
Contiguity: Contig adjacency graph construction and visualisation. 1

Mitchell J. Sullivana, Nouri L. Ben Zakoura, Brian M. Fordea, Mitchell Stanton-Cooka, Scott A. 2

Beatsona* 3

aAustralian Infectious Diseases Research Centre, and School of Chemistry and Molecular 4

Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia 5

Running Head: Contiguity: Assembly visualisation 6

*To whom correspondence should be addressed. Tel: +61 7 3365 4863; Email: s.beatson@uq.edu.au 7

Keywords: Chromosome Mapping, Computational Biology, Computer Graphics, Genetics, 8

Comparative genomics, Computational Biology, Gap closing, Contig ordering, Genome analysis, 9

Bioinformatics 10

 11

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

mailto:s.beatson@uq.edu.au

Abstract 12

Contiguity is interactive software for the visualization and manipulation of de novo genome assemblies. 13

Contiguity creates and displays information on contig adjacency which is contextualized by the 14

simultaneous display of a comparison between assembled contigs and reference sequence. Where 15

scaffolders allow unambiguous connections between contigs to be resolved into a single scaffold, 16

Contiguity allows the user to create all potential scaffolds in ambiguous regions of the genome. This 17

enables the resolution of novel sequence or structural variants from the assembly. In addition, 18

Contiguity provides a sequencing and assembly agnostic approach for the creation of contig adjacency 19

graphs. To maximize the number of contig adjacencies determined, Contiguity combines information 20

from read pair mappings, sequence overlap and De Bruijn graph exploration. We demonstrate how 21

highly sensitive graphs can be achieved using this method. Contig adjacency graphs allow the user to 22

visualize potential arrangements of contigs in unresolvable areas of the genome. By combining 23

adjacency information with comparative genomics, Contiguity provides an intuitive approach for 24

exploring and improving sequence assemblies. It is also useful in guiding manual closure of long read 25

sequence assemblies. Contiguity is an open source application, implemented using Python and the 26

Tkinter GUI package that can run on any Unix, OSX and Windows operating system. It has been 27

designed and optimized for bacterial assemblies. Contiguity is available at 28

http://mjsull.github.io/Contiguity . 29

Introduction 30

The emergence of high-throughput sequencing technologies has led to a massive increase in the number 31

of unassembled or draft bacterial genome sequence data sets [1]. De novo assembly of sequencing reads 32

produced using high-throughput sequencing methods often results in highly fragmented assemblies 33

containing hundreds of contiguous sequences (contigs). Although long reads, such as those produced 34

by Pacific Bioscience's single molecule real time sequencing (SMRT), significantly reduce 35

fragmentation in bacterial genome assemblies, they frequently do not assemble into a single contig [2]. 36

Consequently, contig ordering, scaffolding, identification of spurious or misassembled contigs and 37

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

http://mjsull.github.io/Contiguity

comparative analysis of an assembly all remain time-limiting steps during the analysis of a de novo 38

assembly. 39

Several tools exist that allow easy visualization of pairwise or multiple alignments, including Easyfig 40

[3], Artemis Comparison Tool [4], genoPlotR [5], Interactive Genomics Viewer [6] and Mauve [7]. 41

These tools allow the rapid identification of structural variations between two sequences such as 42

rearrangements, insertions, and deletions. Many of these events may be biologically important and can 43

be a result of prophages, plasmids and other mobile genetic elements. Such events account for much of 44

the variation in bacterial species such as Escherichia coli [8]. However, mobile genetic elements are 45

relatively difficult to resolve in draft or metagenome assemblies primarily due to an abundance of 46

insertion sequences within these elements that result in collapsed repeats and a lack of specific 47

information about contig adjacency. Mobile genetic elements often assemble into several contigs 48

making it unclear whether several contigs with novel sequence are part of the same mobile genetic 49

element, or belong to several distinct elements. 50

In theory, mobile genetic elements and other difficult to assemble genomic regions can be reconstructed 51

by examining contig interconnectivity within an assembly. By determining which contigs are adjacent 52

to one another in the underlying assembly graph, potential arrangements of those contigs in context of 53

the complete genome can be determined. This allows the use of synteny to contextualise sequence that 54

is not present in complete reference genomes and can also help determine the sequence of genomic 55

regions that span multiple contigs. Adjacency information can also be used to group contigs into distinct 56

elements, such as chromosomal and extra-chromosomal DNA. This approach is used by PLACNET [9] 57

to identify plasmid contigs in de novo assembled genomes. PLACNET creates an undirected graph of 58

contig adjacencies that can be visualized with a tool such as Cytoscape [10]. Using such an approach, 59

specific information about order and orientation of contigs in the plasmid, relative to one another, cannot 60

be inferred. Several methods exist for finding interconnectivity between contigs, such as looking at 61

paired-end reads shared by contigs in a de novo assembly or using transcript data. This information can 62

be leveraged by scaffolding algorithms, such as SOPRA [11] and SSPACE [12], to improve de novo 63

assemblies by joining connected contigs where no ambiguity exists. However, scaffolding can introduce 64

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

errors into assemblies and provides no information about potential adjacencies between contigs in 65

regions that are unable to be resolved, such as repetitive regions of the chromosome. Interconnectivity 66

can also be visualized using programs such as Consed [13], Phrapview [14], Abyss-explorer [15], TGnet 67

[16], ContigScape [17] and Bandage [18]. Consed and Phrapview display a linear relationship between 68

contigs with connections between contigs being inferred from paired reads. Abyss-explorer, TGnet and 69

ContigScape display assemblies as a directed graph. Abyss-explorer infers connectivity from graph 70

information and read pair information provided by the De Bruijn assembler Abyss [19]. TGnet finds 71

adjacencies using transcript information, and Contigscape infers adjacencies by identifying reads shared 72

between contigs assembled by the “Newbler Assembler” or connectivity using paired reads. Bandage 73

can be used to visualize the LastGraph file produced by the Velvet assembler [20], FASTG files and 74

Trinity.fasta files produced by the RNA-seq assembler Trinity [21]. 75

These methods, described above, are limited to creating graphs from specific data types that are not 76

always available to the end user. Alternatively, they require the use of a specific assembly program, 77

which may result in a suboptimal assembly. Graphs based on the output of an assembler also prevent 78

the user from performing additional optimization of their assemblies, such as scaffolding or 79

misassembly correction. Assemblies often result in hundreds of contigs, with each contig typically 80

having between 2 to 4 connections to other contigs. Although small assemblies can be displayed 81

concisely, as assembly size grows visual representations of the graph can quickly become cluttered 82

making it difficult to extract meaningful information. 83

Contiguity makes contig adjacency graphs more accessible to users unfamiliar with the concept. 84

Contiguity adds sequence comparison to the visualization of contig adjacency graphs. This allows the 85

user to contextualize contig adjacency information with similarity and the order inferred from a 86

reference sequence. The user can quickly and easily identify genome rearrangements, insertions, 87

deletions and potential misassemblies. Contiguity includes a purpose built contig adjacency graph 88

creation algorithm that combines existing approaches and allows adjacency graphs to be built from any 89

assembly irrespective of sequencing or assembly method. In addition to a description of Contiguity’s 90

core functionality (the construction and representation of contig adjacency graphs) we also provide two 91

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

case studies of existing projects in which Contiguity has been used to improve assembly and elucidate 92

structural rearrangements. Contiguity is an open source project implemented in Python using the 93

Tkinter graphical user interface library, it available on Windows, OSX and GNU/Linux. 94

Methods and results 95

Contiguity overview 96

Contiguity is designed to enable the visualization and organization of de novo assemblies. It allows both 97

comparison information and contig adjacency graph information to be visualized simultaneously using 98

the same BLAST comparison format used in tools such as Artemis Comparison Tool [4] and Easyfig 99

[3] (Figure 1). 100

 101

 102

Figure 1: Contiguity main window. Visualization and organization is achieved in the central canvas 103

of the main window, contigs are shown as teal (gold when selected) rectangles with their name, 104

orientation and length displayed within the box (if enough room exists). Sequence alignments to 105

a reference are shown as orange (yellow for inverted) polygons, reference sequences are shown 106

as red rectangles. Contig adjacency is shown using black arcs. The yellow console in the bottom 107

left corner shows information on currently running processes. The grey panels in the bottom right 108

show information on currently selected contigs. 109

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

Contiguity uses the BLAST comparison results to order contigs according to a reference and a graph 110

file (such as LastGraph from Velvet) to show connections between adjacent contigs. The visual and 111

interactive layout of contigs allows the user to easily order and scaffold contigs into a putative 112

chromosome, whilst identifying potential regions of structural variation. Optionally, Contiguity can 113

create a custom contig adjacency graph (Contiguity-CAG) using read files and an assembled 114

contig/scaffold file. The Contiguity-CAG improves on the sensitivity of current methods by utilizing 115

three complementary approaches (paired-read, overlap and De Bruijn graph exploration). Furthermore, 116

the Contiguity-CAG representation is both sequencing type and assembly method independent and 117

enables the sequence between connected contigs to be determined. It merges information from De 118

Bruijn graph exploration, overlap searches and paired-end mapping to create a highly-sensitive graph 119

of contig adjacencies. 120

Contiguity Graphical User Interface Layout 121

Sequence assemblies can be loaded into the Contiguity Graphical User Interface (GUI) from either 122

FASTA, LastGraph, ACE, DOT, FASTG or a Contiguity-CAG file (Figure 1). Contig adjacency 123

information stored within LastGraph, ACE, FASTG, DOT and Contiguity-CAG files is also loaded. 124

Contiguity-CAG files can be created from the drop-down menu. A comparison to a reference can be 125

generated from within Contiguity using NCBI-BLAST+ [22], if BLAST+ binaries are found in the users 126

path. Alternatively, the BLAST comparison can be loaded from a file, provided that it is in the standard 127

BLAST tab format. Contigs and their adjacencies can then be viewed on a canvas in the main window; 128

the user can choose to display all contigs, only contigs with BLAST matches to the reference sequence, 129

only contigs with no hits to the reference or a user-defined subset of contigs. Contigs are ordered firstly 130

by hits to the reference, then by connectivity information, placing adjacent contigs next to each other 131

where possible, and finally contigs with no hits or adjacency information are placed on the canvas from 132

longest to shortest. Once contigs are loaded, sequence alignments between and/or within contigs can be 133

created and visualized to highlight repetitive or duplicated regions as blue (or orange for inverted) 134

ribbons. 135

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

Contiguity's canvas can be zoomed, stretched and shrunk in the X-dimension. Contigs and reference 136

sequences can be independently moved anywhere on the canvas and duplicated, removed or reversed 137

interactively. Paths between contigs connected in the adjacency graph can be found manually or by an 138

implementation of a depth-limited search according to a user-defined cut-off. 139

The user can colour contigs by using metadata such as coverage, GC content or AT and GC skew. User-140

created lists can be used to order and colour contigs. The subgraph can be easily expanded or rearranged 141

using context-driven menus. Specific edges or alignments can also be highlighted from these menus. 142

Contigs in the Contiguity-CAG can be selected automatically or interactively, and written as a multi-143

FASTA and/or as a single scaffold. Videos demonstrating the functionality of Contiguity and a 144

comprehensive manual are available at http://mjsull.github.io/Contiguity/. 145

Contiguity Contig Adjacency Graph (Contiguity-CAG) creation 146

A CAG is a directed graph where each contig in a de novo assembly is represented as two nodes 147

(forward and reverse strand). A directed edge is created from node A to node B if the sequence 148

represented by node B occurs directly after the sequence represented by node A. 149

How a genome will be represented as a de novo assembly is due to a combination of sequencing type, 150

composition (location and number of repeat regions) and the assembler used (Figure 2). 151

 152

Figure 2: Anatomy of an assembly. An Illumina sequencing run of Escherichia coli str. UTI89 was 153

assembled with Velvet and Abyss. Contigs were then mapped to the 110 Kbp plasmid found in 154

UTI89. Velvet (top) produces highly fragmented repetitive regions. Abyss (bottom) assembles 155

repetitive regions into long contiguous segments, however this results in large overlaps between 156

contigs. Contig names are displayed where they fit within the contig borders. 157

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

Adjacent contigs can overlap by hundreds of bases to a single base, be directly adjacent to one another 158

or have unassembled sequence between them. Contiguity attempts to reconstruct an adjacency graph 159

by i) finding overlapping contig edges and ii) performing an end-to-end De Bruijn search – a method 160

that uses the proximity of contig ends in the De Bruijn graph to infer contig adjacency. Contigs 161

adjacencies, where the overlap is greater than the k-mer value, are found by identifying overlapping 162

edges of the contig. Contigs that overlap by less than or equal to the chosen k-mer value or do not 163

overlap are found by searching through a De Bruijn graph. This approach allows Contiguity to predict 164

sequence or overlap size between adjacent contigs. When scaffolds are reconstructed, using the GUI, 165

this information can optionally be used to reconstruct scaffolds that more accurately represent the 166

original genome. This feature is provided with the disclaimer that all predicted joins between contigs 167

are “best guesses” and should be independently verified with PCR or by mapping reads onto the 168

reconstructed scaffolds. Unfortunately this approach has difficulties when encountering sequence 169

specific error profiles in Illumina sequencing. Sequence specific error profiles occur when sequences 170

dephase due to sequence-specific interference of the base elongation process during sequencing [23]. 171

This causes regions with extremely low quality bases. If filtering or trimming is applied before 172

assembly, this will result in regions with no or low coverage. Although these regions cannot be traversed 173

by a De Bruijn graph, they are often bridged by paired-end reads. iii) Paired read information is also 174

used to identify adjacent contigs, to further improve the sensitivity of Contiguity’s approach. This 175

approach cannot find sequence between adjacent contigs or accurately determine the size of an overlap. 176

In the final step of the adjacency graph creation, the edges found by all three methods are merged, 177

exploiting the advantage of the De Bruijn/overlap approach and a paired approach. (Figure 3). 178

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

 179

Figure 3: Flowchart of the graph creation process demonstrated using a mock genome assembly. 180

A) Assembled contigs and their underlying reads. This region contains three unique contigs (A, 181

B and C) separated by two repeat regions that have collapsed into a single contig (R). B) 182

Flowchart of Contigutiy-CAG construction. Yellow notes show edges that were found and 183

removed at each step if a k-mer size of 5 is used. Edges between contigs that overlap by more 184

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

than or equal to the k-mer size are found by searching for overlapping contig ends. Contigs that 185

overlap by less than the k-mer size are found by finding paths through a De Bruijn graph. In some 186

instances a path through the De Bruijn graph doesn’t exist (e.g. between contigs R and C the 187

nodes CCGTG and CGTGA do not exist in the read data) these edges are found by looking at 188

mapped paired-end data. The edge between R and B is found by both paired-end and De Bruijn 189

methods, this duplication of results is later removed. The edge between A and B is already 190

described by the path A → R →B, to reduce the complexity of the graph it is removed. Panel C 191

shows the final construction of the graph illustrated in a manner similar to Contiguity. 192

The approaches utilized for Contiguity-CAG creation are summarized in more detail below: 193

i) Overlapping contig searches. Due to the nature of De Bruijn graphs, adjacent contigs assembled 194

using a De Bruijn approach, such as Velvet or Spades, often overlap by one base pair less than the k-195

mer size used for assembly (k – 1). This enables adjacent contigs to be identified by looking for exact 196

matches of length ≥ k - 1 between contig ends. Generally, contig breaks are due to repetitive regions in 197

the genome that cause branches in the De Bruijn graph. When the De Bruijn graph is resolved into 198

contigs, assembly breaks occur where the graph branches. As the k-mers of adjacent nodes overlap by 199

k – 1, the sequence of adjacent contigs based on those nodes will also overlap by the same amount. 200

Other assemblers, such as Abyss, create contigs that can overlap by a much greater amount. To account 201

for this possibility Contiguity also allows for large inexact overlaps. 202

ii) End-to-end De Bruijn search. An end-to-end De Bruijn search allows us to find adjacent contigs 203

that do not overlap or overlap by an amount shorter than the defined k-mer value. This approach allows 204

determination of the size of short overlaps between contigs or the sequence between contigs that don’t 205

overlap. Some regions of a De Bruijn graph assemble into contigs too short to be reported in the final 206

assembly. This can result in unassembled segments of genome from a few, to hundreds of base pairs 207

long. Although these regions of the genome are not covered by assembled sequence, they are covered 208

by read data and as such can be reconstructed. These edges will only be found by paired-end reads if 209

the unassembled segment is smaller than i-2m where i is the insert size of the reads and m is the 210

minimum length needed for the read to map to a contig (for global alignments this is usually close to 211

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

the read length). Using a De Bruijn approach also allows the prediction of sequence between the contigs 212

and identification of edges between adjacent contigs to distant to be resolved by paired-end reads. In 213

our test data (see below) these unassembled segments rarely exceeded 300 bp in length and as this 214

method uses a depth-limited search a default limit of 300bp plus the k-mer size allows the search to be 215

performed in reasonable time by a desktop computer (Less than 10 minutes for an E. coli genome with 216

~200x coverage). 217

To find adjacencies between contigs separated by such regions, Contiguity constructs a De Bruijn graph 218

from supplied read data using Khmer [24]. Khmer stores k-mer counts using a bloom filter allowing 219

quick and memory efficient graph construction. Following construction of the graph, the frequency of 220

each k-mer count is calculated. Two cutoffs (A and B) are generated from k-mer count frequencies: 221

cutoff A is set as the first local minima of the k-mer count frequency graph, and cutoff B is set at half 222

the first local maxima after cutoff A. Contiguity then performs a depth limited (default: 300 bp + k-mer 223

size) search of the De Bruijn graph from the k-mer representing the 5’ and 3’ end of each contig. This 224

search follows 3 rules: i) All k-mers with a frequency greater than cutoff B are considered to be real 225

sequence and are traversed. ii) All k-mers with a frequency less than cutoff A are attributed to 226

sequencing errors and are not traversed. iii) If the frequency of the k-mers in the De Bruijn graph are 227

less than cutoff B and greater than cutoff A the less frequent k-mers are considered to be likely 228

sequencing errors and only the most common k-mer is traversed (Figure 4). If the k-mer representing 229

the 5’ or 3’ end of a contig is found during the search an edge is created between the two contigs. If 230

more than one path is found between two contigs the path with the highest k-mer coverage chosen as 231

the correct path. 232

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

 233

Figure 4: Traversal of the De Bruijn graph. Representation of a reference sequence, reads and the 234

De Bruijn Graph. Sequencing errors are shown with a red base. The green arrows shows the path 235

traversed from the first node to the last node when cutoff A is set to 2 and cutoff B is set to 4. 236

Red arrows show paths considered but not traversed. a) A sequencing error found in a single read, 237

this path is not traversed because it falls under cutoff A. b) A sequencing error found in multiple 238

reads. This path is not traversed because there is a more likely path forward. c) A low coverage 239

region. The De Bruijn search algorithm used by Contiguity will search low coverage nodes if no 240

alternative path is found. 241

 242

iii) Paired-end search. Reads are aligned using Bowtie 2 [25] and edges are created between contigs 243

that a) share more than a user-defined number of paired reads, b) are orientated in the correct direction 244

and c) are situated at the end of the contig. Sequencing specific error profiles often create a coverage 245

profile where reads overlap by an amount shorter than the k-mer used for assembly. These regions of 246

the graph cannot be traversed during De Bruijn assembly and result in a contig break (if additional 247

scaffolding is not performed). If adjacent contigs found using this method have exact overlapping ends 248

of at least 5 base pairs (probability of identical bases due to chance < 0.001) and paired-end data 249

indicates that the contigs should overlap, the contigs were likely split due to a sequence specific error 250

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

profile and Contiguity considers them to be overlapping. If there is no detectable overlap, user-defined 251

scaffolding characters (such as “NNNNN”) are inserted between the two contigs that have paired-end 252

scaffold support. 253

Removal of duplicate and redundant edges. Where two or more overlapping edges are found between 254

the same contig ends the larger overlap is preferred. In the event where both an overlapping edge and a 255

non-overlapping edge are found between the same contig ends, the overlapping edge is chosen. 256

Contiguity also removes redundant edges using an algorithm called untangle (Figure 3). 257

Manual comparison of Contiguity, Velvet and Abyss CAGs 258

To verify the contig adjacency graph and provide a comparison to currently used methods such as 259

traversal of Velvet’s LastGraph and Abyss Assembler’s .dot graph file a sequencing run of Escherichia 260

coli str. UTI89 (ENA accession: ERR687901) was assembled and examined using the Contiguity GUI. 261

Genomic DNA from E. coli str. UTI89 was sequenced using Illumina HiSeq2000. Reads with ends 262

marked as low quality (phred quality score ≤ 2) were trimmed and reads were filtered if the average 263

per-base quality was less than 30 or had one pair trimmed to less than 50 base pairs. In total, 2,433,934 264

high quality read pairs with an average insert size of 367.25 base pairs with a standard deviation of 59.1 265

were assembled using i) Velvet (with scaffolding), ii) Velvet (without scaffolding), or iii) Abyss (with 266

default parameters, with scaffolding). Insert size and standard deviation were provided to Velvet with 267

the rest of the parameters detected automatically or left at default and k-mer size for all assemblies were 268

chosen to optimize N50. Contiguity was then used to construct a CAG for each of the three assembly 269

methods. 270

To determine the true adjacencies of the assembled sequence, contigs from the Velvet assembly were 271

then mapped to the published UTI89 genome and the contigs that aligned to the first 250,000 base pairs 272

and their CAGs were compared. This region was chosen because it contained a mix of long and short 273

unique sequence and repetitive elements (Table 1). Contigs that aligned to the reference, with BLAST, 274

along their full length with an identity of at least 95% were considered mapped to that region or regions. 275

Velvet assembled this region into 26 contigs from unique regions and 12 collapsed repeats. Velvet’s 276

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

scaffolding reduced the amount of unique contigs to 11, but did not improve the assembly of the 277

repetitive region. 278

To calculate precision and sensitivity of the Contiguity-CAG, all edges from the contigs mapped to the 279

selected region were examined. This included edges to contigs mapping outside of the region. True and 280

false positives were calculated using the following rules. 281

i. Edges between adjacent nodes were counted as true positives. 282

ii. Edges between non-adjacent nodes were counted as false positives. 283

iii. Adjacent contigs, within the examined region, that did not share an edge were counted as false 284

negatives. 285

Velvet’s LastGraph file consists of nodes and arcs between adjacent nodes. Without scaffolding, nodes 286

larger than a user defined amount are reported in the final assembly as contigs. If paired-end data is 287

made available, Velvet will join multiple nodes together to form a scaffold. As not all nodes are reported 288

in the final assembly, edges between contigs were reconstructed from the LastGraph file. To accomplish 289

this paths between contigs were found through manual exploration of the LastGraph using the 290

Contiguity GUI. Edges were reconstructed using the following rules. 291

i. For all contigs or scaffolds reported in the final assembly the corresponding node or nodes were 292

found in the LastGraph. 293

ii. If the contig or scaffold corresponded to a single node all arcs from that node were explored. 294

iii. If the scaffold consisted of multiple nodes only arcs from the end of the node that corresponded 295

to the end of the scaffold were explored. 296

iv. Exhaustive searches of all paths starting at the identified arcs were performed. If a node 297

corresponding to a contig or scaffold was found an edge is created between the two 298

contigs or scaffolds. 299

As the LastGraph is constructed from the De Bruijn graph and does not utilize paired-end information 300

the Contiguity-CAG was able to find significantly more edges than the Velvet-CAG. Combining 301

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

scaffolding and LastGraph information improves the proportion of edges found however this method 302

still fails to resolve a number of edges in the repetitive regions (Table 1). 303

Precision and sensitivity were then calculated for the Abyss-CAG using the same method used for the 304

Contiguity-CAG. Unlike Velvet, Abyss attempts to scaffold fragmented repetitive regions and as such, 305

a larger region needed to be chosen to evaluate the same number of edges. Contigs mapping to the first 306

1,500,000 base pairs and their edges were evaluated for both the Contiguity-CAG and Abyss-CAG 307

(Table 1). Interval levels were calculated using the Adjusted-Wald method using a confidence level of 308

95%. 100% sensitivity was achieved in all three Contiguity graphs, to account for this sensitivity was 309

estimated using the LaPlace method. 310

Table 1: Comparison of Contiguity, Velvet and Abyss CAGs. 311

 312

Contiguity was able to find significantly more connections between contigs than traversal of Velvet’s 313

LastGraph with comparable precision. This was largely due to Velvet’s not reporting paired-end 314

information in the LastGraph and k-mer sizes and cutoffs chosen to optimize assembly and not graph 315

construction. Sensitivity and precision of the Contiguity and Abyss CAGs were largely comparable, 316

although Abyss failed to find 2 edges between adjacent contigs. In both these cases one of the contigs 317

was a short (<110bp) collapsed repeat. 318

Automated comparison of Contiguity 319

To further assess the quality of the contig adjacency graphs produced by Contiguity, and identify 320

potential limitations of this method, Contiguity-CAGs were generated for de novo assemblies of 33 test 321

datasets in which both unassembled reads and a complete genome sequence were available (Table 2). 322

The test datasets represent a variety of bacterial genomes with examples of both simulated and real 323

Illumina HiSeq paired-end data. GemSim (v1.6) [26] was used to simulate Illumina HiSeq 2000 reads 324

at 100-120× coverage for each of 25 bacterial genomes. Furthermore, 5 Illumina HiSeq II, and 1 325

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

Illumina Hiseq IIx datasets, that are available via the short read archive (SRA) and also had available 326

complete genome sequences, were tested. Two independent HiSeq 2000 genome sequencing runs from 327

the reference E. coli strain UTI89 previously mentioned were also included (acc: PRJEB7805). Reads 328

from the simulated datasets had a length of 101bp while real lengths in the real dataset ranged from 329

76bp to 101bp. Insert sizes ranged from 234 to 358. All genomes were assembled using Velvet 330

(v1.2.07), k-mer size was chosen to optimize the N50 value of the assembly and insert size was 331

provided. All other paramaters were detected automatically. Scaffolding was turned off to reduce 332

inaccuracy in mapping assembled contigs or scaffolds back to the reference. All other parameters were 333

detected automatically by Velvet. 334

For each assembly, a contig adjacency graph was created using Contiguity and default parameters 335

(Contiguity-CAG). Because of the large volume of data being analysed an in-house script (available at 336

https://github.com/mjsull/Contiguity) was needed to estimate the precision and sensitivity of our 337

graphs. All sequence comparisons were performed using BLAST, the full length of the contig must 338

align with at least 95% identity for the contig to be considered “mapped”. The precision and sensitivity 339

of the edges created for each assembly were tested using the following rules: 340

i. For each edge found between two contigs, A and B, if both contig A and B are mapped to the 341

reference sequence (and therefore aren’t misassembled) a scaffold of contig A and B is created. 342

ii. If the scaffold of contig A and B mapped to the reference the edge is a true positive. 343

iii. If the scaffold is not found then the edge is a false positive. 344

The script then creates a list of ordered contigs by mapping them to the reference using the following 345

rules. 346

i. If a contig maps within an area a larger contig maps to it is not included in the list. 347

ii. If two contigs map to the same area the contig with a lower identity is removed from the list. 348

iii. Contigs may be placed more than once. 349

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

The script then traverses through the ordered list of contigs, if an edge exists between two adjacent 350

contigs with the correct orientation it is considered a true positive for the purpose of calculating 351

sensitivity, if no edge exists it is considered a false negative. 352

Repetitive sequence often assembles into multiple redundant contigs. As a result, the repetitive regions 353

of a genome can often be accurately reconstructed from contigs in multiple ways. Contigs automatically 354

chosen to represent a region sometimes differ from what would be chosen manually, although both 355

accurately represent the underlying genomic sequence. As the script only checks to see if edges between 356

automatically selected contigs exists, and not if a repetitive region could be accurately reconstructed 357

using alternative contigs, the predicted sensitivity tends to be lower than the real value (Table 2). 358

Table 2: Estimates of precision and sensitivity of Contiguity across multiple strains. 359

 360

Contiguity was able to achieve high precision and sensitivity across a large range of bacterial genomes 361

and read coverage (Figure 5). In the case of Thermovibrio ammonifacans HB-1 (Table 2), two 362

independent sequencing runs gave very different assembly metrics (917 and 43 contigs, respectively), 363

despite good read coverage being achieved in both runs (612x and 946x, respectively). Predicted 364

sensitivity for the T. ammonifacans HB-1 sequencing run that assembled into 917 contigs was 46.1%, 365

compared to 86.8% for the independent 43 contig assembly. All real datasets from genomes sequenced 366

with newer platforms, such as the HiSeq IIx and HiSeq 2000 resulted in higher sensitivity graphs than 367

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

those sequenced with older platforms, such as the Genome Analyser II (100%, 97.7% and 96.0% vs. 368

90.0%, 86.8%, 85.0%, 79.0% and 46.1%). 369

 370

Figure 5: Precision and sensitivity of Contiguity-CAGs. Precision and sensitivity are calculated from 371

the number of True positives (TP), false positives (FP) and false negatives (FM). Precision is 372

calculated as TP/(TP+FP), sensitivity is calculated as TP/(TP+FN). Graph also shows a 373

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

comparison between real and simulated sequencing and assemblies of E. coli and non-E. coli 374

genomes. 375

Precision seems to be less dependent on sequencing and assembly quality and more on the composition 376

of repetitive elements of the genome and how they reconstructed by the assembler. Precision only 377

weakly correlates to assembly quality (r=0.338, using N50 estimate assembly quality). Precision 378

correlates more strongly to the percent of total contigs in an assembly that are repetitive (r=0.599, 379

repetitive contigs defined as contigs that map more than once to the reference). One reason for this is 380

incorporation of repetitive sequence into the ends of unique contigs resulting in fewer repetitive contigs 381

and lower precision (Figure 6). Lower variation and higher median precision was observed in E. coli 382

assemblies (Figure 5), this also corresponded to a higher percentage of repeat contigs with lower 383

variation (62.3% average with a standard deviation of 4.7% in E. coli compared to 39.2% average with 384

a standard deviation of 14.5% in non-E. coli). 385

 386

Figure 6: Illustration of a repetitive region of the genome, how it assembles and the resulting 387

graph. Incorporation of repetitive regions (yellow) of chromosome into adjacent contigs results 388

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

in lower precision. In the first assembly the repeat region assembles into its own contig, this 389

results in a 100% precision in the graph. In the second assembly the repeat region is incorporated 390

into the ends of adjacent contigs. Because the repeat is too large to resolve, the resulting CAG 391

has lower precision. The two CAGs are only superficially different, despite the difference in 392

precision as both graphs can be arranged in 2 possible ways. 393

When provided with high-quality data Contiguity is able to produce highly sensitive adjacency graphs. 394

A high sensitivity is essential for identifying and reconstructing large novel sections of a genome. 395

Case studies 396

Case study 1: PacBio SMRT sequencing closure 397

DATA: E. coli str. EC958 is a representative sequence type 131 (ST131) O25b strain of uropathogenic 398

E. coli which is characterized by several prophage and genomic island regions as well as a large 399

antibiotic resistance plasmid [27]. EC958 genomic DNA was sequenced on the PacBio RS I instrument 400

generating a total of 601,224 pre-filtered reads with an average length of 1,600 bp, from six SMRT cells 401

[28]. Reads were assembled de novo using the hierarchical genome assembly process (HGAP) from the 402

PacBio SMRT analysis package (V2.0.0)[2] with default settings and a seed read cut-off length of 403

5,000 base-pairs (bp). A total of 7 contigs were generated from the initial HGAP assembly, all contigs 404

were shorter than the expected chromosome size. 405

AIM i): Close the genome of E. coli EC958 assembled with SMRT sequencing reads. 406

WORKFLOW AND RESULTS i): 407

1. Load FASTA of contigs into Contiguity. 408

2. Generate a self-comparison from within Contiguity using the NCBI-BLAST+ (BLASTn). 409

Overlapping but un-joined contigs are a characterized artefact of the HGAP assembly process [2] and 410

in the EC958 assembly several overlapping edges were evident between contigs (Figure 7A). 411

3. Change the size of all contigs in Contiguity from relative (node size proportionate to 412

length of contig in base pairs) to constant (node size identical for all contigs). 413

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

4. Change self-comparison so that only BLASTn hits between overlapping edges are shown. 414

A circular chromosome and large ~140 kb plasmid are identifiable (Figure 7B). 415

AIM ii): Investigate the 12,666bp, 12,206bp and 8483bp linear contigs in the HGAP assembly by 416

viewing all BLASTn comparisons between (but not within) contigs. 417

WORKFLOW AND RESULTS ii): 418

1. Change self-comparison so that only BLASTn hits between contigs are shown. 419

The entire sequence of all three contigs was found in the three large contigs that make up the 420

chromosome of EC958. Alignments indicated small inverted regions in the three contigs under 421

investigation (Figure 7C). Subsequent similarity searches indicated that these ~3 kb inversions 422

corresponded to DNA invertase mediated prophage tail fibre allele switching within a high proportion 423

of the E. coli cells that were grown prior to DNA harvesting and library preparation [28]. This 424

phenomenon has long been recognized as a mechanism for altering host specificity of bacteriophage by 425

alternating in-frame C-terminal phage-tail protein fragments [29]. This phenomena is generally not 426

readily identifiable in draft genomes generated with shorter-read technologies without mate-pair 427

libraries. 428

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

 429

Figure 7: Pacbio assembly analysis using Contiguity. A) Contiguity representation of a small section 430

of the entire PacBio assembly of E. coli str. EC958. Contigs are labeled with their name, 431

orientation and length. BLAST hits satisfying user defined parameters are shown as ribbons. 432

Direct repeats are shown in orange and inverted repeats are shown in yellow. B) A Contiguity 433

representation of the 5.1Mbp circularised genome of E. coli str. EC958 with a uniform size for 434

all contigs to enable visualization of an entire assembly in a single view. The main chromosome 435

is broken into three large contigs: 18, 19 and 20. Contig 17 is a 141Kb circular plasmid as 436

indicated by direct repeats linking the 5’ and 3’ ends. Contigs 14, 15 and 16 are 8-12 Kb linear 437

segments of DNA. C) A self-comparison of all assembled contigs rearranged using the Contiguity 438

interactive browser to show three inversion events within the genome of EC958. These inversions 439

seemed to be the cause of at least two contig breaks. Similarities between the inverted region of 440

contig 14 and 15 were also found (not shown). 441

2. Create scaffolds of the chromosome and plasmid using the “Write FASTA” tool. 442

Once the cause of the fragmentation of the genome was identified, the three long chromosomal contigs 443

can be scaffolded into a single contig and the short contigs containing the alternate phage tail gene 444

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

arrangement were removed. These regions can later be annotated as regions of variation in the final 445

assembly. Contiguity can automatically remove overlapping sequence on the end of each contig if 446

instructed by the user, allowing the user to create a single unbroken scaffold for both the chromosome 447

and plasmid. This duplication of sequence is usually caused by the HGAP assembly process, however, 448

overlapping contigs may be caused by other phenomena, such as long repetitive regions. Scaffolds 449

created using Contiguity should be verified by mapping reads back onto the newly created sequence. 450

Case Study 2: Reconstruction of prophage and plasmid sequence in a draft assembly 451

DATA: E. coli. str. UTI89 is a well characterized uropathogenic bacteria often used in mouse models to 452

study urinary tract infections [30]. A comparative and graphical analysis of the UTI89 Illumina 453

sequencing data assembled with Velvet (described previously) was performed. 454

AIM i): reconstruction of novel chromosomal regions in E. coli str. UTI89 draft assembly. 455

WORKFLOW AND RESULTS i): 456

1. Generate a contig adjacency graph was generated using Contiguity’s CAG creation tool. 457

2. Load the resulting graph. 458

3. To aid interpretation of the assembly, use Contiguity to launch a BLASTn comparison against 459

E. coli UM146, UTI89’s nearest neighbour with a finished genome. 460

4. Display contigs mapping to UM146. 461

An insertion relative to UM146 was identified in UTI89 between contigs 45 and 217 as indicated by a 462

break in the contig adjacency chain displayed in Contiguity (Figure 8A). As there is no read evidence 463

suggesting that contigs 45 and 217 are adjacent it can be concluded that additional contigs, that were 464

not displayed as they didn’t map to the reference chromosome, may be part of this insertion. 465

5. Use the “Find Paths” tool to find all paths between contigs 45 and 217 466

Using Contiguity, a single path of two contigs was found between contig 45 and 217 with the “Find 467

Paths” tool, a modified depth-limited search that finds the all paths in the adjacency graph between two 468

contigs (Figure 8B). 469

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

6. Recreate the prophage at this site using the “Write FASTA” tool. 470

Further analysis of this contig can be achieved by analysing the sequence outside of Contiguity (Figure 471

8C). It is worth noting that a simple region such as this, where only a single path exists between the two 472

contigs, could also be reconstructed using scaffolding software. Contiguity’s “Find Paths” tool is able 473

to report all paths between two contigs, this allows insight into potential arrangements of regions where 474

ambiguity exists. This can be incredibly useful for reconstructing novel regions of the chromosome 475

where traditional methods, such as ordering to a reference or scaffolding will fail. 476

 477

Figure 8: Reconstruction of a prophage using Contiguity. A) A small section of the Illumina 478

assembly (dark cyan) aligned against UM146 (red). BLASTn hits are shown in orange. Arcs 479

between contigs represent contig adjacencies. B) Putative contig order at insertion site found 480

using the “Find paths” tool. Insertion site in UTI89 contains several putative phage genes. C) 481

Scaffold created with Contiguity compared back to the published UTI89 genome. A small 482

inversion, possibly due to DNA invertase mediated prophage tail fibre allele switching, has 483

occurred in our isolate. Panel C was created with Easyfig. 484

AIM ii): reconstruction of novel plasmid sequence in E. coli str. UTI89 draft assembly. 485

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

WORKFLOW AND RESULTS ii): 486

Although 359 contigs of the UTI89 assembly have at least 100bp of their sequence aligned to the 487

UM146 chromosome with at least 95% identity, a large number of contigs in the UTI89 assembly have 488

no alignment to UM146 and further inspection of these contigs reveal no obvious insertion sites in the 489

draft chromosome. The interconnectivity of these contigs suggest that they are assembled from the same 490

region of the genome, consistent with a mobile genetic element such as a plasmid, genomic island or 491

prophage. 492

1. Display UTI89 contigs with no BLASTn hits to UM146 longer than 100bp using the “View 493

Assembly” function (Figure 9A). 494

2. Use the “Find Paths” tool to reinsert regions contigs of sequence shared by the chromosome 495

and plasmid 496

Removing all UTI89 contigs with sequence similarity to UM146 potentially removed repetitive regions 497

shared by both the UTI89 extrachromosomal element(s) and the chromosome. Therefore, to reintroduce 498

these repetitive contigs the “Find Paths” function in Contiguity was used to find all paths less than 3000 499

bp between the selected contigs. This value should be large enough to span insertion elements found in 500

the assembly, but small enough to avoid finding spurious paths. Of the 25 novel contigs identified as 501

non-UM146 with the “View assembly” function, and 8 collapsed repeat contigs added with the “Find 502

paths” function, 30 contigs create a circuit in the subgraph. It is possible to infer that because of their 503

circular nature that these 30 contigs comprise a large plasmid approximately 115 kb in length. 504

3. Order contigs in the circuit according to the Contiguity-CAG graph. 505

To do this each contig was put adjacent to another contig if there is read evidence that they are adjacent 506

(Figure 9B). Contigs of collapsed repeat regions are duplicated where necessary. The number of repeat 507

regions in the plasmid can be predicted by identifying the number of contigs the repeat is adjacent to. 508

A large (~115Kbp) circular region has now been identified with four possible arrangements (Figure 509

9C). 510

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

 511

Figure 9: Identification and ordering of plasmid contigs. a) Contigs with no BLASTn hits to the 512

reference, the interconnectivity of the subgraph suggest the majority of these contigs may be part 513

of a single, large mobile genetic element. b) Contigs of repetitive regions are added using the 514

“Find paths” tool, contigs are then ordered into one of four possible arrangements using the graph. 515

c) The four possible arrangements of the contigs identified and ordered using Contiguity 516

compared to the published UTI89 plasmid (top). 517

Primers can then be designed to confirm the presence of the plasmid and order of the contigs. However 518

in this case, as the reference sequence is available, the accuracy of this method can be illustrated by 519

comparing the 4 potential plasmid scaffolds back to the pUTI89 reference. If unique contigs were 520

ordered blindly, the number of possible arrangements would be ∏ 2𝑘𝑛−1
𝑘=1 , where n is the number of 521

unique contigs. 1.08×1026 for the 22 unique contigs found in this plasmid. Adding repeat contigs would 522

increase this number by an order of magnitude. Contiguity creates and presents adjacency information 523

in an intuitive manner allowing the plasmid and potential orders to be easily visualized and 524

reconstructed. 525

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

Conclusions 526

Contiguity includes the first sequencing and assembly independent method of producing contig 527

adjacency graphs. Adjacency graphs, when combined with comparative genomics, can be a powerful 528

tool for identifying and reconstructing large novel sections of a genome. 529

A purpose built graph construction algorithm improves upon current graph creation methods in several 530

ways. Firstly, the ability to choose a smaller k-mer for graph creation than used during assembly allows 531

lower coverage regions between contigs to be traversed. Secondly, adopting a De Bruijn approach 532

allows us to traverse regions of the genome larger than commonly used insert sizes. Consequently, 533

connections between contigs separated by gaps larger than the insert-size of paired reads are 534

identifiable. When combined with a paired read approach, the result is an extremely sensitive contig 535

adjacency graph. 536

Contiguity provides an easy to use graphical user interface with a large amount of functionality. A linear 537

layout with edges represented as arcs makes exploring an assembly as a graph more intuitive without 538

necessarily cluttering the graph [31]. Contiguity also enables easy visualization of contig metadata, such 539

as coverage or sequence composition. The layout and features contained within the software package 540

allow quick and easy analysis de novo assemblies and their graphs. 541

The case studies chosen illustrate two possible uses of Contiguity in the analysis of de novo assemblies 542

that were previously only possible using multiple applications, scripts or manual inspection. These 543

examples show how it is easy to identify and provide context, such as synteny, to regions of the genome 544

that are difficult to assemble including prophages and plasmids. They also demonstrate how easily 545

contigs can be ordered and scaffolded for further analysis. 546

In future, improvements to Contiguity will allow it to be used with larger eukaryotic or metagenomic 547

datasets. Moving infrequently accessed data from memory to disk would allow larger CAGs to be 548

visualized with less memory. Currently, all sequence alignments are shown, this results in some 549

alignments between the reference and graph, which are out of frame, crisscrossing the screen. Only 550

showing alignments for the region of the reference, or contigs, in frame would make graphs clearer and 551

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

require less processing power to render comparisons. Contiguity will be adapted to both produce and 552

read GFA (Graphical Fragment Assembly) files once the format has been formally described. 553

Acknowledgments 554

The authors would also like to thank Professor Mark Schembri for making available the UTI89 Illumina 555

datasets used in this project. 556

Funding 557

SAB is supported by a Career Development Fellowship from the National Health and Medical Research 558

Council Career of Australia [grant number APP1090456]. 559

References 560

1. Chain PS, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, 561

Bruce DC, Buhay C et al: Genomics. Genome project standards in a new era of sequencing. 562

Science (New York, NY) 2009, 326(5950):236-237. 563

2. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, 564

Huddleston J, Eichler EE et al: Nonhybrid, finished microbial genome assemblies from 565

long-read SMRT sequencing data. Nature methods 2013, 10(6):563-569. 566

3. Sullivan MJ, Petty NK, Beatson SA: Easyfig: a genome comparison visualiser. 567

Bioinformatics (Oxford, England) 2011. 568

4. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the 569

Artemis Comparison Tool. Bioinformatics (Oxford, England) 2005, 21(16):3422-3423. 570

5. Guy L, Kultima JR, Andersson SG: genoPlotR: comparative gene and genome visualization 571

in R. Bioinformatics (Oxford, England) 2010, 26(18):2334-2335. 572

6. Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-573

performance genomics data visualization and exploration. Briefings in bioinformatics 2013, 574

14(2):178-192. 575

7. Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved 576

genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403. 577

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

8. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, 578

Nakayama K, Murata T et al: Complete genome sequence of enterohemorrhagic 579

Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA 580

Research 2001, 8(1):11-22. 581

9. Lanza VF, de Toro M, Garcillan-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F: 582

Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation 583

network (PLACNET), a new method for plasmid reconstruction from whole genome 584

sequences. PLoS Genet 2014, 10(12):e1004766. 585

10. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, 586

Ideker T: Cytoscape: a software environment for integrated models of biomolecular 587

interaction networks. Genome research 2003, 13(11):2498-2504. 588

11. Dayarian A, Michael TP, Sengupta AM: SOPRA: Scaffolding algorithm for paired reads 589

via statistical optimization. BMC bioinformatics 2010, 11:345. 590

12. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W: Scaffolding pre-assembled contigs 591

using SSPACE. Bioinformatics (Oxford, England) 2011, 27(4):578-579. 592

13. Gordon D, Green P: Consed: a graphical editor for next-generation sequencing. 593

Bioinformatics 2013, 29(22):2936-2937. 594

14. Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome 595

Res 1998, 8(3):195-202. 596

15. Nielsen CB, Jackman SD, Birol I, Jones SJ: ABySS-Explorer: visualizing genome sequence 597

assemblies. IEEE transactions on visualization and computer graphics 2009, 15(6):881-888. 598

16. Riba-Grognuz O, Keller L, Falquet L, Xenarios I, Wurm Y: Visualization and quality 599

assessment of de novo genome assemblies. Bioinformatics (Oxford, England) 2011, 600

27(24):3425-3426. 601

17. Tang B, Wang Q, Yang M, Xie F, Zhu Y, Zhuo Y, Wang S, Gao H, Ding X, Zhang L et al: 602

ContigScape: a Cytoscape plugin facilitating microbial genome gap closing. BMC 603

Genomics 2013, 14:289. 604

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

18. Wick RR, Schultz MB, Zobel J, Holt KE: Bandage: interactive visualisation of de novo 605

genome assemblies. bioRxiv 2015. 606

19. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel assembler 607

for short read sequence data. Genome Res 2009, 19(6):1117-1123. 608

20. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn 609

graphs. Genome research 2008, 18(5):821-829. 610

21. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, 611

Raychowdhury R, Zeng Q et al: Full-length transcriptome assembly from RNA-Seq data 612

without a reference genome. Nature biotechnology 2011, 29(7):644-652. 613

22. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: 614

BLAST+: architecture and applications. BMC bioinformatics 2009, 10:421. 615

23. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, 616

Hirai A, Takahashi H et al: Sequence-specific error profile of Illumina sequencers. Nucleic 617

Acids Res 2011, 39(13):e90. 618

24. Crusoe MR, Edvenson G, Fish J, Howe A, McDonald E, Nahum J, Nanlohy K, Ortiz-Zuazaga 619

H, Pell J, Simpson J et al: The khmer software package: enabling efficient sequence 620

analysis: Figshare; 2014. 621

25. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Meth 2012, 622

9(4):357-359. 623

26. McElroy K, Luciani F, Thomas T: GemSIM: general, error-model based simulator of next-624

generation sequencing data. BMC Genomics 2012, 13(1):74. 625

27. Totsika M, Beatson SA, Sarkar S, Phan M-D, Petty NK, Bachmann N, Szubert M, Sidjabat HE, 626

Paterson DL, Upton M et al: Insights into a Multidrug Resistant Escherichia coli Pathogen 627

of the Globally Disseminated ST131 Lineage: Genome Analysis and Virulence 628

Mechanisms. PloS one 2011, 6(10):e26578. 629

28. Forde BM, Ben Zakour NL, Stanton-Cook M, Phan M-D, Totsika M, Peters KM, Chan KG, 630

Schembri MA, Upton M, Beatson SA: The Complete Genome Sequence of Escherichia coli 631

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug 632

Resistant E. coli O25b:H4-ST131 Clone. PloS one 2014, 9(8):e104400. 633

29. Nguyen HA, Tomita T, Hirota M, Kaneko J, Hayashi T, Kamio Y: DNA inversion in the tail 634

fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like 635

bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora Er. J Bacteriol 2001, 636

183(21):6274-6281. 637

30. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, 638

Ozersky P et al: Identification of genes subject to positive selection in uropathogenic 639

strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 640

2006, 103(15):5977-5982. 641

31. Nicholson TAJ: Permutation procedure for minimising the number of crossings in a 642

network. Electrical Engineers, Proceedings of the Institution of 1968, 115(1):21-26. 643

 644

 645

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1037v1 | CC-BY 4.0 Open Access | rec: 4 May 2015, publ: 4 May 2015

P
re
P
rin

ts

