Social media as a big public health data source: review of the international bibliography

Ethniko Kapodistriako Panepistio Athinon, Athens, Greece
DOI
10.7287/peerj.preprints.1107v1
Subject Areas
Global Health, Public Health, Human-Computer Interaction, Computational Science
Keywords
social media, big data, public health
Copyright
© 2015 Karamagioli
Licence
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ PrePrints) and either DOI or URL of the article must be cited.
Cite this article
Karamagioli E. 2015. Social media as a big public health data source: review of the international bibliography. PeerJ PrePrints 3:e1107v1

Abstract

Background: As the use of social media creates huge amounts of data, the need for big data analysis has to synthesize the information and determine which actions is generated. Online communication channels such as Facebook, Twitter, Instagram etc provide a wealth of passively collected data that may be mined for public health purposes such as health surveillance, health crisis management, and last but not least health promotion and education. Objective: We explore international bibliography on the potential role and perceptive of use for social media as a big data source for public health purposes. Method: Systematic literature review. Data extraction and synthesis was performed with the use of thematic analysis. Results: Examples of those currently collecting and analyzing big data from generated social content include scientists who are working with the Centers for Disease Control and Prevention to track the spread of flu by analyzing what user searches, and the World Health Organization is working on disaster management relief. But what exactly do we do with this big social media data? We can track real-time trends and understand them quicker through the platforms and processing services. By processing this big social media data, it is possible to determine specific patterns in conversation topics, users behaviors, overall trends and influencers, sociodemographic characteristics, lifestyle behaviors, and social and cultural constructs. Conclusion: The key to fostering big data and social media converge is process and analyze the right data that may be mined for purposes of public health, so as to provide strategic insights for planning, execution and measurement of effective and efficient public health interventions. In this effort, political, economic and legal obstacles need to be seriously considered.

Author Comment

This is an abstract which has been accepted for the 2nd International Conference on Medical Education Informatics.