
 

A peer-reviewed version of this preprint was published in PeerJ
on 29 July 2015.

View the peer-reviewed version (peerj.com/articles/cs-12), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Borges HS, Valente MT. 2015. Mining usage patterns for the Android API.
PeerJ Computer Science 1:e12 https://doi.org/10.7717/peerj-cs.12

https://doi.org/10.7717/peerj-cs.12
https://doi.org/10.7717/peerj-cs.12


Mining usage patterns for the Android API

Hudson Silva, Marco Tulio Valente

API methods are not used alone, but in groups and following patterns. However, despite

being a key information for API users, most usage patterns are not described in official API

documents. In this article, we report a study that evaluates the feasibility of automatically

enriching API documents with information on usage patterns. For this purpose, we mine

and analyze 1,952 usage patterns, from a set of 396 Android applications. As part of our

findings, we report that the Android API has many undocumented and non-trivial usage

patterns, which can be inferred using association rule mining algorithms. We also describe

a field study where a version of the original Android documentation is instrumented with

the extracted usage patterns. During 17 months, this documentation received 77,863

visits from professional Android developers.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Mining Usage Patterns for the Android API1

Hudson Borges and Marco Tulio Valente2

Department of Computer Science, UFMG, Brazil3

{hsborges,mtov}@dcc.ufmg.br4

ABSTRACT5

API methods are not used alone, but in groups and following some patterns. However,

despite being a key information for API users, most usage patterns are not explicitly

described in official API documents. In this article, we report a study to evaluate

the feasibility of automatically enriching API documents with information on usage

patterns. For this purpose, we extract and analyze 1,952 usage patterns, from a set

of 396 Android applications. As part of our findings, we report that the Android API

has many undocumented and non-trivial usage patterns, which can be inferred using

association rule mining algorithms. We also describe a field study where a version

of the original Android documentation was instrumented with the extracted usage

patterns and source code examples. During 17 months, this documentation received

77,863 visits from real Android developers.

.

6

Keywords: Application Programming Interfaces, Usage Patterns, Android7

INTRODUCTION8

Methods in modern APIs are not used independently of each other, but according to9

some patterns (Robillard et al., 2013; Long et al., 2009). For example, the Android10

JavaDoc page that documents the beginTransaction method explicitly reports that11

it is usually used together with setTransactionSucessful and endTransaction.12

However, this page is an exception and most usage patterns are not documented at all.13

We reach this conclusion after inspecting the Android documentation, searching for 10014

popular usage patterns, mined from a dataset of 396 applications. We found that only 1215

patterns are somehow documented.16

This article reports the first (to the best of our knowledge) large-scale field study on17

the instrumentation of API documents with usage patterns. The study is based on the18

Android API, which is selected due to its complexity, size, and relevance to Android19

developers (Syer et al., 2011; Ruiz et al., 2014). We consider an API usage pattern as20

set of API methods that are used together with a certain frequency (Robillard et al.,21

2013). We extend a tool, called APIMiner (Montandon et al., 2013), to mine usage22

patterns from a dataset of Android open-source applications. This tool also instruments23

the original API documents with information on the extracted usage patterns.24

The study reported in this paper is divided in three parts:25

• First, we report a characterization study on the usage of the Android API by26

client applications. Our central goal is to check whether the Android API and27

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



the proposed dataset of Android clients are indeed interesting objects of study,28

considering our central goal.29

• Next, we describe the methodology followed to extract usage patterns for the30

Android API and we characterize such patterns, in terms of their representativeness31

and complexity.32

• Finally, we report a field study, when our version of the Android API instrumented33

with usage patterns and associated examples was made available to public access.34

During 17 months, it received 77,863 visits, coming from 160 countries.35

MATERIALS & METHODS36

In this section, we present the tool we used to enhance API documents with information37

on usage patterns, the dataset used to mine these patterns, and the support and confidence38

thresholds used by the mining algorithm.39

APIMiner40

APIMiner (http://apiminer.org) is a tool that instruments JavaDocs with code41

examples, extracted from API clients (Montandon et al., 2013). As illustrated in Figure 1,42

an “Example Button” is included in the original documentation, before the signature43

of each API method. By clicking on these buttons, developers are presented with44

source code examples for the documented API methods. A detailed presentation of the45

algorithms used by APIMiner to extract, summarize, and rank examples is out of the46

scope of this paper and we refer the interested reader to our previous work (Montandon47

et al., 2013).48

Figure 1. JavaDoc instrumented by APIMiner Montandon et al. (2013)

For this article, we extend APIMiner with a capability to provide examples for API

methods that are often called together. An API usage pattern has the following form:

M ⇒ M1,M2, . . . ,Mn

where M and Mi, 1 ≤ i ≤ n, are methods from the API of interest. This pattern expresses49

that when the method M (antecedent term) is called by a given client method M ,50

methods M1,M2, . . . ,Mn (consequent terms) are usually called by M , not necessarily in51

this order.52

2/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



The extension adds a new module to APIMiner for inferring usage patterns. This53

module relies on a standard association rules mining algorithm (Agrawal and Srikant,54

1994), which retrieves association rules with the same syntax and semantics of the55

proposed usage patterns. The transactions used as input to this algorithm are the56

methods of the client systems and the API methods called by them (all calls are statically57

extracted, based on the static types of the target objects). To evaluate the significance58

of the extracted patterns we rely on two measures: support (number of transactions59

that include the methods in the pattern) and confidence (the probability of finding60

the methods from the consequent term in the subset of the transactions including the61

antecedent method).62

We also extend the JavaDoc interface to show examples for usage patterns, as63

presented in Figure 2. In the usage scenario illustrated by this figure, the API user64

initially requested examples for the beginTransaction() method, using the original65

interface provided by APIMiner. The window presenting the examples has a bottom66

panel with the usage patterns that have beginTransaction as the antecedent term. For67

instance, after selecting the first pattern the user sees examples that include not only68

beginTransaction() but also endTransaction().69

Figure 2. Interface for presenting examples for API usage patterns

We also instrumented the JavaDoc sections that document the API methods with70

information on other methods they are frequently called with (if any), as presented in71

Figure 3.72

Figure 3. Usage patterns are presented in the detailed documentation of methods

3/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Mining Dataset73

Different from work that process Android bytecode downloaded from Google Play (Ruiz74

et al., 2014), in our case it is important to have the original source code, to guarantee75

the extraction of examples with a minimal level of legibility. For this reason, we relied76

on GitHub to construct a dataset with the source code of Android systems, which we77

use for mining the usage patterns considered in this paper. We downloaded Android78

projects from GitHub that have at least 50 commits, to restrict the analysis to projects79

with a minimal level of activity, and that are not forks of other projects, to avoid many80

similar projects in the dataset. By considering these requirements, we create a mining81

dataset with 396 projects, including well-known applications, such as WordPress, Astrid,82

K9, and ConnectBot. Considering all projects, the dataset includes 57,658 classes and83

450,762 methods.84

For this study, we use the version 4.1.2-r1 of the Android API. We initially evaluate85

the usage of the API by the systems in the proposed dataset. Considering just the86

methods that call the API, 59% call a second API method, which shows the feasibility of87

searching for usage patterns. In the dataset, 40% of the public or protected methods from88

the Android API are never called. Table 1 presents the ten packages with the highest89

percentage of unused classes, i.e., classes that do not have any method call in the dataset.90

The packages with the highest percentage of unused classes are android.provider and91

android.drm. In both packages, 81% of the classes are never used.92

Table 1. Packages with the highest percentage of unsed classes

Package # Classes % Unsed Classes

android.provider 177 81

android.drm 26 81

android.mtp 5 80

android.sax 7 71

android.media 131 69

android.security 3 67

android.test 39 64

android.renderscript 55 64

android.widget 222 56

android.net 86 54

We also analyzed the distribution of the number of API calls in our dataset. Figure 493

shows two histograms with the frequency of the number of calls. For each value n94

in the x-axis, the y-axis represents the number of methods with exactly n calls. To95

ease visualization, the first histogram shows methods with at most 40 calls; and the96

second histogram with at most 300 calls (in the full dataset, the number of calls ranges97

from 1 to 6,729). The histogram is right-skewed, meaning that while most methods are98

called few times (median equal to 5), we also have high and very high values. This99

finding implies that centrality and dispersion statistics measures (e.g., mean and standard100

deviation) should not be used to describe our empirical data on number of calls. Instead,101

the histogram suggests the data best fits a heavy-tailed distribution, possibly a power102

law. To check this possibility, we use the statistical framework proposed by Clauset103

4/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



0

500

1000

1500

10 20 30 40

Number of Calls

N
u
m

b
e
r 

o
f 
M

e
th

o
d
s

(a) Up to 40 method calls

0

500

1000

1500

100 200 300

Number of Calls

N
u
m

b
e
r 

o
f 
M

e
th

o
d
s

(b) Up to 300 method calls

Figure 4. Histogram of number of calls

et al. (Clauset et al., 2009) for discerning power-law behavior in empirical data. By104

following this framework, we reject the (null) hypothesis that power-laws are a plausible105

explanation for our data, for a significance level of 5% (p-value= 0.00). However, this106

is not the same as concluding that the number of calls do not match a heavy-tailed107

distribution. In fact, Figure 4 suggests a heavy-tailed behavior, possibly matching an108

alternative distribution (e.g., stretched exponential or log-normal).109

Finally, we correlated the project’s size (in terms of number of methods) and the110

usage of the API (in terms of API calls/method). Initially, we checked whether this data111

follows a normal distribution, which was not the case. For this reason, we performed112

the Kendall Tau rank correlation test to measure the correlation between the defined113

variables. The result was a correlation coefficient of -0.43, which indicates that smaller114

projects depend more on the Android API than large ones.115

Mining Usage Patterns116

The first step for mining usage patterns is to set up the support and confidence thresholds.117

Figure 5a shows the number of association rules by varying the support values. We118

restrict the confidence thresholds to 70%, 80%, 90%, and 95% to keep a minimum119

quality in the rules. We can observe that small support values generate too many rules.120

Fixing a support of 10 transactions, we have 11,054 rules for a confidence of 95% and121

33,685 rules for a confidence of 70%. In fact, the number of association rules starts to122

grow very rapidly for support values less or equal to 20. For this reason, we decide to123

use a support of 21 transactions.124

Figure 5b shows the number of methods covered by the extracted rules, considering125

just rules with a single method in the antecedent term. For a support of 21 transactions,126

the coverage ranges from 192 methods (confidence of 95%) to 624 methods (confidence127

of 70%). To increase API’s coverage, we decide to fix a confidence of 70%.128

By using the proposed thresholds, 1,952 usage patterns are mined, covering 624 API129

methods, which represent 5% of the public and protected methods in the Android API130

5/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



10 15 20 25 30

0
1
0

2
0

3
0

4
0

Support value

#
 R

u
le

s
 (

th
o
u
s
a
n
d
)

llllllllllll

lllll

l

lll

l

70%

80%

90%

95%

(a) Number of rules vs support

10 20 30 40 50 60

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

Support value

#
 M

e
th

o
d
s

lllllllllllllllllllllllllllllllllll
ll

llllll
l

l

ll
ll

l

l

ll

l

70%

80%

90%

95%

(b) API methods coverage vs support

Figure 5. Setting up the support and confidence thresholds

and 8% of the methods called in our dataset.131

RESULTS132

Initially, this section provides examples of usage patterns and also a classification of133

patterns in two categories, intra and inter-class. We then report an evaluation with134

developers, to validate whether the patterns really include methods that are called135

together. Finally, we report a field study, when we made our tool available to public136

usage.137

Examples and Types of Patterns138

Table 2 presents the usage patterns with the highest support. The most common usage139

pattern—found in 1,362 transactions with a confidence of 75%—models the compu-140

tation required to create a focused UI window, which is called an Activity by the141

Android API. The pattern expresses that client methods that set an Activity’s view by142

calling Activity.setContentView(View) usually call Activity.onCreate(Bundle)143

to initialize the view.144

In Table 2, for nine patterns the methods in the antecedent and in the consequent145

term come from the same class. We refer to such patterns as intra-class usage patterns. It146

is more simple to discover these patterns without tool support, since their documentation147

is restricted to a single JavaDoc page. However, considering the 1,952 usage patterns,148

there is an almost equal distribution between intra-class and inter-class usage patterns.149

Specifically, 50.3% of the usage patterns are inter-class, i.e., they have methods coming150

from more than one class. Figure 6 shows boxplots describing the distribution of the151

support values, regarding intra-class and inter-class usage patterns. The first and second152

quartiles of both distributions are very similar. Relevant differences start on the third153

quartile (63 methods for intra-class patterns vs 47 methods for inter-class patterns). For154

this reason, among the ten usage patterns in Table 2, only one is inter-class.155

6/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Table 2. Usage patterns with highest support

Usage Pattern Support Confidence

Activity.setContentView(View) ⇒
1,362 75

Activity.onCreate(Bundle)

Toast.show() ⇒
1,133 86

Toast.makeText(...)

ViewGroup.getChildCount() ⇒
1,077 75

ViewGroup.getChildAt(int)

ViewGroup.getChildAt(int) ⇒
1,077 74

ViewGroup.getChildCount()

AlertDialog.Builder.setTitle(...) ⇒
1,019 98

AlertDialog.Builder.Builder(Context)

ContentValues.put(String,String)⇒
973 80

ContentValues.ContentValues()

AlertDialog.Builder.create() ⇒
765 94

AlertDialog.Builder.Builder(Context)

AlertDialog.Builder.setMessage(...) ⇒
736 96

AlertDialog.Builder.Builder(Context)

LayoutInflater.inflate(...)⇒
697 72

View.findViewById(int)

ContentValues.put(String,Integer)⇒
632 77

ContentValues.ContentValues()

Intra−class Inter−class

2
0

4
0

6
0

8
0

1
0
0

1
2
0

S
u
p
p
o
rt

Figure 6. Support values for intra-class and inter-class usage patterns

7/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Evaluation by Developers156

Association rules can generate meaningless patterns, due to random relations that exist157

in most datasets. To validate the mined relations, we randomly selected a sample of158

45 usage patterns, among the “less reliable” ones. By less reliable we refer to patterns159

with the lowest support and confidence. This sample was selected among 477 usage160

patterns (≈ 25%) with support less than 50 and confidence less than 80%. We call this161

first sample the treatment group. Moreover, we randomly selected five sequences of162

methods, among the existing methods in the Android API. We call this second sample163

the control group. We presented each sequence of methods to two experienced Android164

developers and asked them the following question:165
166

Do you recommend to refer to method Y when documenting method X,167

since they are usually used together?168

Both developers provided negative answers for all patterns in the control group, as169

expected. Table 3 summarizes the results for the 45 patterns in the treatment group. The170

first developer provided positive answers for 33 usage patterns (73%) and the second one171

for 37 patterns (82%). When combining the answers, 28 patterns (62%) were evaluated172

positively by both developers and 3 patterns (7%) received two negative answers. 42173

patterns (93%) received at least a positive recommendation and 17 patterns (38%)174

received at least a negative recommendation. Therefore, according to the developers’175

judgment, we can reach a precision of 62% or 93% depending on the classification176

criteria (two positive answers vs at least one positive answer). This result reveals that177

the mined patterns are not coincidences or spurious relations, specially considering that178

we evaluated patterns in the first quartile of the support and confidence distributions.179

Table 3. Usage patterns evaluation by developers

Answers

Developer Yes No

#1 33 (73%) 12 (27%)

#2 37 (82%) 8 (18%)

#1 && #2 28 (62%) 3 (7%)

#1 || #2 42 (93%) 17 (38%)

However, it is important to highlight that the developer’s judgment is influenced by180

their personal experience with the API. For example, we discussed in details the patterns181

with two negative answers. In common, the developers initially argued they did not182

find reasons to the methods being called together. To clarify this common answer, we183

analyzed the following pattern in more details:184
185

Fragment.onActivityCreated(android.os.Bundle) ⇒ Fragment.getActivity()186
187

One of the developers said this pattern does not make sense, “because the first188

method is a callback, called after an Activity is created”. We then presented to this189

developer many instances of client code calling both methods. Most examples are190

subclasses of Fragment that override onActivityCreated and then call the superclass191

8/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



method, using super. After that, getActivity() is invoked to access the current192

Activity context. The developer acknowledged that some Android developers may use193

the methods in this way, but he also highlighted that the same “behavior can be achieved194

by arranging the Fragment classes in other ways”, as he usually prefers to do.195

Field Study196

We conducted a field study with the purpose of assessing the importance that API users197

give to usage patterns. Particularly, the study was not designed to evaluate the usability198

of the provided source code examples, which it is always a challenge in the case of open199

field studies. Instead, we focused on the frequency that real users search for examples,200

including examples for usage patterns. We claim that answers for such questions—201

coming from the real usage of a complex API such as Android—are important for202

developers that want to instrument their API documents with usage patterns and to203

guide further research on code summarization techniques. In this way, the study aims to204

answer the following research questions:205

• Do API users search for source code examples?206

• Do API users search for examples for usage patterns?207

To answer such questions, we analyzed the accesses made to a public instance of208

APIMiner, available at http://apiminer.org. We collected access data to this209

site from May 13th, 2013 to October 14th, 2014 (17 months), using a private logging210

service and Google Analytics. During this time frame, APIMiner received a total of211

77,863 visits, which gives an average of 150 visits/day. These visits came from 160212

countries and the top three countries in number of visits were India (14.3%), United213

States (11.8%), and Brazil (4.9%). In total, 63,314 users visited the platform and 14,867214

visits (19.1%) were from returning visitors. Finally, 54,704 visits (70.2%) came from215

queries performed in search engines, mostly in Google. The visits generated 114,124216

page views. However, 60,029 page views (52.6%) have a very short duration, less than217

one second, or retrieved pages that are not instrumented by APIMiner (e.g., the site front218

page or several tutorials included in the Android documentation). Therefore, such page219

views were discarded from our analysis. Furthermore, when analyzing the requests for220

examples, we excluded requests to methods from the SQLiteDatabase class, because221

this class is used in the main page of the site to illustrate our usage patterns concept.222

Do API users search for source code examples?223

The visits generated 14,402 requests for source code examples, i.e., clicks in the “Ex-224

ample Button”. Therefore, on average 26.6% of the considered page views included an225

“Example Button” click. During the field study, 35,596 examples were presented to the226

users, i.e., on average 2.47 examples were presented after each click in the “Example227

Button”. Therefore, the users navigated through the list of examples to see at least a228

second example.229

Table 4 presents the top ten methods with more requests for examples. These230

methods, with the exception of Toast.setGravity(...), do not have usage patterns.231

However, among the 933 methods that received requests for example, 125 methods232

(13.4%) have at least one usage pattern.233

9/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Table 4. Top ten methods with the highest number of requests for examples

Method Req.

ViewPager.OnPageChangeListener.onPageSelected(int) 101

SimpleCursorAdapter.SimpleCursorAdapter(Context,int,Cursor,. . . ) 91

RectF.RectF(float,float,float,float) 57

Point.Point(int,int) 56

ViewPager.OnPageChangeListener.onPageScrollStateChanged(int) 55

SimpleCursorAdapter.setViewBinder(ViewBinder) 50

BitmapRegionDecoder.decodeRegion(Rect,BitmapFactory.Options) 50

RectF.RectF() 44

Toast.setGravity(int,int,int) 43

ViewPager.OnPageChangeListener.onPageScrolled(int,float,int) 42

Do API users search for examples for usage patterns?234

In our dataset, 624 methods have usage patterns. Considering these methods, 306 meth-235

ods (49%) received at least one click in their respective “Example Button”. Computing236

all clicks, these methods received 1,301 requests for examples. In other words, a win-237

dow with source code examples including an option to present just examples for usage238

patterns—such as the one presented in Figure 2—was activated 1,301 times during the239

field study. In such situations, the users selected an option to just show examples for a240

given usage pattern 399 times (30.6% of the window activations).241

DISCUSSION242

Our main findings on using APIMiner for extracting examples for the Android API are243

as follows.244

Most Android API methods are underused245

Only 60.5% of the methods in the Android API are called by the systems in our dataset.246

Therefore, even considering that this dataset might not represent an ideal sample of the247

whole population of Android applications (e.g., it only includes open-source apps), this248

result suggests that a considerable proportion of the Android API methods are rarely249

used by real clients.250

Therefore, API developers should monitor the usage of their API elements by real251

client systems. As a result, it is likely to conclude that many elements are underused252

or not used at all, suggesting a possible move to a streamlined API. In fact, a similar253

coverage rate is reported in other studies on API usage. Ma, Amor, and Tempero found254

that only 21% of the methods in the Java API are used in a corpus of open-source255

software (Ma et al., 2006). A not fundamentally different coverage pattern happens to256

appear on crowd-based Q&A forums. For example, Parnin et al. report that 13% of257

the classes in the Android API do not have discussion threads at all at Stack Overflow258

(Parnin et al., 2012).259

10/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Less than 10% of the Android API methods called by clients have usage260

patterns261

In our dataset, 8.1% of the Android methods have usage patterns. Even though this262

dataset does not include thousands of apps, as datasets based on Android bytecode (Ruiz263

et al., 2014), the considered support threshold was properly adapted to its size.264

Therefore, APIMiner shows that it is feasible to instrument API documents in a265

seamless way both with source code examples and with usage patterns. The only re-266

quirement is to have a representative sample of client systems. However, API developers267

should expect to retrieve usage patterns for less than 10% of their API methods.268

In one out of three opportunities users search for usage patterns269

During the field study, when examples for methods with usage patterns were available,270

in 30.6% of the cases the users requested examples for the mined patterns. Therefore,271

by including examples for usage patterns, API developers can help such users on their272

specific needs when browsing API documents.273

Threats to Validity274

There are at least four threats that could undermine the validity of our results. First,275

although the Android API is a complex and popular API, we cannot claim that our276

findings apply univocally to other APIs, specially to APIs for other languages or targeting277

a different application domain. Second, even in the universe of Android applications and278

considering a mining dataset with 396 projects, we might have missed usage patterns279

that are common just among applications from a particular category (e.g., location-based280

applications). Third, the selection of the support and confidence thresholds, as usual281

in association rules mining, is to some extent a subjective decision. To control this282

threat, we experimented various threshold combinations aiming to balance coverage283

and representativeness. Despite that, we could not estimate the impact on our field284

study of a different threshold selection, specially a less strict one. Fourth, our field285

study is an observational study, i.e., the subjects are not divided in treated and control286

groups. Therefore, there is always a risk of selection bias, specially when compared with287

controlled experiments. However, controlled experiments with real software practitioners288

are very hard to conduct, specially in the area of API reuse. The main reason is that289

real-world development tasks may take hours or even days to be concluded .290

RELATED WORK291

Kagdi et al. compared frequent itemset and sequential-pattern matching and concluded292

that the latter is usually worth the additional cost (Kagdi et al., 2007). However, they293

do not aim the extraction of examples, when the order of the calls is immediately294

visible in the extracted code fragments. CodeWeb is a system that mines not only295

usage patterns regarding method calls, but also other forms of reuse, such as inheritance296

(Michail, 2000). PR-Miner (Li and Zhou, 2005) extracts general programming rules297

using frequent itemset mining, with focus on detecting buggy code. Code Recommenders298

(http://www.eclipse.org/recommenders) extends the Eclipse built-in Java299

API documentation with information such as the methods usually overridden when300

subclassing a selected type or the methods usually called on a selected object.301

11/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



Systems such as Strathcona (Holmes et al., 2006) and MAPO (Zhong et al., 2009)302

explore the syntactic context provided by the IDE to recommend examples. However,303

the examples do not have documentation purposes, because they are highly dependent304

of a particular development context. In contrast, systems such as APIMiner (Montandon305

et al., 2013) and eXoaDocs (Kim et al., 2013) generate a new JavaDoc instrumented306

with source code examples. However, they do not provide support for API usage307

patterns. Altair is a tool that automatically generates API function cross-references,308

which are useful to populate see also sections in API documents (Long et al., 2009).309

The recommended functions are not computed using association rules, but based on310

their structural similarity with the function the cross-reference refers to.311

Baker is a tool that links source code examples extracted from Q&A sites to API312

documentation. The tool relies on a constraint-based technique to uniquely identify fully313

qualified names in source code snippets (Subramanian et al., 2014). ExPort is a tool that314

detects complex API usages, which can for example crosscut function implementations315

(Moritz et al., 2013). Saied et al. propose a technique to detect multi-level usage patterns,316

which are API methods uniformly used across variable client programs, independently of317

usage context (Saied et al., 2015a). The authors later proposed a technique to infer API318

usage patterns using structural and semantic relationships mined in the own API souce319

code, i.e., without requiring client programs (Saied et al., 2015b). Since our central goal320

was to evaluate usage patterns in the field, with real API users, we decided to conduct321

our study using the most established usage patterns mining technique (association rules).322

Further work can include a comparison with the aforementioned techniques.323

CONCLUSION324

This paper provides a large-scale study of API usage patterns, including the extraction325

of patterns for a relevant API, an evaluation by expert developers, and a field study,326

when such patterns were presented to real users. For practitioners, specially API327

developers and maintainers, our study shows that with the wide availability of source328

code repositories, like GitHub, it is feasible to generate API documents instrumented329

with source code examples and usage patterns, both mined automatically. Moreover, the330

heavy-tailed behavior observed on the usage of API elements suggest to practitioners331

that most elements of their APIs may be underused or not used at all, and therefore it332

might be possible to evolve to a streamlined API. Our study also shows that it is possible333

to collect real data on the usage of research prototypes. Further research is also possible,334

specially on techniques for summarizing code examples and for mining usage patterns.335

REFERENCES336

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in337

large databases. In 20th International Conference on Very Large Data Bases (VLDB),338

pages 487–499.339

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions in340

Empirical Data. Society for Industrial and Applied Mathematics Review, 51(4):661–341

703.342

Holmes, R., Walker, R., and Murphy, G. (2006). Approximate structural context343

12/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



matching: An approach to recommend relevant examples. IEEE Transactions on344

Software Engineering, 32(12):952–970.345

Kagdi, H. H., Collard, M. L., and Maletic, J. I. (2007). Comparing approaches to mining346

source code for call-usage patterns. In 4th Workshop on Mining Software Repositories347

(MSR), page 20.348

Kim, J., Lee, S., Hwang, S., and Kim, S. (2013). Enriching documents with examples:349

A corpus mining approach. ACM Transactions on Information Systems, 31(1):1.350

Li, Z. and Zhou, Y. (2005). PR-Miner: automatically extracting implicit program-351

ming rules and detecting violations in large software code. In 13th Symposium on352

Foundations of Software Engineering (FSE), pages 306–315.353

Long, F., Wang, X., and Cai, Y. (2009). API hyperlinking via structural overlap. In 17th354

Symposium on Foundations of Software Engineering (FSE), pages 203–212.355

Ma, H., Amor, R., and Tempero, E. D. (2006). Usage patterns of the Java Standard API.356

In 13th Asia-Pacific Software Engineering Conference (APSEC), pages 342–352.357

Michail, A. (2000). Data mining library reuse patterns using generalized association358

rules. In 22nd International Conference on on Software Engineering (ICSE), pages359

167–176.360

Montandon, J. E., Borges, H., Felix, D., and Valente, M. T. (2013). Documenting APIs361

with Examples: Lessons Learned with the APIMiner Platform. In 20th Working362

Conference on Reverse Engineering (WCRE), pages 401–408.363

Moritz, E., Linares-Vasquez, M., Poshyvanyk, D., Grechanik, M., McMillan, C., and364

Gethers, M. (2013). ExPort: Detecting and visualizing API usages in large source code365

repositories. In 28th International Conference on Automated Software Engineering366

(ASE), pages 646–651.367

Parnin, C., Treude, C., Grammel, L., and Storey, M.-A. (2012). Crowd documentation:368

exploring the coverage and the dynamics of API discussions on Stack Overflow.369

Technical report, Georgia Tech, College of Computing.370

Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M., and Ratchford, T. (2013).371

Automated API property inference techniques. IEEE Transactions on Software372

Engineering, 39(5):613–637.373

Ruiz, I. J. M., Adams, B., Nagappan, M., Dienst, S., Berger, T., and Hassan, A. E.374

(2014). A large-scale empirical study on software reuse in mobile apps. IEEE375

Software, 31(2):78–86.376

Saied, M., Benomar, O., Abdeen, H., and Sahraoui, H. (2015a). Mining multi-level API377

usage patterns. In 22nd International Conference on Software Analysis, Evolution378

and Reengineering (SANER), pages 23–32.379

Saied, M. A., Abdeen, H., Benomar, O., and Sahraoui, H. (2015b). Could we infer API380

usage patterns only using the library source code? In 23rd International Conference381

on Program Comprehension (ICPC), pages 1–10.382

Subramanian, S., Inozemtseva, L., and Holmes, R. (2014). Live API documentation. In383

36th International Conference on Software Engineering (ICSE), pages 643–652.384

Syer, M. D., Adams, B., Zou, Y., and Hassan, A. E. (2011). Exploring the development385

of micro-apps: A case study on the BlackBerry and Android platforms. In 11th IEEE386

Working Conference on Source Code Analysis and Manipulation (SCAM), pages387

55–64.388

Zhong, H., Xie, T., Zhang, L., and Pei, J. (2009). MAPO: Mining and recommending389

13/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts



API usage patterns. 23rd European Conference on Object-Oriented Programming390

(ECOOP), 5653:318–343.391

14/14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1075v1 | CC-BY 4.0 Open Access | rec: 14 May 2015, publ: 14 May 2015

P
re
P
ri
n
ts


