2 received: 25 Nov 2013, published: 25 Nov 2013, doi: 10.7287/peerj.preprints.112v2

P
re
P
ri
n
ts

