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Rotation survival forest for right censored data

Lifeng Zhou, Qingsong Xu, Hong Wang

Recently, survival ensembles have found more and more applications in biological and

medical research when censored time-to-event data are often confronted. In this research,

we investigate the plausibility of extending rotation forest, originally proposed for

classification purpose, to survival analysis. Supported by the proper statistical analysis, we

show that rotation survival forests are able to outperform the state-of-art survival

ensembles on right censored data. We also provide a C-index based variable importance

measure for evaluating covariates in censored survival data.
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1. Introduction1

In biological and medical research, time-to-event data are often confront-2

ed. Survival analysis focuses on studying the relationship between covariates3

and the time until an event of interest occurs. The analysis has become4

complicated when the data are censored due to various reasons such as some5

patients are uncooperative and withdraw from a clinical trial or some pa-6

tients do not experience the event (death or occurrence of a disease) when7

a clinical trial ends. Many parametric or semi-parametric models such as8

Cox-proportional hazards model and its extensions (David, 1972; Cox and9

Oakes, 1984) are developed to investigate such relationship in censored data.10

However, when the underlying assumptions are not satisfied, these models11

may not lead to faithful conclusions. Therefore, non-parametric models such12

as survival trees (LeBlanc and Crowley, 1995; Bou-Hamad et al., 2011) and13

neural networks (Faraggi and Simon, 1995) are evolved to relax or remove14

the restrictive assumptions.15

Recently, ensemble based approaches which combine one of the previ-16

ous parametric and non-parametric models with state-of-the-art ensemble17

learning techniques are applied to create accurate and diverse base learn-18

ers. Bagging, one of the most simple but ingenious ensemble techniques,19

was first applied with survival trees to censored data in (Dannegger, 2000)20

and (Benner, 2002). A general bagging method for arbitrary tree growing21

algorithms with a conditional survival function was proposed in (Hothorn22

et al., 2004). The popular random forest (Breiman, 2001) method was also23
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extended to survival analysis scenario by Hothorn et al. (2006) and later by24

Ishwaran et al. (2008). In (Hothorn et al., 2006), estimated inverse prob-25

ability of censoring weights were used as sampling weights in constructing26

the bootstrapping samples and the final ensemble prediction is a weighted27

average of log-survival time predictions from all survival trees. In (Ishwaran28

et al., 2008), Nelson-Aalen estimates of cumulative hazard functions were29

obtained and averaged from all nodes, and four different splitting criteria30

including log-rank statistics and conservation-of-event principle were provid-31

ed for constructing the so-called random survival forest (RSF). The uniform32

consistency for RSF was further proved in (Ishwaran and Kogalur, 2010).33

Boosting techniques using different type of base learners such as regression34

trees (Hothorn et al., 2006; Chen et al., 2013) and smoothing splines (Lu35

and Li, 2008) were also studied. A Bayesian ensemble using Cox propor-36

tional hazard model, Weibull regression and accelerated failure time model37

for high dimensional survival data was presented in (Bonato et al., 2011).38

All these survival ensembles have been proved to be more effective than pre-39

vious monolithic models (Hothorn et al., 2004, 2006; Ishwaran et al., 2008;40

Ishwaran and Kogalur, 2010; Bonato et al., 2011)41

In this article, we introduce rotation survival forests, a novel tree ensemble42

for analyzing survival data. The proposed rotation survival forest (RotSF)43

methodology extends the original rotation forest(RotF) approach (Rodriguez44

et al., 2006) from classification to survival analysis. In RotF, accurate and45

diverse classifiers are obtained through variable reconstruction by assembling46

information extracted from variable subsets. The randomness and diversity is47

introduced in two forms. First, a bootstrap sample of the training dataset is48

randomly generated. Second, variables are randomly divided into a number of49

disjoint subsets and principal component analysis (PCA) is applied in turn to50

each variable data subset to obtain the so-called rotation matrix. Multiplying51

the original dataset by the rotation matrix will lead to a new rotated dataset.52

These rotated datasets will be used to train tree base learners within the53

ensemble.54

RotF is unique among all ensemble learning algorithms in that all the55

information in the original dataset is preserved, though in different forms56

of representation. Various experiments results and theoretical analysis have57

shown that RotF is a very competitive ensemble learning method. Howev-58

er, applications of RotF have focused primarily on classification problems so59

far. It is of a great value to generalize rotation forest to right censored sur-60

vival data. Similar to RotF, our proposed rotation survival forest approach61
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random split the p covariates into k variable subset and then some feature62

extraction method is executed on each variable subset. Different from RotF,63

coefficients of covariates which are not chosen in k subsets of variable are set64

to 0 in the rotation matrix. To further diverse the data, we employ a double65

bagging approach in preparing the data for rotation which in turn improves66

the prediction accuracy.67

A byproduct of our proposed approach is that importance of variables68

can be calculated easily using the so-called out-of-bag (OOB) data (Breiman,69

2001). The proposed importance measure based on Harrell’s C-index (Harrell70

et al., 1996) is very useful in survival analysis, as researchers usually have71

strong interest in determining the most significant covariates that affecting72

the survival probability.73

In order to carry out the empirical comparisons, we establish a similar74

experimental framework to that in (Ishwaran et al., 2008); we test on the fa-75

mous public survival datasets available from public repositories. We consid-76

er an extended version of classification and regression tree (CART)(Breiman77

et al., 1984) as the base classifier for our rotation ensemble in that it has been78

the most commonly used non-parametric method in analyzing survival data79

(Bou-Hamad et al., 2011). To estimate prediction errors of various survival80

models, we use C-index as the evaluation criterion as suggested by Ishwaran81

et al. (2008). The results obtained in the comparisons are further validated82

by some proper statistical tests.83

The main contributions of this paper can be summarized as follows:84

• We extend the original rotation forest approach from classification to85

survival analysis of right censored data;86

• We provide a C-index based variable importance measure for evaluating87

covariates in censored survival data.88

2. Methods89

Survival analysis is the study of relationship between survival time τ and90

a set of covariates X = (X1, X2, · · · , Xp). Here, τ is not fully observed, i.e.91

τ = min(U,C) is composed of both true survival time U and censored time92

C and an indicator variable δ = I(U ≤ C) takes 1 for true event time U93

and 0 otherwise. The major goal of survival analysis is to estimate survival94

experiences of different patient groups via the so-called cumulative survival95

function, which captures the probability that the event does not occur until96
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a given time. In this study, we propose to model the survival function using97

a novel non-parametric learning ensemble called Rotation Survival Forest98

(RotSF).99

Assume X to be a variable set V of p covariates and D be the dataset100

containing the training samples in a form of n × (p + 2) matrix, namely101

D = (τq, δq,Xq), q = 1, 2, · · · , n.102

In the following, we will give a high-level description of how RotSF trains103

a base survival learning algorithm Si:104

1. Generate a bootstrap sample D′ of size n from D.105

2. Split V randomly into k disjoint subsets Vi,j(j = 1, · · · , k) such that each106

variable subset contains M covariates. If p is not divisible by M , there107

would be some variables not included in any subset and denote these108

remaining variables by RV .109

3. In the j-th iteration, generate a bootstrap sample D” of size n from D′.110

Let Xi,j be the subset of D” with variable set Vi,j.111

4. Run PCA on Xi,j and obtain the variable loadings matrix (rotation ma-112

trix) Mi,j for Vi,j.113

5. Repeat above steps 3 and 4 for all j = 1, 2, · · · , k, and obtain a group of114

Mi,js(j = 1, 2, · · · , k) for all Vi,js .115

6. For RV covariates, set the their rotations (loadings) to 0, and hence all co-116

variates have corresponding rotation values. Then rearrange these values117

according to the covariates order in V and we get the rearranged rotation118

matrix Ra
i .119

7. Use the newly formed data (τi, δi, XRa
i ) as the training set for the base120

survival tree algorithm, we will get a base survival tree learner Si.121

As with most ensemble learning methods, ensemble size L needs to be122

set beforehand. Similar to RotF, a fixed value M = 2 is given to the size of123

variable subset. The base survival tree algorithm adopted here is the CART124

algorithm extended by LeBlanc and Crowley (1992).125

The pseudo-code of the proposed RotSF algorithm is presented in Algo-126

rithm 1:127

4
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Algorithm 1 The Rotation Survival Forest Algorithm
1: INPUT:
2: Training data: D = (τq, δq,Xq), q = 1, · · · , n , where X is a variable

set V of p covariates
3: M : Number of variables within a subset
4: L: Ensemble size
5: Si: Survival tree base learning algorithm
6: OUTPUT:
7: Survival ensemble S
8: procedure RotSF(D,M , L)
9: while i in 1 : L do

10: Preparing the rotation matrix Ra
i :

11: Generate a bootstrap sample D′ from D
12: Randomly split variables V into k = p/M equal size subsets

Vi,j, j = 1, · · · , k
13: Denote the variables not chosen (remaining variables) as RV
14: while j in 1 : k do

15: Generate a bootstrap sample D” from D′

16: Let Xi,j be subset of D” with variable set Vi,j

17: Apply PCA on Xi,j to get the rotation matrix Mi,j

18: end while

19: If there are any RV variables, set the corresponding rotations to 0
20: Arrange all Mi,js to match variable order in V and obtain rotation

matrix Ra
i

21: Train a survival tree base learner Si using (τi, δi, XRa
i ) as the

training set
22: end while

23: return The survival ensemble S
24: end procedure

25: In prediction, the average hazard rate r for new data X :

r =
1

L

∑

Si∈S

Si(XRa
i )

From Algorithm 1, we know that similar to random survival forest, RotS-128

F is also a parallel algorithm and the first ”while” part can be executed129

concurrently to save time in case of large survival data.130

5
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3. Results & Discussion131

In this section, we investigate the performance of the proposed RotSF132

model and compare with three popular survival models for censored survival133

data.134

3.1. Datasets135

We evaluate the performance of our algorithm on three well-known sur-136

vival benchmark datasets which have been extensively analyzed in the sta-137

tistical literature. A brief introduction and summary of the used datasets138

are given below and in Table 1.139

3.1.1. Primary Biliary Cirrhosis(PBC) Dataset140

This dataset is from the Mayo Clinic trial in primary biliary cirrhosis141

(PBC) of the liver conducted between 1974 and 1984. There are 418 patients142

in this study, 257 of whom have censored data. The currently used dataset143

is taken from Appendix D of Fleming and Harrington (1991).144

3.1.2. Chronic Myelogenous Leukemia(CML) Dataset145

This dataset contains survival informatin in a randomised trial comparing146

three treatments for Chronic Myelogeneous Leukemia(CML). In this dataset,147

507 samples, 108 of which are censored, are simulated according to structure148

of the data by the German CML Study Group used in Hehlmann et al. (1994).149

3.1.3. Veterans’ Administration Lung Cancer(Veteran) Dataset150

This dataset includes survival data for 137 patients from Veteran’s Ad-151

ministration Lung Cancer Trial and was first made public by Kalbfleisch and152

Prentice (1980). There are 9 censored observations.153

Table 1: Summary of three benchmark datasets used in the paper

Dataset Samples Covariates Censored data Censoring rate
PBC 418 17 257 61.48%
CML 507 5 108 21.30%

Veteran 137 6 9 6.5%

6
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3.2. Evaluation metric & statistical tests154

In medical decision making, researchers and doctors are usually concerned155

with the relative risks between patients with various covariates. To evaluate156

the accuracy of such relative risks, Harrells concordance index (C-index)157

measure was proposed in (Harrell et al., 1996). Currently, it is a widely158

adopted statistic in evaluating different survival models and will also be the159

evaluation metric in our later experiments.160

To compare the performance of various survival models, the non-parametric161

Friedman test(Demšar, 2006) is applied. Friedman’s test statistic is based on162

the average ranked performance of the algorithms on each run of the datasets163

and can be calculated according to the following formula:164

FT =
12

nm(m+ 1)

m
∑

j=1

(

n
∑

i=1

rji

)2

− 3n(m+ 1) (1)

where m denotes the number of survival models, n the number of runs, and165

rji the rank of survival models j on the i-th run. If the value of FT is large166

enough, the null hypothesis that there is no significant difference among the167

different survival models can be rejected and a Nemenyi post-hoc test can be168

adopted to find where the difference lies.169

For two survival models C1 and C2, the Nemenyi statistic z is calculated170

as follows:171

z =
Rj1 −Rj2
√

m(m+1)
6n

(2)

where Rj denotes the mean rank of survival models Cj on all runs of the172

dataset,namely, Rj =
1
n

n
∑

i=1

rji . The performance of two survival models is sig-173

nificantly different if the z value is larger than a certain critical value(Demšar,174

2006).175

3.3. Evaluating covariate importance176

Covariate(variable) importance plays an importance role in the interpre-177

tation of a survival model. In this study, we introduce a new variable im-178

portant measure, mean C-index decrease measure. It is based on C-index179

values difference on the OOB data before and after permuting the values of180

the variable in consideration. The variable importance for variable i in terms181

of mean C-index decrease is defined by:182
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V Ici =
100

L

L
∑

j=1

(Ci − Ci) (3)

where Ci and Ci denotes C-index values on the current OOB data before and183

after the permutation of variable i.184

If the variable in question is not associated with the survival outcome,185

value permutation will have no influence on the prediction and hence no in-186

fluence on the C-index. On the contrary, if outcomes and variables are indeed187

associated, permuting variable values results in a worse prediction power and188

will lead to a decrease in the C-index value. The C-index difference before189

and after randomly permuting the variable will reflect the importance level of190

the current variable. Averaging the decreased values across all survival tree191

base models, we will get a list of mean decrease C-index values. The higher192

a mean decrease C-index value is, the more important a variable would be.193

3.4. Experiment Results194

We conduct our experiments on a system with a Pentium Dual-Core195

3.20GHz CPU and 4G RAM. The proposed RotSF algorithm is implemented196

in the R programming language. In the experiments, all training and test-197

ing sets are from a random 80% and 20% split of the benchmark datasets.198

Hereafter, the reported performance results are based on 1000 random runs199

of RotSF and other methods.200

3.4.1. Covariate importance result201

For illustration purpose, we calculate covariates’ importance in the P-202

BC dataset using the above mean C-index measure. A bar plot of top 10203

important covariates are shown in Figure 1.204

According the obtained result, covariates such as ”bili” (serum bilirun-205

bin), ”age” are very important clinical indicators for predicting survival of206

patients with primary biliary cirrhosis, as permutation of these variables can207

cause a decrease in C-index of more than 2 percent on average. Compared208

with the results in (Bou-Hamad et al., 2011), one may find that there is a209

significant overlap in the most important covariates found by RotSF, omit-210

one-covariate approach and rotation survival forest. In addition, the top two211

covariates ”bill” and ”age” are the same and in the same order.212

Different approaches giving similar results provides further confidence213

that the covariates found with C-index measure can be used in clinical deci-214

sion making to evaluate the survival risks of patients.215
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Figure 1: Top ten important variables by RotSF

3.4.2. The effect of double bagging216

Next, we will test RotSF’s performance with different bagging schemes:217

RotSF with double bagging(RotSF, the proposed algorithm); RotSF with218

single bagging(RotSFsb). For both two approaches, the same settings, i.e.219

L = 1000 and M = 2 are applied. For illustration and simplicity, we only220

report the results with the PBC dataset in the following Table 2.

Table 2: RotSF’s performance with different bagging schemes

Statistic RotSF RotSFsb
Min 0.7000 0.7032

1st Quintile 0.8072 0.8046
Median 0.8370 0.8318
Mean 0.8347 0.8309

3rd Quintile 0.8650 0.8614
Max 0.9473 0.9402

221

To decide whether the two bagging schemes are significantly different, a222

Wilcoxon signed-rank test is applied. As the p-value turns out to be less223
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than 2.2e-16, we can reject the null hypothesis that these two schemes have224

the same predictive power. Together with the results shown in Table 2, we225

can come to the conclusion that double bagging outperforms single bagging226

under the C-index metric. This confirms our assumption that double bagging227

scheme can result in a more diversified training data and this does improve228

the algorithm’s performance.229

3.4.3. Performance comparison result230

Here, we will compare the proposed method with three state-of-the-art231

survival models. The first method is Cox proportional hazard (Cox) mod-232

el (David, 1972); the second method is random survival forest (RSF) and233

the third method is gradient boosted model (GBM)(Ridgeway, 2004). Com-234

parisons with these models are conducted with corresponding ”survival”,235

”randomForestSRC”, and ”gbm” packages in R. For the ease of notation,236

survival models RotSF, RSF, Cox and GBM are denoted by A, B, C, D, re-237

spectively when necessary. In the experiments, we want all classifiers to have238

the same opportunities to achieve the best results, thus the default settings239

are adopted. For ensemble methods, i.e. RotSF, RSF and GBM, 1000 trees240

are built.241

The following Figure 2 reports the performance of RotSF, RSF, LLR and242

CART algorithms in term of C-index on 1000 runs of the experiments.243

The Friedman rank sum test statistics on PBC, CML and Veteran dataset-244

s are 800.9539, 2498.443 and 403.2192, respectively and all are significant as245

all three p-values are less than 2.2e-16.246

Thus, to find out which pairs of algorithms are significantly different, we247

can compute the Nemenyi test statistics for different pairs of survival models,248

i.e., zBA, zCA and zDA. The post hoc Nemenyi test results are shown in the249

following Table 3.250

Table 3: Friedman test and Nemenyi test results on all datasets

Dataset Nemenyi zBA Nemenyi zCA Nemenyi zDA

PBC 4.849742 14.98224 26.24057
CML 2.182384 39.33487 25.82488

Veteran 4.78046 14.53191 15.39793

For α = 0.05, the critical value of Nemenyi’s test is 2.5742. It can be251
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Figure 2: Boxplots of performance in terms of C-index

seen that all Nemenyi statistics except the zBA value on CML dataset exceed252

2.5742. Thus, in terms of C-index, there exists significant differences between253

RotSF and the other three algorithms on PBC and Veteran datasets and also254

significant differences between RotSF and Cox & GBM on CML dataset. In255

other words, on PBC and Veteran datasets, RotSF is significantly better than256

RSF, Cox and GBM; on CML dataset, RotSF is also significantly better than257
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Cox and GBM.258

Tough RotSF beats RSF in 543 out 1000 runs on CML dataset, the d-259

ifference between RotSF and RSF is not significantly different at this time260

according to the Nemenyi statistic. However, if we repeat the experiments261

more times, for example, 2000 times, the Nemenyi test statistic becomes262

3.612997 and is above the critical value 2.5672. Thus, RotSF is also signifi-263

cantly better than RSF on CML dataset.264

4. Conclusion265

In this study, we have developed a new ensemble learning algorithm,266

rotation survival forest, for survival analysis. By studying the well-known267

benchmark datasets, we have found that RotSF generally outperforms state-268

of-the-art survival models such as rotation survival forest, Cox proportional269

hazard and generalized boosted model in terms of C-index metric. As a non-270

parametric approach, RotSF does not impose parametric assumptions on271

hazard functions, and it extends the well-known rotation forest methodology272

to survival analysis.273

This study also provides a mean C-index decrease measure to evaluate274

variable importance. The important covariates identified by RotSF agrees275

strongly with results reported in previous studies and may provide useful276

clues for clinical decision making. It is clear that other methods (ensembles277

and not) are available but the goal here is to illustrate some key features of278

the proposed method and not to provide an exhaustive comparison across279

methods.280

The R code and and the supplementary material are available at url:281

https://github.com/whcsu/rotsf and we are working hard to provide an R282

package for the proposed RotSF algorithm as soon as possible. The proposed283

algorithm still has room for improvement. First, RotSF has an extra param-284

eter which controls the variables within a subset and we just set it to 2 in285

our experiments. We can further test its sensitivity or use cross-validation to286

tune this parameter. Second, as double bagging is applied, RotSF is compu-287

tationally more intensive than other ensemble methods. Fortunately, RotSF288

is easily parallelizable, which could help in dealing with big data. Third, same289

as rotation forest, PCA is chosen for feature extraction in our approach. One290

may try other feature extraction methods as well.291
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Table 1: Summary of three benchmark datasets used in the paper
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2

3 Table 1: Summary of three benchmark datasets used in the paper

4

Dataset Samples Covariates Censored data Censoring 

rate

PBC 418 17 257 61.48%

CML 507 5 108 21.30%

Veteran 137 6 9 6.5%

5  
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Table 2(on next page)

Table 2: RotSFT� ���������	� 
�� ��������� ������� �	����
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3 Table 2: RotSF�s performance with different bagging schemes

4

Statistic RotSF RotSFsb

Min 0.7000 0.7032

1st Quintile 0.8072 0.8046

Median 0.8370 0.8318

Mean 0.8347 0.8309

3rd Quintile 0.8650 0.8614

Max 0.9473 0.9402

5  

6
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Table 3(on next page)

Table 3: Friedman test and Nemenyi test results on all datasets
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2

3 Table 3: F������� test and N������ test results on all datasets 

4

Dataset
N������ N������ N������ 

PBC 4.849742 14.98224 26.24057

CML 2.182384 39.33487 25.82488

Veteran 4.78046 14.53191 15.39793

5  

6

7

8
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Figure 1: Top ten important variables by RotSF
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Figure 2: Boxplots of performance in terms of C-index
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