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Secondary nucleation overcomes seeding template in

amyloid-like fibril formation

Kata�yna Milto, Tomas �neideris, Vytautas Smirnovas

Prions are infectious proteins where the same protein may express distinct strains. The

strains are enciphered by different misfolded conformations. Strain-like phenomena have

also been reported in a number of other amyloid-forming proteins. One of the features of

amyloid strains is the ability to self-propagate, maintaining a constant set of physical

properties despite being propagated under conditions different from those that allowed

initial formation of the strain. Here we report a cross-seeding experiment using strains

formed under different conditions. Using high concentrations of seeds results in rapid

elongation and new fibrils preserve the properties of the seeding fibrils. At low seed

concentrations secondary nucleation plays the major role and new fibrils gain properties

predicted by the environment rather than the structure of the seeds. Our findings could

explain conformational switching between amyloid strains observed in a wide variety of in

vivo and in vitro experiments.
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Abstract 8 

Prions are infectious proteins where the same protein may express distinct strains. The strains are 9 

enciphered by different misfolded conformations. Strain-like phenomena have also been reported 10 

in a number of other amyloid-forming proteins. One of the features of amyloid strains is the 11 

ability to self-propagate, maintaining a constant set of physical properties despite being 12 

propagated under conditions different from those that allowed initial formation of the strain.  13 

Here we report a cross-seeding experiment using strains formed under different conditions. 14 

Using high concentrations of seeds results in rapid elongation and new fibrils preserve the 15 

properties of the seeding fibrils. At low seed concentrations secondary nucleation plays the major 16 

role and new fibrils gain properties predicted by the environment rather than the structure of the 17 

seeds. Our findings could explain conformational switching between amyloid strains observed in 18 

a wide variety of in vivo and in vitro experiments. 19 

 20 
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Introduction 21 

Prions are infectious particles which play the main role in a group of fatal neurodegenerative 22 

disorders, also known as the transmissible spongiform encephalopaties (TSE�s). Prion diseases 23 

propagate by self-replication of a pathogenic prion isoform (PrP
Sc

) using cellular prion protein 24 

(PrP
C
) as a substrate (Prusiner, 1998; Collinge, 2001). Although structures of infectious forms of 25 

PrP are still only partially defined, it is known that PrP
Sc

 is rich in beta-sheet structure and 26 

demonstrates fibrillar morphology (Sim & Caughey, 2009; Colby & Prusiner, 2011). Different 27 

conformations of PrP
Sc

 are responsible for variations in prion disease phenotypes and are usually 28 

referred to as strains (Safar et al., 1998). For a long time prion protein was the only suspected 29 

infective protein in humans, however recently there is growing evidence that proteins in other 30 

amyloid-related diseases may spread via prion-like mechanisms (Lundmark et al., 2002; Soto, 31 

Estrada & Castilla, 2006; Frost & Diamond, 2010; Brundin, Melki & Kopito, 2010; Eisele et al., 32 

2010; Angot et al., 2010; Westermark & Westermark, 2010; Masuda-Suzukake et al., 2013; 33 

Eisele, 2013; Goedert et al., 2014). Moreover, the most recent data suggest that variants of 34 

Alzheimer�s disease are encoded by different strains (Stöhr et al., 2014; Watts et al., 2014; 35 

Aguzzi, 2014).  36 

A lot of information on possible mechanisms of amyloid-like fibril formation comes from in 37 

vitro studies of the aggregation kinetics (Knowles et al., 2009; Arosio et al., 2014; Meisl et al., 38 

2014). It is thought that four major steps are involved in fibril formation (Meisl et al., 2014). In 39 

the case of spontaneous aggregation, everything starts from primary nucleation. It takes time for 40 

a group of soluble protein molecules to get together and misfold into an amyloid-like structure, 41 

which serves as a nucleus for fibrillation. Once nuclei are formed, they start elongation into 42 

fibrils by attaching soluble protein at the ends and refolding it into an amyloid-like structure. 43 
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Although nucleation and elongation could be sufficient for describing fibrillation, in many cases 44 

secondary processes, such as fibril fragmentation and secondary nucleation are extremely 45 

important (Knowles et al., 2009; Meisl et al., 2014). Fibril fragmentation increases the number of 46 

fibril ends, which leads to faster elongation. The presence of fibrils can induce formation of new 47 

nuclei with much shorter lag times compared to primary nucleation; this is referred to as 48 

secondary nucleation (Meisl et al., 2014). 49 

How would such a mechanism of fibril formation work in the case of different amyloid strains? 50 

Strain-like structural polymorphism was observed in a number of different amyloid-forming 51 

proteins (Tanaka et al., 2004, 2005; Yamaguchi et al., 2004; Dzwolak et al., 2004; Petkova et al., 52 

2005; Jones & Surewicz, 2005; Heise et al., 2005; Paravastu et al., 2008; Makarava et al., 2009; 53 

Colby et al., 2009; Dinkel et al., 2011; Jones et al., 2011; Chatani et al., 2012; Bousset et al., 54 

2013; Ghaemmaghami et al., 2013; Cobb et al., 2014; Tycko, 2014; Surmacz-Chwedoruk, 55 

Babenko & Dzwolak, 2014). To form different amyloid strains de novo using the same protein, 56 

different environmental conditions, such as temperature (Tanaka et al., 2005), shear forces 57 

(Makarava et al., 2009), concentration of denaturants (Cobb et al., 2014) or co-solvents 58 

(Dzwolak et al., 2004) are involved. Once nuclei are formed, they are able to carry strain-specific 59 

properties even in unfavorable environments (Dzwolak et al., 2004; Petkova et al., 2005; 60 

Makarava et al., 2009; Cobb et al., 2014; Surmacz-Chwedoruk, Babenko & Dzwolak, 2014). 61 

This indicates that environment defines different strains during primary nucleation, but affects 62 

only kinetics, not the structure, of fibrils formed via elongation. In the case of secondary 63 

nucleation, formation of new nuclei is induced by existing fibrils, but there is no experimental 64 

evidence if the structure of these nuclei is determined by the environment conditions, or by 65 
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structure of the fibrils. Or in other words, can secondary nucleation be responsible for 66 

conformational switching in amyloid-like fibril strains? 67 

Materials and Methods 68 

Recombinant mouse prion protein fragment (rMoPrP(89-230)) used in this study was purified 69 

and stored as described previously (Milto, Michailova & Smirnovas, 2014). Protein grade 70 

guanidine hydrochloride (GuHCl) was purchased from Carl Roth GmbH, guanidine thiocyanate 71 

(GuSCN) and other chemicals were purchased from Fisher Scientific UK. 72 

To prepare different fibril strains, monomeric protein from a stock solution was diluted to a 73 

concentration of 0.5 mg/ml in 50 mM phosphate buffer (pH 6) containing 2 M or 4 M GuHCl, 74 

and incubated for one week at 37°C with 220 rpm shaking (in shaker incubator IKA KS 4000i). 75 

For seeding experiments rPrP-A
4M

 fibrils were treated for 10 minutes using Bandelin Sonopuls 76 

3100 ultrasonic homogenizer equipped with MS72 tip (using 20% power, cycles of 30 s/30 s 77 

sonication/rest, total energy applied to the sample per cycle � 0.36 kJ). The sample was kept on 78 

ice during the sonication. Right after the treatment, fibrils were mixed with 0.5 mg/ml of mouse 79 

prion solution in 2 M GuHCl in 50 mM phosphate buffer, pH 6, containing 50 mM ThT. 80 

Elongation kinetics at 60°C temperature was monitored by ThT fluorescence assay (excitation at 81 

470 nm, emission at 510 nm) using Qiagen Rotor-Gene Q real-time analyzer (Milto, Michailova 82 

& Smirnovas, 2014). ThT fluorescence curves were normalized by dividing each point by the 83 

maximum intensity of the curve.  84 

For denaturation assays, amyloid fibrils were resuspended to a concentration of 25 mM in 50 85 

mM phosphate buffer, pH 6, containing 0.5 M GuSCN and homogenized by sonication. These 86 

solutions were diluted 1:4 in a buffer containing varying concentrations of GuSCN, and 87 
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incubated for 60 min at 25°C. Samples were then mixed 1:20 with 50 mM ThT, and fluorescence 88 

was measured at 480 nm using the excitation wavelength of 440 nm. Denaturation curves were 89 

normalized by dividing each point by the average intensity of the points in the plateau region. 90 

 91 

Results 92 

Conformational stability of PrP
Sc

 as defined by resistance to chemical denaturation has been one 93 

of the key parameters used to define differences between strains (Colby et al., 2009). Different 94 

strains of recombinant mammalian prion protein amyloid-like fibrils made in 2 and 4 M 95 

guanidine hydrochloride (rPrP-A
2M

 and rPrP-A
4M

, respectively) were thoroughly characterized 96 

by Surewicz group (Cobb et al., 2014). We used recombinant N-terminally truncated mouse 97 

prion protein (rMoPrP(89-230)) to create rPrP-A
2M

 and rPrP-A
4M

  strains of amyloid-like fibrils. 98 

Similar to recent data on recombinant human PrP (Cobb et al., 2014), rMoPrP fibrils formed in 2 99 

and 4 M guanidine hydrochloride (GuHCl) have different conformational stability (Fig.1). Due 100 

to the fact that rPrP-A
4M

 fibrils could not be fully denatured using even 7.5 M GuHCl(Cobb et 101 

al., 2014), a denaturation assay using a more strongly chaotropic salt, guanidine thiocynate 102 

(GuSCN) was performed. Midpoint of denaturation of rPrP-A
2M

 is at ~2 M GuSCN and rPrP-103 

A
4M

 is at ~2.5 M GuSCN, respectively. This difference served as a simple, unbiased marker of 104 

different strains in further experiments.  105 

 106 
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 107 

Figure 1. Denaturation profiles of rPrP-A2M and rPrP-A4M fibrils in GuSCN reveal different conformational 108 

stabilities. Standard errors calculated from 12 measurements using Student�s t-distribution at P=0.05. 109 

 110 

In our previous work we have described elongation kinetics at different temperatures and 111 

guanidine hydrochloride (GuHCl) concentrations, using rPrP-A
2M

 as a seed (Milto, Michailova 112 

& Smirnovas, 2014). It was not possible to get reliable data above 2.5 M GuHCl due to 113 

depolymerization of rPrP-A
2M

. Thus only one way cross-seeding is possible for rPrP-A
2M

 and 114 

rPrP-A
4M

 strains. We followed cross-seeding kinetics using different concentrations of seeds. As 115 

seen in figure 2, five percent seeds led to fast growth of amyloid-like fibrils from the very 116 

beginning, suggesting fast fibril elongation. At 1% seed volume elongation is slower, but after 117 

some time the rate of aggregation explodes. At a lower concentration of seeds elongation is very 118 

slow and the curve looks sigmoidal, as usually seen in case of spontaneous fibrillation. However 119 

in absence of seeds no aggregation was detected within the experimental timeframe, which 120 

means the observed process, is fibril-induced secondary nucleation (see Supplementary 121 

information for the fitting data).  122 
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 123 

 124 

Figure 2. Concentration of seeds determines the mechanism of aggregation. Different amounts of rPrP-A4M fibrils 125 

(sonicated for 300 s) were added to the solution of rMoPrP, prepared in 2 M GuHCl, 50 mM phosphate buffer, pH6. 126 

The kinetics was followed at 60°C using Thioflavin T (ThT) fluorescence assay. No change of ThT fluorescence 127 

was observed in samples without seeds. 128 

 129 

Similar change from elongation-driven to secondary nucleation-driven processes can be observed 130 

using sonicated versus unsonicated fibrils as seeds (Fig. 3A). The fibril denaturation assay (Fig. 131 

3B) revealed that stability of fibrils formed in elongation-driven process is the same as of the 132 

rPrP-A
4M

 strain, which was used as a seed. However for the secondary nucleation-driven 133 

process, stability of fibrils is the same as the rPrP-A
2M

 strain, which is favored by the 134 

environment. This leads to the conclusion that fibril formation from secondary nucleation does 135 

not follow the seeding template, despite using template fibrils as nucleation sites. 136 
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 137 

Figure 3. Amount of fibril ends determines the mechanism of aggregation and conformation of the final strain. (A) 138 

Different times of sonication were used to prepare rPrP-A4M seeds. Sonication breaks fibrils into shorter pieces 139 

increasing number of fibril ends. The same amount of seeds (5%) was used in all experiments.  (B) Denaturation 140 

profiles of fibrils obtained using unsonicated (secondary nucleation pathway) or highly sonicated (elongation 141 

pathway) rPrP-A4M fibrils as seeds. 142 

 143 

Discussion 144 

Amyloid strain switching has been observed in animal studies (Bartz et al., 2000; Asante et al., 145 

2002; Lloyd et al., 2004; Ghaemmaghami et al., 2013), cell culture (Li et al., 2010), and 146 

experiments in vitro (Castilla et al., 2008; Makarava et al., 2009; Surmacz-Chwedoruk, Babenko 147 

& Dzwolak, 2014). Two possibilities are suggested to explain this phenomenon (Collinge & 148 

Clarke, 2007; Cobb & Surewicz, 2009). The first one describes coexistence of multiple structures 149 

in the infective material, when only the dominant type would be recognized experimentally; 150 

however upon transmission to different host, the minor population may self-propagate much 151 

better and become dominant, reflected in the change of strain properties. Recently this way of 152 

amyloid strain switching was demonstrated for insulin fibrils in vitro (Surmacz-Chwedoruk, 153 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1101v1 | CC-BY 4.0 Open Access | rec: 19 May 2015, publ: 19 May 2015

P
re
P
ri
n
ts



9 
 

Babenko & Dzwolak, 2014). The second possibility suggested that sometimes host protein can 154 

adopt amyloid conformations distinct from the heterologous template. The Baskakov group 155 

demonstrated adaptive conformational switching within individual fibrils as a possible 156 

mechanism for such change (Makarava et al., 2009). Our data suggests a possibility of strain 157 

switching via secondary nucleation pathways. Moreover, secondary nucleation can explain 158 

switching of strains in absence of species barrier, for example in case of recently described 159 

Darwinian evolution of prions in cell culture, which showed strain mutations within a single host 160 

protein (Li et al., 2010) or in case of protein misfolding cyclic amplification (PMCA) of 161 

recombinant PrP (Smirnovas et al., 2009). In summary, continuous propagation or switching 162 

between amyloid strains may be determined by the mechanism of replication in addition to the 163 

environment. In cases when a species barrier or environmental barrier stops or slows down fibril 164 

elongation, there is the possibility of secondary nucleation events to seed the formation of 165 

different strains. The mechanism is dependent on the concentration of fibril ends, which opens 166 

up a new dimension in cross-species and cross-environment seeding/infection experiments. 167 

Assuming the same mechanisms of prion propagation in vivo, there is a possibility of one strain 168 

of PrP
Sc

 causing different disease variants. For example a hypothesis of both variant Creutzfeldt-169 

Jakob disease (CJD) and sporadic CJD to be caused by different amounts of the same PrP
Sc

 could 170 

be valid. 171 

 172 
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