
Null Hypothesis Significance Testing: a short tutorial

Although thoroughly criticized, null hypothesis significance testing is the statistical method

of choice in biological, biomedical and social sciences to investigate if an effect is likely. In

this short tutorial, I first summarize the concepts behind the method while pointing to

common interpretation errors. I then present the related concepts of confidence intervals,

effect size, and Bayesian factor, and discuss what should be reported in which context. The

goal is to clarify concepts, present statistical issues that researchers face using the NHST

framework and highlight good practices.
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Abstract 10 

 11 

Although thoroughly criticized, null hypothesis significance testing (NHST) is the statistical 12 
method of choice in biological, biomedical and social sciences to investigate if an effect is 13 
likely. In this short tutorial, I first summarize the concepts behind the method while pointing 14 
to common interpretation errors. I then present the related concepts of confidence intervals, 15 

and discuss what should be reported in which context. The goal is to clarify concepts, present 16 
statistical issues that researchers face using the NHST framework and highlight good 17 

practices.         18 

 19 

The Null Hypothesis Significance Testing framework 20 

 21 
NHST is a method of statistical inference by which an observation is tested against a 22 

hypothesis of no effect or no relationship. The method as practiced nowadays is a 23 

combination of the concepts of critical rejection regions developed by Neyman and Pearson 24 
(1933) and p-value developed by Fisher (1959).  25 

 26 

Fisher, significance testing, and the p-value 27 

The method developed by Fisher (1959) allows to compute the probability of observing a 28 
result at least as extreme as a test statistic (e.g. t value), assuming the null hypothesis is true. 29 
This p-value thus reflects the conditional probability of achieving the observed outcome or 30 

larger, p(Obs|H0), and is equal to the area under the null probability distribution curve in e.g. 31 

[-  -t] and [+t +] for a two-tailed t-test (Turkheimer, Aston, & Cunningham, 2004). 32 
Following Fisher, the smaller is the p-value, the greater is the likelihood that the null 33 

hypothesis is false. The p-value however only allows to judge whether the evidence is 34 

significant in the sense of worth further investigation. The reason for this is that only H0 is 35 

tested whilst the effect under study has not itself been investigated.  36 
 37 

What is not a p-value?  38 

The p-value is not the probability of the null hypothesis of being true, p(H0) (Krzywinski & 39 
Altman, 2013). This common misconception arises from a confusion between the probability 40 
of an observation given the null p(Obs|H0) and the probability of the null given an 41 
observation p(H0|Obs) (see Nickerson (2000) for a detailed demonstration). The p-value is 42 
not an indication of the strength or magnitude of an effect. Any interpretation of the p-value 43 
in relation to the effect under study (strength, reliability, probability) is indeed wrong, since 44 
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the p-value is conditioned on H0. Similarly, 1-p is not the probability to replicate an effect. 45 

Often, a small value of p is considered to mean a strong likelihood of getting the same results 46 
on another try, but again this cannot be obtained because the p-value is not informative on the 47 
effect itself (Miller, 2009). If there is no effect, we should replicate the absence of effect with 48 
a probability equal to 1-p. The total probability of false positive can also be obtained by 49 

aggregating results (Ioannidis, 2005). If there is an effect however, the probability to replicate 50 
is function of the (unknown) population effect size with no good ways to know this from a 51 
single experiment (Killeen, 2005). Finally, a (small) p-value is not an indication favouring a 52 
hypothesis. A low p-value indicates a misfit of the null hypothesis to the data and cannot be 53 
taken as evidence in favour of a specific alternative hypothesis more than any other possible 54 

alternatives such as measurement error and selection bias (Gelman, 2013). The more (a 55 
priori) implausible the alternative hypothesis, the greater the chance that a finding is a false 56 
alarm (Krzywinski & Altman, 2013; Nuzzo, 2014). Theory corroboration requires the testing 57 
of multiple predictions because the chance of getting statistically significant results for the 58 

wrong reasons in any given case is high.  59 
 60 

Neyman-Pearson, hypothesis testing, and the -value 61 

Neyman & Pearson (1933) introduced the notion of critical intervals over which the 62 

probability of observing a test statistic is less than a stipulated significance level, α. If the 63 

statistic value falls within those intervals, it is deemed significantly different from that 64 
expected under the null hypothesis. For instance, we can estimate that the probability of given 65 

F value to be in the critical interval [+2 +] is less than 5%. Because the space of results is 66 
dichotomized, we can distinguish correct results (rejecting H0 when there is an effect and not 67 
rejecting H0 when there is no effect) from errors (rejecting H0 when there is no effect and not 68 

rejecting H0 when there is an effect). The erroneous rejection of H0 when there is no effect is 69 
known as type I error and corresponds to the p-value. 70 

71 

Acceptance or rejection of H0? 72 

The significance level α is defined to be the maximum probability that a test statistic falls into 73 
the rejection region when the null hypothesis is true (Johnson, 2013). Therefore, one can only 74 
reject the null hypothesis if the test statistics falls into the critical region(s), or fail to reject 75 
this hypothesis. In the latter case, all we can say is that no significant effect was observed, 76 

and again one cannot conclude that the null hypothesis is true. This distinction matters 77 
because there is a profound difference between accepting the null hypothesis and simply 78 
failing to reject it (Killeen, 2005). By failing to reject, we simply continue to assume that H0 79 
is true, which implies that one cannot, from a non-significant result, argue against a theory. 80 
We cannot accept the null hypothesis, because all we have done is not disprove it. To accept 81 

or reject equally the null hypothesis, Bayesian approaches (Dienes, 2014; Kruschke, 2011) or 82 

confidence intervals must be used. 83 

 84 

Confidence intervals  85 

Confidence intervals (CI) have been advocated as alternatives to p-values because (i) they 86 
allow judging the statistical significance and (ii) provide estimates of effect size. CI are 87 

builds that fail to cover the true value at a rate of alpha, the Type I error rate (Morey & 88 
Rouder, 2011) and therefore indicate if values can be rejected by a two tailed test with a 89 
given alpha. CI also indicates the precision of the estimate of effect size, but unless using a 90 
percentile bootstrap approach, they require assumptions about distributions which can lead to 91 
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serious biases in particular regarding the symmetry and width of the intervals (Wilcox, 2012). 92 

Assuming the CI (a)symmetry and width are correct, this gives some indication about the 93 
likelihood that a similar value can be observed in future studies, with 95% CI giving about 94 
83% of replication success (Lakens & Evers, 2014). Finally, contrary to p-values, CI can be 95 
used to accept H0. Typically, if a CI includes 0, we cannot reject H0. If a critical null region 96 

is specified rather than a single point estimate, for instance [-2 +2] and the CI is included 97 
within the critical null region, then H0 can be accepted. Importantly, the critical region must 98 
be specified a priori and cannot be determined from the data themselves. 99 
 100 
Although CI provide more information, they are not less subject to interpretation errors (see 101 

Savalei & Dunn, 2015 for a review). People often interpret X% CI as the probability that a 102 
parameter (e.g. the mean) will fall in that interval X% of the time. The (posterior) probability 103 
of an effect can however not be obtained using a frequentist framework. The CI represents 104 
the bounds for which one as X% confidence. The correct interpretation is that, for repeated 105 

measurements with the same sample sizes, taken from the same population, X% of times the 106 
CI obtained will contain the same parameter value, e.g. X% of the times the CI contains the 107 
same mean (Tan & Tan, 2010). The alpha value has the same interpretation as when using 108 

H0, i.e. we accept that 1-alpha CI are wrong in alpha percent of the times. This implies that 109 
CI do not allow to make strong statements about the parameter of interest (e.g. the mean 110 

difference) or about H1 (Hoekstra, Morey, Rouder, & Wagenmakers, 2014). To make a 111 
statement about the probability of a parameter of interest, likelihood intervals (maximum 112 

likelihood) and credibility intervals (Bayes) are better suited. 113 
 114 

The (correct) use of NHST 115 

 116 
NHST has always been criticized, and yet is still used every day in scientific reports 117 

(Nickerson, 2000). Many of the disagreements are not on the method itself but on its use. The 118 

question one should ask is what is the goal of a scientific experiment at hand? If the goal is to 119 
establish the likelihood of an effect and/or establish a pattern of order, because both requires 120 
ruling out equivalence, then NHST is a good tool (Frick, 1996). If the goal is to establish 121 

some quantitative values, then NHST is not the method of choice. Because results are 122 
conditioned on H0, null hypothesis testing is not sufficient for establishing beliefs or 123 

estimating the probability of an effect. To estimate the probability that a claim is correct, a 124 
Bayesian analysis is a better alternative to null hypothesis testing. To estimate parameters 125 

(point estimates and variances), alternative approaches are also better suited. Note however 126 
that even when a specific quantitative prediction from a hypothesis is shown to be true 127 
(typically testing H1 using Bayes), it does not prove the hypothesis itself, it only adds to its 128 
plausibility.  129 

 130 

What to report and how? 131 

 132 
Considering that quantitative reports will always have more information content than binary 133 
(significant or not) reports, we can always argue that effect size, power, etc. must be reported. 134 
Reporting everything can however hinder the communication of the main result(s), and we 135 
should aim at giving only the information needed, at least in the core of a manuscript. A 136 

simple solution is to have minimal reporting in the result section to keep the message clear, 137 
but have detailed supplementary material. When the hypothesis is about the presence/absence 138 
or order of an effect, it is sufficient to report in the text the actual p-value since it conveys the 139 
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information needed to rule out equivalence. When the hypothesis and/or the discussion 140 

involve some quantitative value, and because p-values do not inform on the effect, it is 141 
essential to report on effect sizes (Lakens, 2013), preferably accompanied with confidence, 142 
likelihood or credible intervals depending on the question at hand. The reasoning is simply 143 
that one cannot predict and/or discuss quantities without accounting for variability. For the 144 

reader to understand and fully appreciate the results, nothing else is needed. 145 
 146 
Because science progress is obtained by cumulating evidence (Rosenthal, 1991), scientists 147 
should also consider the secondary use of the data. With today’s electronic articles, there are 148 
no reasons for not including all of derived data: mean, standard deviations, effect size, CI, 149 

Bayes factor should always be included as supplementary tables (or even better also share 150 
raw data). It is also essential to report the context in which tests were performed – that is to 151 
report all of the tests performed (all t, F, p values) because of the increase type one error rate 152 
due to selective reporting (multiple comparisons problem - Ioannidis, 2005). Providing all of 153 

this information allows (i) other researchers to directly and effectively compare their results 154 
in quantitative terms (replication of effects beyond significance, Open Science Collaboration, 155 
2015), (ii) to compute power to future studies (Lakens & Evers, 2014), and (iii) to aggregate 156 

results for meta-analyses. 157 

 158 
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