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Abstract 12 

Contiguity is interactive software for the visualization and manipulation of de novo genome assemblies. 13 

Contiguity creates and displays information on contig adjacency which is contextualized by the 14 

simultaneous display of a comparison between assembled contigs and reference sequence. Where 15 

scaffolders allow unambiguous connections between contigs to be resolved into a single scaffold, 16 

Contiguity allows the user to create all potential scaffolds in ambiguous regions of the genome.  This 17 

enables the resolution of novel sequence or structural variants from the assembly. In addition, 18 

Contiguity provides a sequencing and assembly agnostic approach for the creation of contig adjacency 19 

graphs. To maximize the number of contig adjacencies determined, Contiguity combines information 20 

from read pair mappings, sequence overlap and De Bruijn graph exploration. We demonstrate how 21 

highly sensitive graphs can be achieved using this method. Contig adjacency graphs allow the user to 22 

visualize potential arrangements of contigs in unresolvable areas of the genome. By combining 23 

adjacency information with comparative genomics, Contiguity provides an intuitive approach for 24 

exploring and improving sequence assemblies. It is also useful in guiding manual closure of long read 25 

sequence assemblies. Contiguity is an open source application, implemented using Python and the 26 

Tkinter GUI package that can run on any Unix, OSX and Windows operating system. It has been 27 

designed and optimized for bacterial assemblies. Contiguity is available at 28 

http://mjsull.github.io/Contiguity . 29 

Introduction 30 

The emergence of high-throughput sequencing technologies has led to a massive increase in the number 31 

of unassembled or draft bacterial genome sequence data sets [1]. De novo assembly of sequencing reads 32 

produced using high-throughput sequencing methods often results in highly fragmented assemblies 33 

containing hundreds of contiguous sequences (contigs). Although long reads, such as those produced 34 

by Pacific Bioscience's single molecule real time sequencing (SMRT), significantly reduce 35 

fragmentation in bacterial genome assemblies, they frequently do not assemble into a single contig [2]. 36 

Consequently, contig ordering, scaffolding, identification of spurious or misassembled contigs and 37 
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comparative analysis of an assembly all remain time-limiting steps during the analysis of a de novo 38 

assembly. 39 

Several tools exist that allow easy visualization of pairwise or multiple alignments, including Easyfig 40 

[3], Artemis Comparison Tool [4], genoPlotR [5], Interactive Genomics Viewer [6] and Mauve [7]. 41 

These tools allow the rapid identification of structural variations between two sequences such as 42 

rearrangements, insertions, and deletions. Many of these events may be biologically important and can 43 

be a result of prophages, plasmids and other mobile genetic elements. Such events account for much of 44 

the variation in bacterial species such as Escherichia coli [8]. However, mobile genetic elements are 45 

relatively difficult to resolve in draft or metagenome assemblies primarily due to an abundance of 46 

insertion sequences within these elements that result in collapsed repeats and a lack of specific 47 

information about contig adjacency. Mobile genetic elements often assemble into several contigs 48 

making it unclear whether several contigs with novel sequence are part of the same mobile genetic 49 

element, or belong to several distinct elements. 50 

In theory, mobile genetic elements and other difficult to assemble genomic regions can be reconstructed 51 

by examining contig interconnectivity within an assembly. By determining which contigs are adjacent 52 

to one another in the underlying assembly graph, potential arrangements of those contigs in context of 53 

the complete genome can be determined. This allows the use of synteny to contextualise sequence that 54 

is not present in complete reference genomes and can also help determine the sequence of genomic 55 

regions that span multiple contigs. Adjacency information can also be used to group contigs into distinct 56 

elements, such as chromosomal and extra-chromosomal DNA. This approach is used by PLACNET [9]  57 

to identify plasmid contigs in de novo assembled genomes. PLACNET creates an undirected graph of 58 

contig adjacencies that can be visualized with a tool such as Cytoscape [10]. Using such an approach, 59 

specific information about order and orientation of contigs in the plasmid, relative to one another, cannot 60 

be inferred. Several methods exist for finding interconnectivity between contigs, such as looking at 61 

paired-end reads shared by contigs in a de novo assembly or using transcript data. This information can 62 

be leveraged by scaffolding algorithms, such as SOPRA [11] and SSPACE [12], to improve de novo 63 

assemblies by joining connected contigs where no ambiguity exists. However, scaffolding can introduce 64 
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errors into assemblies and provides no information about potential adjacencies between contigs in 65 

regions that are unable to be resolved, such as repetitive regions of the chromosome. Interconnectivity 66 

can also be visualized using programs such as Consed [13], Phrapview [14], Abyss-explorer [15], TGnet 67 

[16], ContigScape [17] and Bandage [18]. Consed and Phrapview display a linear relationship between 68 

contigs with connections between contigs being inferred from paired reads. Abyss-explorer, TGnet and 69 

ContigScape display assemblies as a directed graph. Abyss-explorer infers connectivity from graph 70 

information and read pair information provided by the De Bruijn assembler Abyss [19]. TGnet finds 71 

adjacencies using transcript information, and Contigscape infers adjacencies by identifying reads shared 72 

between contigs assembled by the “Newbler Assembler” or connectivity using paired reads. Bandage 73 

can be used to visualize the LastGraph file produced by the Velvet assembler [20], FASTG files and 74 

Trinity.fasta files produced by the RNA-seq assembler Trinity [21].  75 

These methods, described above, are limited to creating graphs from specific data types that are not 76 

always available to the end user. Alternatively, they require the use of a specific assembly program, 77 

which may result in a suboptimal assembly. Graphs based on the output of an assembler also prevent 78 

the user from performing additional optimization of their assemblies, such as scaffolding or 79 

misassembly correction. Assemblies often result in hundreds of contigs, with each contig typically 80 

having between 2 to 4 connections to other contigs. Although small assemblies can be displayed 81 

concisely, as assembly size grows visual representations of the graph can quickly become cluttered 82 

making it difficult to extract meaningful information. 83 

Contiguity makes contig adjacency graphs more accessible to users unfamiliar with the concept. 84 

Contiguity adds sequence comparison to the visualization of contig adjacency graphs. This allows the 85 

user to contextualize contig adjacency information with similarity and the order inferred from a 86 

reference sequence. The user can quickly and easily identify genome rearrangements, insertions, 87 

deletions and potential misassemblies. Contiguity includes a purpose built contig adjacency graph 88 

creation algorithm that combines existing approaches and allows adjacency graphs to be built from any 89 

assembly irrespective of sequencing or assembly method. In addition to a description of Contiguity’s 90 

core functionality (the construction and representation of contig adjacency graphs) we also provide two 91 
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case studies of existing projects in which Contiguity has been used to improve assembly and elucidate 92 

structural rearrangements.  Contiguity is an open source project implemented in Python using the 93 

Tkinter graphical user interface library, it available on Windows, OSX and GNU/Linux. 94 

Methods and results 95 

Contiguity overview 96 

Contiguity is designed to enable the visualization and organization of de novo assemblies. It allows both 97 

comparison information and contig adjacency graph information to be visualized simultaneously using 98 

the same BLAST comparison format used in tools such as Artemis Comparison Tool [4] and Easyfig 99 

[3] (Figure 1). 100 

 101 

 102 

Figure 1: Contiguity main window. Visualization and organization is achieved in the central canvas 103 

of the main window, contigs are shown as teal (gold when selected) rectangles with their name, 104 

orientation and length displayed within the box (if enough room exists). Sequence alignments to 105 

a reference are shown as orange (yellow for inverted) polygons, reference sequences are shown 106 

as red rectangles. Contig adjacency is shown using black arcs. The yellow console in the bottom 107 

left corner shows information on currently running processes. The grey panels in the bottom right 108 

show information on currently selected contigs. 109 
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Contiguity uses the BLAST comparison results to order contigs according to a reference and a graph 110 

file (such as LastGraph from Velvet) to show connections between adjacent contigs. The visual and 111 

interactive layout of contigs allows the user to easily order and scaffold contigs into a putative 112 

chromosome, whilst identifying potential regions of structural variation. Optionally, Contiguity can 113 

create a custom contig adjacency graph (Contiguity-CAG) using read files and an assembled 114 

contig/scaffold file. The Contiguity-CAG improves on the sensitivity of current methods by utilizing 115 

three complementary approaches (paired-read, overlap and De Bruijn graph exploration). Furthermore, 116 

the Contiguity-CAG representation is both sequencing type and assembly method independent and 117 

enables the sequence between connected contigs to be determined. It merges information from De 118 

Bruijn graph exploration, overlap searches and paired-end mapping to create a highly-sensitive graph 119 

of contig adjacencies. 120 

Contiguity Graphical User Interface Layout 121 

Sequence assemblies can be loaded into the Contiguity Graphical User Interface (GUI) from either 122 

FASTA, LastGraph, ACE, DOT, FASTG or a Contiguity-CAG file (Figure 1). Contig adjacency 123 

information stored within LastGraph, ACE, FASTG, DOT and Contiguity-CAG files is also loaded. 124 

Contiguity-CAG files can be created from the drop-down menu. A comparison to a reference can be 125 

generated from within Contiguity using NCBI-BLAST+ [22], if BLAST+ binaries are found in the users 126 

path. Alternatively, the BLAST comparison can be loaded from a file, provided that it is in the standard 127 

BLAST tab format. Contigs and their adjacencies can then be viewed on a canvas in the main window; 128 

the user can choose to display all contigs, only contigs with BLAST matches to the reference sequence, 129 

only contigs with no hits to the reference or a user-defined subset of contigs. Contigs are ordered firstly 130 

by hits to the reference, then by connectivity information, placing adjacent contigs next to each other 131 

where possible, and finally contigs with no hits or adjacency information are placed on the canvas from 132 

longest to shortest. Once contigs are loaded, sequence alignments between and/or within contigs can be 133 

created and visualized to highlight repetitive or duplicated regions as blue (or orange for inverted) 134 

ribbons. 135 
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Contiguity's canvas can be zoomed, stretched and shrunk in the X-dimension. Contigs and reference 136 

sequences can be independently moved anywhere on the canvas and duplicated, removed or reversed 137 

interactively. Paths between contigs connected in the adjacency graph can be found manually or by an 138 

implementation of a depth-limited search according to a user-defined cut-off. 139 

The user can colour contigs by using metadata such as coverage, GC content or AT and GC skew. User-140 

created lists can be used to order and colour contigs. The subgraph can be easily expanded or rearranged 141 

using context-driven menus. Specific edges or alignments can also be highlighted from these menus. 142 

Contigs in the Contiguity-CAG can be selected automatically or interactively, and written as a multi-143 

FASTA and/or as a single scaffold. Videos demonstrating the functionality of Contiguity and a 144 

comprehensive manual are available at http://mjsull.github.io/Contiguity/. 145 

Contiguity Contig Adjacency Graph (Contiguity-CAG) creation 146 

A CAG is a directed graph where each contig in a de novo assembly is represented as two nodes 147 

(forward and reverse strand). A directed edge is created from node A to node B if the sequence 148 

represented by node B occurs directly after the sequence represented by node A.  149 

How a genome will be represented as a de novo assembly is due to a combination of sequencing type, 150 

composition (location and number of repeat regions) and the assembler used (Figure 2). 151 

 152 

Figure 2: Anatomy of an assembly. An Illumina sequencing run of Escherichia coli str. UTI89 was 153 

assembled with Velvet and Abyss. Contigs were then mapped to the 110 Kbp plasmid found in 154 

UTI89.  Velvet (top) produces highly fragmented repetitive regions. Abyss (bottom) assembles 155 

repetitive regions into long contiguous segments, however this results in large overlaps between 156 

contigs.  Contig names are displayed where they fit within the contig borders. 157 
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Adjacent contigs can overlap by hundreds of bases to a single base, be directly adjacent to one another 158 

or have unassembled sequence between them. Contiguity attempts to reconstruct an adjacency graph 159 

by i) finding overlapping contig edges and ii) performing an end-to-end De Bruijn search – a method 160 

that uses the proximity of contig ends in the De Bruijn graph to infer contig adjacency. Contigs 161 

adjacencies, where the overlap is greater than the k-mer value, are found by identifying overlapping 162 

edges of the contig. Contigs that overlap by less than or equal to the chosen k-mer value or do not 163 

overlap are found by searching through a De Bruijn graph. This approach allows Contiguity to predict 164 

sequence or overlap size between adjacent contigs. When scaffolds are reconstructed, using the GUI, 165 

this information can optionally be used to reconstruct scaffolds that more accurately represent the 166 

original genome. This feature is provided with the disclaimer that all predicted joins between contigs 167 

are “best guesses” and should be independently verified with PCR or by mapping reads onto the 168 

reconstructed scaffolds. Unfortunately this approach has difficulties when encountering sequence 169 

specific error profiles in Illumina sequencing. Sequence specific error profiles occur when sequences 170 

dephase due to sequence-specific interference of the base elongation process during sequencing [23]. 171 

This causes regions with extremely low quality bases. If filtering or trimming is applied before 172 

assembly, this will result in regions with no or low coverage. Although these regions cannot be traversed 173 

by a De Bruijn graph, they are often bridged by paired-end reads. iii) Paired read information is also 174 

used to identify adjacent contigs, to further improve the sensitivity of Contiguity’s approach. This 175 

approach cannot find sequence between adjacent contigs or accurately determine the size of an overlap. 176 

In the final step of the adjacency graph creation, the edges found by all three methods are merged, 177 

exploiting the advantage of the De Bruijn/overlap approach and a paired approach. (Figure 3). 178 
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 179 

Figure 3: Flowchart of the graph creation process demonstrated using a mock genome assembly. 180 

A) Assembled contigs and their underlying reads. This region contains three unique contigs (A, 181 

B and C) separated by two repeat regions that have collapsed into a single contig (R). B) 182 

Flowchart of Contigutiy-CAG construction. Yellow notes show edges that were found and 183 

removed at each step if a k-mer size of 5 is used. Edges between contigs that overlap by more 184 
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than or equal to the k-mer size are found by searching for overlapping contig ends. Contigs that 185 

overlap by less than the k-mer size are found by finding paths through a De Bruijn graph. In some 186 

instances a path through the De Bruijn graph doesn’t exist (e.g. between contigs R and C the 187 

nodes CCGTG and CGTGA do not exist in the read data) these edges are found by looking at 188 

mapped paired-end data. The edge between R and B is found by both paired-end and De Bruijn 189 

methods, this duplication of results is later removed. The edge between A and B is already 190 

described by the path A → R →B, to reduce the complexity of the graph it is removed.  Panel C 191 

shows the final construction of the graph illustrated in a manner similar to Contiguity. 192 

The approaches utilized for Contiguity-CAG creation are summarized in more detail below: 193 

i) Overlapping contig searches. Due to the nature of De Bruijn graphs, adjacent contigs assembled 194 

using a De Bruijn approach, such as Velvet or Spades, often overlap by one base pair less than the k-195 

mer size used for assembly (k – 1). This enables adjacent contigs to be identified by looking for exact 196 

matches of length ≥ k - 1 between contig ends. Generally, contig breaks are due to repetitive regions in 197 

the genome that cause branches in the De Bruijn graph. When the De Bruijn graph is resolved into 198 

contigs, assembly breaks occur where the graph branches. As the k-mers of adjacent nodes overlap by 199 

k – 1, the sequence of adjacent contigs based on those nodes will also overlap by the same amount. 200 

Other assemblers, such as Abyss, create contigs that can overlap by a much greater amount. To account 201 

for this possibility Contiguity also allows for large inexact overlaps. 202 

ii) End-to-end De Bruijn search. An end-to-end De Bruijn search allows us to find adjacent contigs 203 

that do not overlap or overlap by an amount shorter than the defined k-mer value. This approach allows 204 

determination of the size of short overlaps between contigs or the sequence between contigs that don’t 205 

overlap. Some regions of a De Bruijn graph assemble into contigs too short to be reported in the final 206 

assembly. This can result in unassembled segments of genome from a few, to hundreds of base pairs 207 

long. Although these regions of the genome are not covered by assembled sequence, they are covered 208 

by read data and as such can be reconstructed. These edges will only be found by paired-end reads if 209 

the unassembled segment is smaller than i-2m where i is the insert size of the reads and m is the 210 

minimum length needed for the read to map to a contig (for global alignments this is usually close to 211 
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the read length). Using a De Bruijn approach also allows the prediction of sequence between the contigs 212 

and identification of edges between adjacent contigs to distant to be resolved by paired-end reads. In 213 

our test data (see below) these unassembled segments rarely exceeded 300 bp in length and as this 214 

method uses a depth-limited search a default limit of 300bp plus the k-mer size allows the search to be 215 

performed in reasonable time by a desktop computer (Less than 10 minutes for an E. coli genome with 216 

~200x coverage). 217 

To find adjacencies between contigs separated by such regions, Contiguity constructs a De Bruijn graph 218 

from supplied read data using Khmer [24]. Khmer stores k-mer counts using a bloom filter allowing 219 

quick and memory efficient graph construction. Following construction of the graph, the frequency of 220 

each k-mer count is calculated. Two cutoffs (A and B) are generated from k-mer count frequencies: 221 

cutoff A is set as the first local minima of the k-mer count frequency graph, and cutoff B is set at half 222 

the first local maxima after cutoff A. Contiguity then performs a depth limited (default: 300 bp + k-mer 223 

size) search of the De Bruijn graph from the k-mer representing the 5’ and 3’ end of each contig. This 224 

search follows 3 rules: i) All k-mers with a frequency greater than cutoff B are considered to be real 225 

sequence and are traversed. ii) All k-mers with a frequency less than cutoff A are attributed to 226 

sequencing errors and are not traversed. iii) If the frequency of the k-mers in the De Bruijn graph are 227 

less than cutoff B and greater than cutoff A the less frequent k-mers are considered to be likely 228 

sequencing errors and only the most common k-mer is traversed (Figure 4). If the k-mer representing 229 

the 5’ or 3’ end of a contig is found during the search an edge is created between the two contigs. If 230 

more than one path is found between two contigs the path with the highest k-mer coverage chosen as 231 

the correct path. 232 
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 233 

Figure 4: Traversal of the De Bruijn graph. Representation of a reference sequence, reads and the 234 

De Bruijn Graph. Sequencing errors are shown with a red base. The green arrows shows the path 235 

traversed from the first node to the last node when cutoff A is set to 2 and cutoff B is set to 4. 236 

Red arrows show paths considered but not traversed. a) A sequencing error found in a single read, 237 

this path is not traversed because it falls under cutoff A. b) A sequencing error found in multiple 238 

reads. This path is not traversed because there is a more likely path forward. c) A low coverage 239 

region. The De Bruijn search algorithm used by Contiguity will search low coverage nodes if no 240 

alternative path is found. 241 

 242 

iii) Paired-end search. Reads are aligned using Bowtie 2 [25] and edges are created between contigs 243 

that a) share more than a user-defined number of paired reads, b) are orientated in the correct direction 244 

and c) are situated at the end of the contig. Sequencing specific error profiles often create a coverage 245 

profile where reads overlap by an amount shorter than the k-mer used for assembly. These regions of 246 

the graph cannot be traversed during De Bruijn assembly and result in a contig break (if additional 247 

scaffolding is not performed). If adjacent contigs found using this method have exact overlapping ends 248 

of at least 5 base pairs (probability of identical bases due to chance < 0.001) and paired-end data 249 

indicates that the contigs should overlap, the contigs were likely split due to a sequence specific error 250 
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profile and Contiguity considers them to be overlapping. If there is no detectable overlap, user-defined 251 

scaffolding characters (such as “NNNNN”) are inserted between the two contigs that have paired-end 252 

scaffold support. 253 

Removal of duplicate and redundant edges. Where two or more overlapping edges are found between 254 

the same contig ends the larger overlap is preferred. In the event where both an overlapping edge and a 255 

non-overlapping edge are found between the same contig ends, the overlapping edge is chosen. 256 

Contiguity also removes redundant edges using an algorithm called untangle (Figure 3). 257 

Manual comparison of Contiguity, Velvet and Abyss CAGs 258 

To verify the contig adjacency graph and provide a comparison to currently used methods such as 259 

traversal of Velvet’s LastGraph and Abyss Assembler’s .dot graph file a sequencing run of Escherichia 260 

coli str. UTI89 (ENA accession: ERR687901) was assembled and examined using the Contiguity GUI. 261 

Genomic DNA from E. coli str. UTI89 was sequenced using Illumina HiSeq2000.  Reads with ends 262 

marked as low quality (phred quality score ≤ 2) were trimmed and reads were filtered if the average 263 

per-base quality was less than 30 or had one pair trimmed to less than 50 base pairs.  In total,  2,433,934 264 

high quality read pairs with an average insert size of 367.25 base pairs with a standard deviation of 59.1 265 

were assembled using i) Velvet (with scaffolding), ii) Velvet (without scaffolding), or iii) Abyss (with 266 

default parameters, with scaffolding). Insert size and standard deviation were provided to Velvet with 267 

the rest of the parameters detected automatically or left at default and k-mer size for all assemblies were 268 

chosen to optimize N50. Contiguity was then used to construct a CAG for each of the three assembly 269 

methods.  270 

To determine the true adjacencies of the assembled sequence, contigs from the Velvet assembly were 271 

then mapped to the published UTI89 genome and the contigs that aligned to the first 250,000 base pairs 272 

and their CAGs were compared. This region was chosen because it contained a mix of long and short 273 

unique sequence and repetitive elements (Table 1). Contigs that aligned to the reference, with BLAST, 274 

along their full length with an identity of at least 95% were considered mapped to that region or regions. 275 

Velvet assembled this region into 26 contigs from unique regions and 12 collapsed repeats. Velvet’s 276 
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scaffolding reduced the amount of unique contigs to 11, but did not improve the assembly of the 277 

repetitive region. 278 

To calculate precision and sensitivity of the Contiguity-CAG, all edges from the contigs mapped to the 279 

selected region were examined. This included edges to contigs mapping outside of the region. True and 280 

false positives were calculated using the following rules. 281 

i. Edges between adjacent nodes were counted as true positives. 282 

ii. Edges between non-adjacent nodes were counted as false positives.  283 

iii. Adjacent contigs, within the examined region, that did not share an edge were counted as false 284 

negatives. 285 

Velvet’s LastGraph file consists of nodes and arcs between adjacent nodes. Without scaffolding, nodes 286 

larger than a user defined amount are reported in the final assembly as contigs. If paired-end data is 287 

made available, Velvet will join multiple nodes together to form a scaffold. As not all nodes are reported 288 

in the final assembly, edges between contigs were reconstructed from the LastGraph file. To accomplish 289 

this paths between contigs were found through manual exploration of the LastGraph using the 290 

Contiguity GUI. Edges were reconstructed using the following rules. 291 

i. For all contigs or scaffolds reported in the final assembly the corresponding node or nodes were 292 

found in the LastGraph.  293 

ii. If the contig or scaffold corresponded to a single node all arcs from that node were explored. 294 

iii. If the scaffold consisted of multiple nodes only arcs from the end of the node that corresponded 295 

to the end of the scaffold were explored. 296 

iv. Exhaustive searches of all paths starting at the identified arcs were performed. If a node 297 

corresponding to a contig or scaffold was found an edge is created between the two 298 

contigs or scaffolds. 299 

As the LastGraph is constructed from the De Bruijn graph and does not utilize paired-end information 300 

the Contiguity-CAG was able to find significantly more edges than the Velvet-CAG. Combining 301 
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scaffolding and LastGraph information improves the proportion of edges found however this method 302 

still fails to resolve a number of edges in the repetitive regions (Table 1). 303 

Precision and sensitivity were then calculated for the Abyss-CAG using the same method used for the 304 

Contiguity-CAG. Unlike Velvet, Abyss attempts to scaffold fragmented repetitive regions and as such, 305 

a larger region needed to be chosen to evaluate the same number of edges. Contigs mapping to the first 306 

1,500,000 base pairs and their edges were evaluated for both the Contiguity-CAG and Abyss-CAG 307 

(Table 1). Interval levels were calculated using the Adjusted-Wald method using a confidence level of 308 

95%. 100% sensitivity was achieved in all three Contiguity graphs, to account for this sensitivity was 309 

estimated using the LaPlace method. 310 

Table 1: Comparison of Contiguity, Velvet and Abyss CAGs. 311 

 312 

Contiguity was able to find significantly more connections between contigs than traversal of Velvet’s 313 

LastGraph with comparable precision. This was largely due to Velvet’s not reporting paired-end 314 

information in the LastGraph and k-mer sizes and cutoffs chosen to optimize assembly and not graph 315 

construction. Sensitivity and precision of the Contiguity and Abyss CAGs were largely comparable, 316 

although Abyss failed to find 2 edges between adjacent contigs. In both these cases one of the contigs 317 

was a short (<110bp) collapsed repeat. 318 

Automated comparison of Contiguity 319 

To further assess the quality of the contig adjacency graphs produced by Contiguity, and identify 320 

potential limitations of this method, Contiguity-CAGs were generated for de novo assemblies of 33 test 321 

datasets in which both unassembled reads and a complete genome sequence were available (Table 2). 322 

The test datasets represent a variety of bacterial genomes with examples of both simulated and real 323 

Illumina HiSeq paired-end data. GemSim (v1.6) [26] was used to simulate Illumina HiSeq 2000 reads 324 

at 100-120× coverage for each of 25 bacterial genomes. Furthermore, 5 Illumina HiSeq II, and 1 325 
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Illumina Hiseq IIx datasets, that are available via the short read archive (SRA) and also had available 326 

complete genome sequences, were tested. Two independent HiSeq 2000 genome sequencing runs from 327 

the reference E. coli strain UTI89 previously mentioned were also included (acc: PRJEB7805). Reads 328 

from the simulated datasets had a length of 101bp while real lengths in the real dataset ranged from 329 

76bp to 101bp. Insert sizes ranged from 234 to 358. All genomes were assembled using Velvet 330 

(v1.2.07), k-mer size was chosen to optimize the N50 value of the assembly and insert size was 331 

provided. All other paramaters were detected automatically. Scaffolding was turned off to reduce 332 

inaccuracy in mapping assembled contigs or scaffolds back to the reference. All other parameters were 333 

detected automatically by Velvet. 334 

For each assembly, a contig adjacency graph was created using Contiguity and default parameters 335 

(Contiguity-CAG). Because of the large volume of data being analysed an in-house script (available at 336 

https://github.com/mjsull/Contiguity) was needed to estimate the precision and sensitivity of our 337 

graphs. All sequence comparisons were performed using BLAST, the full length of the contig must 338 

align with at least 95% identity for the contig to be considered “mapped”. The precision and sensitivity 339 

of the edges created for each assembly were tested using the following rules:  340 

i. For each edge found between two contigs, A and B, if both contig A and B are mapped to the 341 

reference sequence (and therefore aren’t misassembled) a scaffold of contig A and B is created.  342 

ii. If the scaffold of contig A and B mapped to the reference the edge is a true positive.  343 

iii. If the scaffold is not found then the edge is a false positive. 344 

The script then creates a list of ordered contigs by mapping them to the reference using the following 345 

rules. 346 

i. If a contig maps within an area a larger contig maps to it is not included in the list. 347 

ii. If two contigs map to the same area the contig with a lower identity is removed from the list. 348 

iii. Contigs may be placed more than once. 349 
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The script then traverses through the ordered list of contigs, if an edge exists between two adjacent 350 

contigs with the correct orientation it is considered a true positive for the purpose of calculating 351 

sensitivity, if no edge exists it is considered a false negative. 352 

Repetitive sequence often assembles into multiple redundant contigs. As a result, the repetitive regions 353 

of a genome can often be accurately reconstructed from contigs in multiple ways. Contigs automatically 354 

chosen to represent a region sometimes differ from what would be chosen manually, although both 355 

accurately represent the underlying genomic sequence. As the script only checks to see if edges between 356 

automatically selected contigs exists, and not if a repetitive region could be accurately reconstructed 357 

using alternative contigs, the predicted sensitivity tends to be lower than the real value (Table 2). 358 

Table 2: Estimates of precision and sensitivity of Contiguity across multiple strains. 359 

 360 

Contiguity was able to achieve high precision and sensitivity across a large range of bacterial genomes 361 

and read coverage (Figure 5). In the case of Thermovibrio ammonifacans HB-1 (Table 2), two 362 

independent sequencing runs gave very different assembly metrics (917 and 43 contigs, respectively), 363 

despite good read coverage being achieved in both runs (612x and 946x, respectively). Predicted 364 

sensitivity for the T. ammonifacans HB-1 sequencing run that assembled into 917 contigs was 46.1%, 365 

compared to 86.8% for the independent 43 contig assembly. All real datasets from genomes sequenced 366 

with newer platforms, such as the HiSeq IIx and HiSeq 2000 resulted in higher sensitivity graphs than 367 
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those sequenced with older platforms, such as the Genome Analyser II (100%, 97.7% and 96.0% vs. 368 

90.0%, 86.8%, 85.0%, 79.0% and 46.1%). 369 

 370 

Figure 5: Precision and sensitivity of Contiguity-CAGs. Precision and sensitivity are calculated from 371 

the number of True positives (TP), false positives (FP) and false negatives (FM). Precision is 372 

calculated as TP/(TP+FP), sensitivity is calculated as TP/(TP+FN). Graph also shows a 373 
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comparison between real and simulated sequencing and assemblies of E. coli and non-E. coli 374 

genomes. 375 

Precision seems to be less dependent on sequencing and assembly quality and more on the composition 376 

of repetitive elements of the genome and how they reconstructed by the assembler. Precision only 377 

weakly correlates to assembly quality (r=0.338, using N50 estimate assembly quality). Precision 378 

correlates more strongly to the percent of total contigs in an assembly that are repetitive (r=0.599, 379 

repetitive contigs defined as contigs that map more than once to the reference). One reason for this is 380 

incorporation of repetitive sequence into the ends of unique contigs resulting in fewer repetitive contigs 381 

and lower precision (Figure 6). Lower variation and higher median precision was observed in E. coli 382 

assemblies (Figure 5), this also corresponded to a higher percentage of repeat contigs with lower 383 

variation (62.3% average with a standard deviation of 4.7% in E. coli compared to 39.2% average with 384 

a standard deviation of 14.5% in non-E. coli). 385 

 386 

Figure 6: Illustration of a repetitive region of the genome, how it assembles and the resulting 387 

graph. Incorporation of repetitive regions (yellow) of chromosome into adjacent contigs results 388 
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in lower precision. In the first assembly the repeat region assembles into its own contig, this 389 

results in a 100% precision in the graph. In the second assembly the repeat region is incorporated 390 

into the ends of adjacent contigs. Because the repeat is too large to resolve, the resulting CAG 391 

has lower precision. The two CAGs are only superficially different, despite the difference in 392 

precision as both graphs can be arranged in 2 possible ways. 393 

When provided with high-quality data Contiguity is able to produce highly sensitive adjacency graphs. 394 

A high sensitivity is essential for identifying and reconstructing large novel sections of a genome. 395 

Case studies 396 

Case study 1: PacBio SMRT sequencing closure 397 

DATA: E. coli str. EC958 is a representative sequence type 131 (ST131) O25b strain of uropathogenic 398 

E. coli which is characterized by several prophage and genomic island regions as well as a large 399 

antibiotic resistance plasmid [27]. EC958 genomic DNA was sequenced on the PacBio RS I instrument 400 

generating a total of 601,224 pre-filtered reads with an average length of 1,600 bp, from six SMRT cells 401 

[28]. Reads were assembled de novo using the hierarchical genome assembly process (HGAP) from the 402 

PacBio SMRT analysis package (V2.0.0)[2]  with default settings and a seed read cut-off length of 403 

5,000 base-pairs (bp). A total of 7 contigs were generated from the initial HGAP assembly, all contigs 404 

were shorter than the expected chromosome size. 405 

AIM i): Close the genome of E. coli EC958 assembled with SMRT sequencing reads. 406 

WORKFLOW AND RESULTS i):  407 

1. Load FASTA of contigs into Contiguity. 408 

2. Generate a self-comparison from within Contiguity using the NCBI-BLAST+ (BLASTn). 409 

Overlapping but un-joined contigs are a characterized artefact of the HGAP assembly process [2] and 410 

in the EC958 assembly several overlapping edges were evident between contigs (Figure 7A). 411 

3. Change the size of all contigs in Contiguity from relative (node size proportionate to 412 

length of contig in base pairs) to constant (node size identical for all contigs). 413 
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4. Change self-comparison so that only BLASTn hits between overlapping edges are shown. 414 

A circular chromosome and large ~140 kb plasmid are identifiable (Figure 7B).  415 

AIM ii): Investigate the 12,666bp, 12,206bp and 8483bp linear contigs in the HGAP assembly by 416 

viewing all BLASTn comparisons between (but not within) contigs. 417 

WORKFLOW AND RESULTS ii):  418 

1. Change self-comparison so that only BLASTn hits between contigs are shown. 419 

The entire sequence of all three contigs was found in the three large contigs that make up the 420 

chromosome of EC958. Alignments indicated small inverted regions in the three contigs under 421 

investigation (Figure 7C). Subsequent similarity searches indicated that these ~3 kb inversions 422 

corresponded to DNA invertase mediated prophage tail fibre allele switching within a high proportion 423 

of the E. coli cells that were grown prior to DNA harvesting and library preparation [28]. This 424 

phenomenon has long been recognized as a mechanism for altering host specificity of bacteriophage by 425 

alternating in-frame C-terminal phage-tail protein fragments [29]. This phenomena is generally not 426 

readily identifiable in draft genomes generated with shorter-read technologies without mate-pair 427 

libraries. 428 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts



 429 

Figure 7: Pacbio assembly analysis using Contiguity. A) Contiguity representation of a small section 430 

of the entire PacBio assembly of E. coli str. EC958. Contigs are labeled with their name, 431 

orientation and length. BLAST hits satisfying user defined parameters are shown as ribbons. 432 

Direct repeats are shown in orange and inverted repeats are shown in yellow. B) A Contiguity 433 

representation of the 5.1Mbp circularised genome of E. coli str. EC958 with a uniform size for 434 

all contigs to enable visualization of an entire assembly in a single view. The main chromosome 435 

is broken into three large contigs: 18, 19 and 20. Contig 17 is a 141Kb circular plasmid as 436 

indicated by direct repeats linking the 5’ and 3’ ends. Contigs 14, 15 and 16 are 8-12 Kb linear 437 

segments of DNA. C) A self-comparison of all assembled contigs rearranged using the Contiguity 438 

interactive browser to show three inversion events within the genome of EC958. These inversions 439 

seemed to be the cause of at least two contig breaks. Similarities between the inverted region of 440 

contig 14 and 15 were also found (not shown). 441 

2. Create scaffolds of the chromosome and plasmid using the “Write FASTA” tool. 442 

Once the cause of the fragmentation of the genome was identified, the three long chromosomal contigs 443 

can be scaffolded into a single contig and the short contigs containing the alternate phage tail gene 444 
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arrangement were removed. These regions can later be annotated as regions of variation in the final 445 

assembly. Contiguity can automatically remove overlapping sequence on the end of each contig if 446 

instructed by the user, allowing the user to create a single unbroken scaffold for both the chromosome 447 

and plasmid. This duplication of sequence is usually caused by the HGAP assembly process, however, 448 

overlapping contigs may be caused by other phenomena, such as long repetitive regions. Scaffolds 449 

created using Contiguity should be verified by mapping reads back onto the newly created sequence. 450 

Case Study 2: Reconstruction of prophage and plasmid sequence in a draft assembly 451 

DATA: E. coli. str. UTI89 is a well characterized uropathogenic bacteria often used in mouse models to 452 

study urinary tract infections [30]. A comparative and graphical analysis of the UTI89 Illumina 453 

sequencing data assembled with Velvet (described previously) was performed. 454 

AIM i): reconstruction of novel chromosomal regions in E. coli str. UTI89 draft assembly. 455 

WORKFLOW AND RESULTS i): 456 

1. Generate a contig adjacency graph was generated using Contiguity’s CAG creation tool. 457 

2. Load the resulting graph. 458 

3. To aid interpretation of the assembly, use Contiguity to launch a BLASTn comparison against 459 

E. coli UM146, UTI89’s nearest neighbour with a finished genome. 460 

4. Display contigs mapping to UM146. 461 

An insertion relative to UM146 was identified in UTI89 between contigs 45 and 217 as indicated by a 462 

break in the contig adjacency chain displayed in Contiguity (Figure 8A). As there is no read evidence 463 

suggesting that contigs 45 and 217 are adjacent it can be concluded that additional contigs, that were 464 

not displayed as they didn’t map to the reference chromosome, may be part of this insertion. 465 

5. Use the “Find Paths” tool to find all paths between contigs 45 and 217 466 

Using Contiguity, a single path of two contigs was found between contig 45 and 217 with the “Find 467 

Paths” tool, a modified depth-limited search that finds the all paths in the adjacency graph between two 468 

contigs (Figure 8B). 469 
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6. Recreate the prophage at this site using the “Write FASTA” tool. 470 

Further analysis of this contig can be achieved by analysing the sequence outside of Contiguity (Figure 471 

8C). It is worth noting that a simple region such as this, where only a single path exists between the two 472 

contigs, could also be reconstructed using scaffolding software. Contiguity’s “Find Paths” tool is able 473 

to report all paths between two contigs, this allows insight into potential arrangements of regions where 474 

ambiguity exists. This can be incredibly useful for reconstructing novel regions of the chromosome 475 

where traditional methods, such as ordering to a reference or scaffolding will fail. 476 

 477 

Figure 8: Reconstruction of a prophage using Contiguity. A) A small section of the Illumina 478 

assembly (dark cyan) aligned against UM146 (red). BLASTn hits are shown in orange. Arcs 479 

between contigs represent contig adjacencies. B) Putative contig order at insertion site found 480 

using the “Find paths” tool. Insertion site in UTI89 contains several putative phage genes. C) 481 

Scaffold created with Contiguity compared back to the published UTI89 genome. A small 482 

inversion, possibly due to DNA invertase mediated prophage tail fibre allele switching, has 483 

occurred in our isolate. Panel C was created with Easyfig. 484 

AIM ii): reconstruction of novel plasmid sequence in E. coli str. UTI89 draft assembly. 485 
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WORKFLOW AND RESULTS ii): 486 

Although 359 contigs of the UTI89 assembly have at least 100bp of their sequence aligned to the 487 

UM146 chromosome with at least 95% identity, a large number of contigs in the UTI89 assembly have 488 

no alignment to UM146 and further inspection of these contigs reveal no obvious insertion sites in the 489 

draft chromosome. The interconnectivity of these contigs suggest that they are assembled from the same 490 

region of the genome, consistent with a mobile genetic element such as a plasmid, genomic island or 491 

prophage.  492 

1. Display UTI89 contigs with no BLASTn hits to UM146 longer than 100bp using the “View 493 

Assembly” function (Figure 9A). 494 

2. Use the “Find Paths” tool to reinsert regions contigs of sequence shared by the chromosome 495 

and plasmid 496 

Removing all UTI89 contigs with sequence similarity to UM146 potentially removed repetitive regions 497 

shared by both the UTI89 extrachromosomal element(s) and the chromosome. Therefore, to reintroduce 498 

these repetitive contigs the “Find Paths” function in Contiguity was used to find all paths less than 3000 499 

bp between the selected contigs. This value should be large enough to span insertion elements found in 500 

the assembly, but small enough to avoid finding spurious paths. Of the 25 novel contigs identified as 501 

non-UM146 with the “View assembly” function, and 8 collapsed repeat contigs added with the “Find 502 

paths” function, 30 contigs create a circuit in the subgraph. It is possible to infer that because of their 503 

circular nature that these 30 contigs comprise a large plasmid approximately 115 kb in length. 504 

3. Order contigs in the circuit according to the Contiguity-CAG graph. 505 

To do this each contig was put adjacent to another contig if there is read evidence that they are adjacent 506 

(Figure 9B). Contigs of collapsed repeat regions are duplicated where necessary. The number of repeat 507 

regions in the plasmid can be predicted by identifying the number of contigs the repeat is adjacent to. 508 

A large (~115Kbp) circular region has now been identified with four possible arrangements (Figure 509 

9C). 510 
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 511 

Figure 9: Identification and ordering of plasmid contigs. a) Contigs with no BLASTn hits to the 512 

reference, the interconnectivity of the subgraph suggest the majority of these contigs may be part 513 

of a single, large mobile genetic element. b) Contigs of repetitive regions are added using the 514 

“Find paths” tool, contigs are then ordered into one of four possible arrangements using the graph. 515 

c) The four possible arrangements of the contigs identified and ordered using Contiguity 516 

compared to the published UTI89 plasmid (top). 517 

Primers can then be designed to confirm the presence of the plasmid and order of the contigs. However 518 

in this case, as the reference sequence is available, the accuracy of this method can be illustrated by 519 

comparing the 4 potential plasmid scaffolds back to the pUTI89 reference. If unique contigs were 520 

ordered blindly, the number of possible arrangements would be ∏ 2𝑘𝑛−1
𝑘=1 , where n is the number of 521 

unique contigs. 1.08×1026 for the 22 unique contigs found in this plasmid. Adding repeat contigs would 522 

increase this number by an order of magnitude. Contiguity creates and presents adjacency information 523 

in an intuitive manner allowing the plasmid and potential orders to be easily visualized and 524 

reconstructed. 525 
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Conclusions 526 

Contiguity includes the first sequencing and assembly independent method of producing contig 527 

adjacency graphs. Adjacency graphs, when combined with comparative genomics, can be a powerful 528 

tool for identifying and reconstructing large novel sections of a genome. 529 

A purpose built graph construction algorithm improves upon current graph creation methods in several 530 

ways. Firstly, the ability to choose a smaller k-mer for graph creation than used during assembly allows 531 

lower coverage regions between contigs to be traversed. Secondly, adopting a De Bruijn approach 532 

allows us to traverse regions of the genome larger than commonly used insert sizes. Consequently, 533 

connections between contigs separated by gaps larger than the insert-size of paired reads are 534 

identifiable. When combined with a paired read approach, the result is an extremely sensitive contig 535 

adjacency graph. 536 

Contiguity provides an easy to use graphical user interface with a large amount of functionality. A linear 537 

layout with edges represented as arcs makes exploring an assembly as a graph more intuitive without 538 

necessarily cluttering the graph [31]. Contiguity also enables easy visualization of contig metadata, such 539 

as coverage or sequence composition. The layout and features contained within the software package 540 

allow quick and easy analysis de novo assemblies and their graphs.  541 

The case studies chosen illustrate two possible uses of Contiguity in the analysis of de novo assemblies 542 

that were previously only possible using multiple applications, scripts or manual inspection. These 543 

examples show how it is easy to identify and provide context, such as synteny, to regions of the genome 544 

that are difficult to assemble including prophages and plasmids. They also demonstrate how easily 545 

contigs can be ordered and scaffolded for further analysis. 546 

In future, improvements to Contiguity will allow it to be used with larger eukaryotic or metagenomic 547 

datasets. Moving infrequently accessed data from memory to disk would allow larger CAGs to be 548 

visualized with less memory. Currently, all sequence alignments are shown, this results in some 549 

alignments between the reference and graph, which are out of frame, crisscrossing the screen. Only 550 

showing alignments for the region of the reference, or contigs, in frame would make graphs clearer and 551 
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require less processing power to render comparisons. Contiguity will be adapted to both produce and 552 

read GFA (Graphical Fragment Assembly) files once the format has been formally described. 553 
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