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Highlights

• DIYlandcover crowdsources the generation of landcover data, using hu-
man pattern recognition skill to create accurate maps with rich geomet-
ric detail.

• It incorporates representative sampling and worker-specific accuracy
assessment protocols, and connects to a large online job market. This
design addresses three problems with crowdsourced mapping: repre-
sentativity; data reliability; product delivery speed.

• In a trial case, South African cropland was mapped with 91% accuracy
by novice workers. A scaling up analysis found that an Africa-wide
cropland map could potentially be developed using this software for
$2-3 million within 1.2-3.8 years.

Abstract
Accurate landcover maps are fundamental to understanding socio-economic
and environmental patterns and processes, but existing datasets contain sub-
stantial errors. Crowdsourcing map creation may substantially improve ac-
curacy, particularly for discrete cover types, but the quality and representa-
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tiveness of crowdsourced data is hard to verify. We present an open-sourced
platform, DIYlandcover, that serves representative samples of high resolu-
tion imagery to an online job market, where workers delineate individual
landcover features of interest. Worker mapping skill is frequently assessed,
providing estimates of overall map accuracy and a basis for performance-
based payments. A trial of DIYlandcover showed that novice workers de-
lineated South African cropland with 91% accuracy, exceeding the accuracy
of current generation global landcover products, while capturing important
geometric data. A scaling-up assessment suggests the possibility of develop-
ing an Africa-wide vector-based dataset of croplands for $2-3 million within
1.2-3.8 years. DIYlandcover can be readily adapted to map other discrete
cover types.

Keywords: remote sensing, landcover, crowd-sourcing, accuracy
assessment, representative sampling, object extraction

Availability1

DIYlandcover’s source code will be made available free of charge for2

suitable non-commercial purposes under a GPLv3 license, upon consulta-3

tion with the authors. For those interested in commercial applications, the4

prospective licensee should contact Princeton University’s Office of Tech-5

nology Licensing. The details of a specific application of the software for6

delineating crop fields in sub-Saharan Africa can be found at7

mappingafrica.princeton.edu, together with associated information about par-8

ticipating in the project, including digitizing rules and links for accessing the9

mapping interface.10

1. Introduction11

Regional maps of landcover provide critical information on food security12

estimates (e.g. Monfreda et al., 2008; Licker et al., 2010; See et al., 2015; Lo-13

bell, 2013), models of land-atmosphere interactions (e.g. Liang et al., 1994),14

and calculations of carbon stocks (e.g. Ruesch and Gibbs, 2008), greenhouse15

gas emissions (e.g. Searchinger et al., 2015), and habitat change (e.g. Gibbs16

et al., 2010). These maps are particularly important in developing regions,17

such as sub-Saharan Africa, where government land use data are often lack-18

ing, error-prone, and inconsistent (Ramankutty et al., 2008; See et al., 2015).19
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These developing regions are also experiencing rapid land use changes (Gibbs20

et al., 2010; Rulli et al., 2013) that pose pressing development challenges (e.g.21

how to feed people at substantially lower environmental cost Searchinger22

et al., 2015).23

Unfortunately, landcover datasets derived from medium to coarse reso-24

lution satellite sensors are particularly inaccurate (Fritz et al., 2010; Fritz25

and See, 2008). One major reason for poor accuracy is the fact that land use26

patterns in these regions are dominated by smallholder farming. Smallholder27

fields are typically smaller (≤2 ha) than the resolution (∼6 ha) of the most28

commonly used satellite imagery (Jain et al., 2013). Furthermore, smallhold-29

ers often plant diverse mixtures of crops, which further increases within-pixel30

heterogeneity (Jain et al., 2013), and their fields often contain remnant trees31

and have irregular boundaries, which makes them spectrally harder to dis-32

tinguish from the surrounding vegetation (See et al., 2015; Lobell, 2013).33

New techniques for merging multiple landcover products are helping to34

substantially improve map accuracy (Fritz et al., 2011, 2015). However, these35

approaches cannot overcome the mismatch between sensor resolution and36

smallholder field size. High resolution satellite imagery (<5 m) is becom-37

ing increasingly available–and presumably will become more affordable–so38

the resolution problem should be solved in the near future (See et al., 2015;39

Lobell, 2013). But high resolution comes at the expense of higher spectral40

variability; centimeter-scale data require lower orbits, narrower swaths, and41

greater communication bandwidth, which combine with clouds to greatly42

limit the area that can be imaged under contemporaneous environmental43

conditions, and from comparable viewing angles. This means that high res-44

olution image mosaics covering large areas contain substantial and largely45

uncorrectable spectral differences caused by variations in atmospheric con-46

ditions, vegetation phenology, and bidirectional reflectance. This variability47

propagates error in automated classifications over large regions, which can48

already be substantial when there is high within-cover variability (Debats49

et al., 2015), or high heterogeneity among cover types (Gross et al., 2013).50

It remains a major challenge to develop algorithms that can accurately51

classify landcover in the face of both increased image variability and substan-52

tial spatial heterogeneity. Promising methods are emerging, however, which53

draw on advances in computer vision and machine learning, such as semantic54

segmentation (e.g. Schroff et al., 2008) and Randomized Quasi-Exhaustive55

feature selection (Tokarczyk et al., 2015), to find optimal classifiers within56

complex urban environments Frhlich et al. (2013) and highly variable small-57
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holder fields (e.g. Debats et al., 2015). However, these advances are primarily58

in pixel-wise classification. Accurate, automated methods for extracting in-59

dividual objects within a single cover type, particularly over wide areas, is60

arguably even more difficult. Object delineation is an important goal of61

landcover mapping, as cover geometries encode critical social and environ-62

mental information (Fritz et al., 2015), and can play an important role in63

improving environmental monitoring systems. For example, in agroecosys-64

tems, field boundaries can provide a filter for extracting “pure”, crop-specific65

time series of satellite-derived vegetation indices, which helps to improve the66

accuracy of remotely sensed yield estimates (Estes et al., 2013a,b). Some67

limited progress has been made with automated approaches, but these have68

been demonstrated mainly for small areas where the cover objects have regu-69

lar geometries and sharp boundaries (e.g. commercial agricultural fields Yan70

and Roy, 2014; Ozdarici-Ok and Akyurek, 2014; Ozdarici-Ok et al., 2015).71

Such methods are not yet proven over large areas with more complex, less72

distinct cases.73

An alternative approach is to employ humans, who are very adept at rec-74

ognizing patterns in noisy images (Biederman, 1987). The superiority of hu-75

man over machine pattern recognition provides the motivation for CAPTCHA76

(Ahn et al., 2003), which secures websites by requiring human users to rec-77

ognize fuzzy or irregular letters and numbers that are too difficult for auto-78

mated algorithms to identify. Human-interpreted landcover maps are thus79

likely to be consistently more accurate than automated classifiers. Unfor-80

tunately, since humans are much slower at data processing than computers,81

human-generated landcover maps covering large areas will require much more82

time and expense to create. However, this problem is being alleviated by the83

growth of the internet, which makes it increasingly feasible to turn pattern84

recognition problems into many small tasks that are undertaken by a large85

number of online workers—the human equivalent of parallel processing. This86

ability to “crowdsource” (Howe, 2006) such work supports projects ranging87

from galactic classification (Lintott et al., 2008) to ornithological surveys88

(Sullivan et al., 2009). Crowdsourcing of landcover is already being used in89

the Geo-wiki project, which uses online volunteers to correct landcover data90

based on their own interpretations of high resolution satellite imagery (Fritz91

et al., 2009, 2012, 2015). Recently, these data have been used to create the92

most accurate (82%) global cropland map (Fritz et al., 2011, 2015).93

While the use of crowdsourcing is an extremely promising development94

for landcover mapping, and is being increasingly used for this and other en-95
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vironmental monitoring applications (Jacobson et al., 2015; Fraternali et al.,96

2012; Schellekens et al., 2014), many existing projects (e.g. OpenStreetMap97

(openstreetmap.org)) are geared towards users who create content accord-98

ing to their personal interests, thus the resulting maps are unlikely to be99

geographically representative (Fraternali et al., 2012). Furthermore, veri-100

fying the accuracy of crowdsourced data is a challenge (Allahbakhsh and101

Benatallah, 2013; Flanagin and Metzger, 2008; See et al., 2015) that remains102

largely unaddressed by existing platforms. In terms of using crowdsourcing103

to improve landcover data, prior efforts have focused primarily on validating104

pixel-based classifications, and less on delineating individual cover objects,105

which is arguably one of the greatest advantages that people have over ma-106

chines. Indeed, recognizing and digitizing individual, discrete cover types107

such as crop fields is considered fairly “straightforward” for humans (Yan108

and Roy, 2014).109

In this paper, we describe DIYlandcover (or “Do-it-Yourself” land-110

cover), a new platform for creating crowdsourced landcover data that ad-111

dresses the three aforementioned limitations. DIYlandcover was designed for112

mapping discrete, but “noisy”, cover types, where object extraction is of pri-113

mary interest. Specifically, our platform provides online workers with tools to114

1) delineate landcover objects within 2) representatively selected locations,115

while the resulting maps are subjected to 3) periodic quality assessments116

that provide estimates of individual worker and overall map accuracy. We117

provide an overview of DIYlandcover’s design and mechanics, and report on118

the results of a trial application mapping crop fields in South Africa, which119

suggests that DIYlandcover allows inexperienced online workers to generate120

high accuracy (>90%), geometrically rich, and geographically representative121

landcover data at a much faster rate than is usually possible with human-122

based mapping.123

2. System design124

The inspiration for DIYlandcover came from GeoTerraImage, a company125

that mapped South Africa’s arable cropland by manually digitizing fields126

visible in high resolution satellite imagery (GeoTerraImage, 2008). The re-127

sulting map set is 97% accurate in distinguishing cropped from uncropped128

areas at a 4 ha resolution (see detailed accuracy assessment in Appendix129

S1), and provides rich detail on field type and geometry. However, making130

these maps was an expensive and lengthy process; the estimated labor cost131
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for digitizing was $5 km−2, and the project took approximately 2.5 years to132

complete (Ferreira, pers. comm.).133

We developed DIYlandcover to help overcome these constraints of cost134

and production time, while retaining the advantages of human image in-135

terpretation skill demonstrated by GeoTerraImage. Our platform connects136

workers in an online job marketplace to a map application programming137

interface (API) that hosts high resolution satellite imagery. DIYlandcover138

currently works with Amazon’s Mechanical Turk (Services, 2012) and the139

Google Maps API, but these could in principle be replaced by other services.140

These two aspects of DIYlandcover substantially reduce both mapping costs141

and completion times, because the imagery is free and the platform can access142

a potentially large number of workers.143

Given the distributed and anonymous nature of the online job market,144

we cannot intensively train workers (as GeoTerraImage did), yet our map-145

ping task is complex, requires significant image interpretation skill, and must146

be completed in a systematic manner. Therefore, to ensure the scientific147

quality of its maps, DIYlandcover incorporates site selection and accuracy148

assessment protocols (Fig. 1). A sampling grid (SG in Fig. 1) over the149

desired study region provides the basis for collecting stratified random sam-150

ples. The first draw identifies sites where the researcher/administrator (the151

“Requester”; Allahbakhsh and Benatallah, 2013) will provide landcover ref-152

erence maps (black cells). Subsequent draws select sites where workers will153

create new maps (grey cells). This sample of locations is then sent to the job154

marketplace. All workers must pass an initial qualification test (Q1 in Fig.155

1) that proves their ability to map a handful of sites with a minimum level156

of skill. Once qualified, workers begin mapping. Each worker will map both157

grey and black sites, which are respectively referred to as N (for normal) and158

Q (for quality assessment) sites. Q sites are indistinguishable from N sites,159

and are intermingled such that each worker has a Requester-defined proba-160

bility of encountering a Q site. Completed maps from N sites are inserted161

into DIYlandcover’s database (D), while maps from Q sites are first scored162

according to their agreement with their reference maps (Q2 in Fig. 1). Maps163

that fall below a minimum score are rejected. Map scores are incorporated164

into a worker-specific quality score, which is used to assign confidence to all165

maps generated by a worker, and to determine overall map accuracy. Work-166

ers are paid (P in Fig. 1) for each site mapped, with the possibility of bonus167

payments linked to quality scores.168
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Q2

Q1

$$$

PD

SG

Normal (N)

Quality control (Q)

Map Assignment Type

Figure 1: An overview of DIYlandcover’s design. A survey grid (SG) is overlaid on a
geographic area, and then random samples (weighted proportionally to the probability
of cover type presence, represented by green, orange, and blue) are drawn to specify
where groundtruth maps will be generated (black cells) to support worker map quality
(Q) assessment. Subsequent random draws (grey cells) select sites that are undertaken as
normal (N) mapping assignments. N and Q sites are sent inter-mingled to the online job
marketplace for mapping. A first time worker (red) must take an initial map qualification
test (Q1), after which she or he is qualified (green) and begins mapping. Maps from N sites
are stored in the database (D); Q site maps are first scored based on their agreement with
groundtruth (Q2). This score contributes to a longer term worker quality score, which is
used to assess overall map quality and allows performance-based bonuses to be paid on of
fixed per site payments (P).

3. The mechanics of DIYlandcover169

The basic structure of DIYlandcover consists of three elements (Fig. 2):170

the main server hosting DIYlandcover’s database, here a Linux virtual ma-171
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chine with PostgresSQL (9.4) with the PostGIS (2.1) spatial extension; a172

map server hosting the satellite imagery, in this case the Google Maps API173

(Developers, 2012); the online job market, Mechanical Turk (Services, 2012).174

Within this structure several key processes govern the creation and manage-175

ment of mapping tasks.176

3.1. Site selection177

A “master grid” covering the study area is first created as a PostGIS178

table. Each cell provides a unique identifier, and the cell resolution defines179

the area of an individual mapping task. This grid is intersected with a second180

grid containing landcover occurrence probabilities, which are converted into181

categorical weights. A third field is created that indicates whether each cell182

is available to be mapped or not.183

After the initial random draw (of a user specified size) is taken to identify184

quality assessment (Q) sites (Section 2, Fig. 1), the selected cells’ status is185

set to unavailable. The geometries are written to individual keyhole markup186

language (KML) files, and their IDs are added to a “KML data” table, where187

a field specifying cell type is set to ”Q” to indicate that the corresponding188

KMLs reference quality control sites. The user has to provide landcover ref-189

erence maps for these sites, the geometries of which are stored in a “reference190

maps” table.191

The next draw collects sites that will form the normal (“N”) map produc-192

tion process, where a worker (or workers) creates maps for locations where193

the underlying landcover is unknown. This step is governed by KMLGen-194

erate, an R process that connects to the database (via the RPostgreSQL195

package; Conway et al., 2012), takes a weighted random draw of size X (a196

parameter stored in the “configuration” table that holds all variables used197

by DIYlandcover) from the master grid table, writes each cell geometry to a198

separate KML file, adds the selected cell IDs to the KML data table, and sets199

the field type value to “N”. The script changes the cell status in the master200

grid to unavailable. As N type maps assignments are completed, their status201

is set to mapped in the KML data table. KMLGenerate runs as a daemon,202

selecting a new random draw as soon as the number of unmapped sites falls203

below a specified number, ensuring that there is never a system delay in204

sending mapping assignments to the job market (see 3.2).205
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Figure 2: The components, and primary processes of DIYlandcover. The main server
contains the system database and processes. Primary data tables are shown by the white
boxes with grey borders. Primary processes are shown in light grey boxes (process names
are italicized, primary software in brackets and its external dependencies in parenthesis,
and description in bold). Server processes interact with specific data tables (indicated by
the numbers to the left), and with processes that occur in the online job market (indicated
by symbols to the right). The two versions (one for training, one for qualified workers)
of the worker interface (WI) to the map API are shown, color-coded according to where
they are hosted (on main server or online market).
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3.2. Creating mapping assignments206

Following selection, each site is converted into a mapping task for online207

workers. These tasks are referred to as Human Intelligence Tasks (HITs),208

in Mechanical Turk’s parlance. HITs are created by (create hit daemon), a209

python daemon that uses the boto library to interface with Mechanical Turk210

(MT). The daemon polls MT (at regular intervals) to see how many DIY-211

landcover HITs of types Q and N exist on MT (zero at start of production),212

and whether they fall below their minimum required numbers. These num-213

bers are calculated from two configuration parameters: the minimum total214

number of HITs that should be available on MT, and the percentage of these215

that should be of Q type. If the actual numbers of each type fall below their216

target numbers, create hit daemon selects the IDs of available KMLs from217

the KML data table, and sends these together with associated HIT metadata,218

which includes the pay rate, the number of times the HIT should be mapped,219

the qualifications required to undertake the HIT (see 3.5), and a definition of220

the task. MT then registers each HIT and provides it with a unique HIT ID221

and registration time, which is logged into a “HIT data” table on the main222

server.223

3.3. Undertaking the mapping assignment224

Once a HIT is registered on MT, it is visible to all workers in the mar-225

ketplace, but can only be undertaken by qualified workers (see 3.5). Quali-226

fied workers who choose to undertake DIYlandcover-generated HITs are first227

shown a default HIT preview, and they must choose to accept it before they228

can see the actual location to map. This step helps prevent workers from229

declining more challenging sites, which bias the sample towards simpler land-230

covers.231

To enable workers to perform a mapping HIT, DIYlandcover uses an232

OpenLayers interface to the image server, which sits within MT’s user screen,233

centers the map view on the site of the HIT location, and provides a set234

of digitization tools (Fig. 3). As soon as the worker accepts the HIT, it235

becomes a mapping assignment that is issued a unique assignment ID. A Web236

Server Gateway Interface (wsgi) script, getKML, retrieves the OpenLayers237

javascript, the frame size parameters for the MT interface, the url for the238

KML demarcating the sample site, and user instructions (e.g. tool use tips),239

and passes these to MT, and collects the worker, assignment, and HIT IDs240

and acceptance time, and records these into the “assignment data” table.241
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The worker then draws polygons around the landcover type(s) of interest242

that intersect the KML sample square (Fig. 3), and has the option to edit243

or delete individual geometries and provide comments. On completion, the244

worker saves the map, and is then taken to the next HIT preview screen.245

Alternatively, the worker may choose to return the assignment uncompleted.246

If this happens more than a specified number of times, the worker’s qual-247

ification can be revoked (see 3.4), which is another check against sample248

selection bias. The assignment is automatically abandoned if it is not com-249

pleted within a defined time. We impose this last restriction to minimize250

bias in the estimation of wage rates (see 4.2); if workers leave the assignment251

unfinished on their computer for long periods, the amount of time required252

to complete assignments will be inflated.253

When the assignment is completed, returned, or abandoned, MT sends254

an email notification to the main server, where it is retrieved by ProcessNo-255

tifications, a python process. If the assignment is returned or abandoned,256

it is marked as unprocessed and returned to the pool of available HITs on257

MT, and the worker receives no pay. If the assignment was completed, post-258

processing routines are triggered.259

3.4. Processing completed assignments260

Several processing steps must be performed before the worker is paid for261

the completed assignment, which depend on whether the worker created any262

polygons during the assignment, and whether it was of Q or N type. If263

the worker created polygons, then the geometries, KML ID, assignment ID,264

and completion time are stored in the “user maps” data table by process265

postKML, which then triggers mapFix, a python script that invokes prepair266

and pprepair (Ohori et al., 2012), which repair the topologies of single and267

multi-polygons, respectively. This step is essential because hand-digitized268

polygon data often contain errors, such as self-intersections and unintended269

overlaps, which can render topologies invalid and cause subsequent spatial270

analyses (per 3.4) to fail. The repaired geometries are then inserted into the271

user maps table.272

Next, the assignment is given a score, which is recorded in the assignment273

data table. If the assignment was of N type, this score is null; for Q type,274

KMLAccuracyCheck, an R process, is called to compare the worker’s and275

reference maps, with the score determined by:276

S = β1C + β2O + β3I (1)
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Figure 3: The DIYlandcover mapping interface within Amazon.com’s Mechanical Turk job
marketplace. The white square is the KML sampling frame, gold polygons are completed
crop field polygons, the blue polygon is a field in the process of being mapped. Mapping
controls are in upper right corner of the image frame.

Where S is overall mapping accuracy, β1-β3 are user-defined weights, and:277
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C = 1 − abs(n − N)

max(n, N)
(2)

O =
a

a + c
(3)

I =
A + D

A + B + C + D
(4)

Or:278

I =

(
A

A + C
+

D

B + D

)
0.5 (5)

With C being count error, or the agreement between the number of landcover279

polygons in the worker’s maps (n) and in the reference data (N). O measures280

map agreement for those parts of the worker’s and reference polygons that281

fall outside of the KML grid, where a is the area of overlap, and c is the false282

negative error (i.e. the area of reference field polygons falling outside the grid283

that the worker failed to map). I measures map accuracy inside the KML284

grid, with A being the grid interior equivalent of a, B the false positive error285

(i.e. landcover incorrectly labelled by the worker), C the false negative error286

(landcover area missed by the worker), and D the true negative area (area287

correctly left unmapped). I can be calculated using standard classification288

accuracy (Eq. 4), or a variant of the True Skill Statistic (Eq. 5 Allouche289

et al., 2006), a more stringent measure that corrects for class prevalence,290

which we compressed to fall between 0 and 1 rather than -1 to 1. The areas291

of a, c, A, B, C, D are calculated using intersection and difference operations292

provided by the rgeos library (Bivand and Rundel, 2013), after transforming293

maps to a projected coordinate system.294

We include the O metric to encourage workers to completely map features295

intersecting the sampling grid (i.e. either falling entirely within or both296

within and outside of it), in order to have unbiased estimates of landcover297

size classes. However, we can only partially assess the accuracy of exterior298

features because it is impossible to correctly define negative space outside299

the sample grid, since it is both unbounded and may contain target features300

that will not be mapped because they do not intersect the grid. An error301

map showing each of the accuracy assessment components is illustrated in302

Figure 4.303
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A

a

B

C

c

D

Total (S)   Count (C)   Outside (O)   Inside (I)

Accuracy measures

0.62          0.33           0.18            0.79

Figure 4: A graphical illustration of the accuracy assessment algorithm (as applied to
cropland maps), providing the resulting scores for overall accuracy (Eq. 1) and count,
outside, and inside error (Eqs. 2-5), where each component ranges between 0 (most error)
and 1 (no error). The area of each error component is color-coded: A (agreement inside
the grid), a (agreement outside), B (false positive error inside the grid), C (false negative
inside), c (false negative outside), and D (true negative inside).
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Once the algorithm has run, all accuracy measures (S, C, O, I) are stored304

in the “error data” table, while S is stored in the assignment data table. S305

is also added to a vector of Q scores for the specific worker (stored in the306

“worker data” table), which is used to calculate a moving average of the307

worker’s recent performance. If S is above a minimum accuracy threshold,308

then the assignment is approved. If rejected, then payment is withheld,309

and a notice is sent to MT where it is added to the worker’s system-wide310

rejection rate. Successive rejections can result in the revocation of mapping311

qualifications if a worker’s quality score drops below the accuracy threshold.312

The quality score is:313

quality =
Si + Si-1 + ...+ Si-(j-1)

j
− β4

Ri + Ri-1 + ...+ Ri-(j-1)

j
(6)

Where i is the most recent S value calculated, and j the total number314

of recent S scores to use in calculating a mean S. To minimize assignment315

selection bias (see 3.3), an additional penalty, the worker’s rate of assignments316

accepted but returned without completing (R, which equals 1 for a return, 0317

for a completion), is multiplied by a weight β4 and deducted.318

In cases where the worker returns no maps for a Q type assignment, map319

storage and cleaning does not occur before KMLAccuracyCheck is run. In320

these cases, the C and O scores (Eq. 2 & 3) reduce to 1 where the reference321

map has no landcover polygons, or 0 if it does. If the assignment is of N322

type, it is scored as NULL and added to the assignment data table.323

Unlike the Q type, N assignments are automatically approved, under the324

logic that the worker’s quality score at the time of map creation is indicative325

of that map’s accuracy. The exception to this is N assignments created by326

a newly qualified worker (see 3.5), which are marked as “untrusted” in the327

assignment data table until that worker completes as many Q assignments as328

are needed to calculate the moving average accuracy score. Upon assignment329

approval, ProcessNotifications relays a message to MT and the worker is paid330

(see 3.6) from the Requester’s account, and then removes the corresponding331

HIT from MT. Q sites will be re-created as HITs multiple times, while N332

sites are mapped just one time.333

3.5. Worker qualification and payments334

All workers performing mapping assignments must first be qualified, which335

is treated as a special case of Q type assignments. MT evaluates the quali-336

fication status of each worker attempting to access a DIYlandcover HIT. If337
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the worker is not qualified, a link to a training module is presented on the338

MT interface. The module, which is hosted on the main server, is managed339

by trainingframe, a python process, which issues each new trainee a unique340

training ID. The trainee first watches video tutorials explaining the project341

and its mapping rules, and is then required to map several training sites,342

the accuracy of which is assessed by KMLAccuracyCheck. Trainees must343

map each site to the minimum accuracy standard, but are given unlimited344

chances to do so. A separate set of tables mirroring those used for collect-345

ing map, assignment, worker, and error data is used to record training data.346

Once a worker successfully completes all training sites, a qualification re-347

quest is posted on MT. A daemon, process qualifications requests, polls MT348

at specified intervals, collects these requests together with associated worker349

and training IDs, examines for each worker whether all training sites were350

completed successfully, and, if so, adds the trainee’s worker ID to the worker351

data table, sets the qualification status to true, then sends a notice to MT352

that the worker is now qualified. Candidate workers who fail to pass all train-353

ing sites, or workers whose qualifications are revoked due to poor accuracy354

(see 3.4), can repeat the training to qualify/re-qualify.355

Upon qualification, workers are paid a small bonus, and can begin map-356

ping assignments. Workers are paid a flat rate for approved assignments. To357

incentivize worker performance, DIYlandcover also allows bonus payments358

to be made based on the worker’s accuracy score. If implemented, the bonus359

algorithm, managed by ProcessNotifications, pays an extra per assignment360

amount if the worker’s quality score exceeds certain thresholds.361

4. Applying DIYlandcover to map South African crop fields362

We examined the capabilities of DIYlandcover by applying it to map363

crop field boundaries in South Africa. South Africa was a convenient test364

case because it cropland was already mapped (see section 2; GeoTerraImage,365

2008) using similar methods, providing both an objective means for evaluat-366

ing DIYlandcover’s performance, and a readily adaptable source of reference367

maps. Furthermore, South Africa’s diversity of agricultural systems are rep-368

resentative of the image interpretation challenges facing workers. This mix369

ranges from hard to detect communal and smallholder agriculture, to more370

easily discerned industrial fields (Hardy et al., 2011). South Africa also pro-371

vides the test site for the Mapping Africa project, which aims to create high372

quality cropland maps for sub-Saharan Africa.373
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4.1. Mapping set-up374

We created a 1X1 km, Albers Equal Area Conic-projected sampling grid375

for South Africa, and used logistic regression to model the probability of376

cropland presence throughout the country. Equally sized random draws of377

points selected inside and outside GTI field boundary polygons provided the378

positive and negative responses of the dependent variable, while predictors379

were derived from gridded rainfall and elevation data and a map of protected380

areas (for further details on these variables see Estes et al., 2013b, 2014). The381

resulting probability was divided into quartiles, which provided the weights382

used by KMLGenerate.383

For Q sites, we used the modeled cropland probability categories to draw384

a random select 609 grid cells (0.05% of South Africa’s area), providing a385

representative sample of South Africa weighted towards agricultural areas.386

We intersected these with the GTI polygons to create the associated Q data387

tables (3.1). These polygons were then further edited to make the Q maps388

consistent with imagery in the Google Maps API, and to conform with the389

specific mapping rules that we set for workers (Table 1). Workers were asked390

to map sites where crop fields were actively or very recently (i.e. within the391

past 2-3 years) used for arable agriculture. This category of agriculture takes392

many forms in South Africa (see Appendix S1 for an illustration), ranging393

from large, clearly defined, commercial fields to less geometrically distinct394

smallholder fields, which often contain trees and mixed crops. Long term395

fallows, tree crops (orchards, commercial afforestation), and non-agricultural396

areas were left unmapped. In cases of uncertainty (e.g. the worker had397

trouble telling whether the field was active or abandoned), workers were398

asked to map every second field. On top of the high variability in arable399

fields, narrowing the mappers’ focus actually made the task more challenging,400

because the agricultural types described in Table 1 often look similar, which401

increases the risk of both false positive and false negative errors. For instance,402

it is often difficult to tell whether a field is active or abandoned, while young403

orchards or recently cleared forest compartments can be mistaken for arable404

fields. In all these examples, field boundaries tend to be clearly visible, thus405

more inclusive mapping rules would likely reduce both types of error.406

The system was set to make random draws of 500 N sites from the master407

grid each time the number of N sites available for mapping fell below 500408

(3.1), in order to ensure that no system latency occurred as the system409

selected new mapping locations. At least 10 HITs, 80% N and 20% Q, were410

maintained on MT at any given time, with the system polling MT every 10411
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Table 1: Rules for mapping crop fields in the South Africa-focused application of DIY-
landcover. Workers were asked to map only currently active (i.e. farmed within the past
2-3 years) annual crop fields, and to not delineate other agricultural types.

Feature type Action

No cropland visible Don’t map
Active annual crop field Map
Fallow crop field Don’t map
Unsure if active crop fields Map every second feature
Permanent tree crops (orchards/plantations) Don’t map
Improved pastures Don’t map

seconds to see if new HITs were needed (3.2). This relatively low number412

allowed rapid cycling of HITs through MT, while the ratio of N:Q HITs413

ensured that worker accuracy was assessed (3.4) frequently during the trial414

(once in every five assignments).415

The accuracy algorithms (Eq. 1) β terms were set as 0.1, 0.2, and 0.7416

for the C (Eq. 2), O (Eq. 3), and I terms (here Eq. 4). We selected a low417

weight for C because determining the boundaries of individual fields from418

overhead imagery is fairly subjective, even for expert observers, and we did419

not want to unduly penalize workers for a difference in judgement, yet we also420

wanted to discourage rapid mapping that erased boundaries between clearly421

distinct fields. We gave O a slightly larger weight to stress the importance of422

completed fields that extended outside the sample grid, but a larger weight423

would give the worker too much credit for cases where no fields intersected424

the grid. The I term was weighted most heavily because it is the only place425

where workers’ abilities to correctly distinguish null space can be assessed.426

We used the same weights to assess assignments within the 8-site training427

module.428

Payment was set at $0.15 per assignment. A four-tier bonus payment429

algorithm was also written into logic. We did not implement this logic in430

our initial trial, in order to first assess whether the base rate would allow431

workers to achieve our target wage of $8-10 hour−1, but we evaluated the432

cost implications of bonus payments set to $0.01, $0.02, $0.03, and $0.05 for433

worker quality scores exceeding 0.85, 0.95, 0.975, or 0.99, respectively.434
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4.2. Trial results435

The Mapping Africa trial ran on Mechanical Turk for 26.4 hours between436

October 2-3, 2013, resulting in 945 mapping assignments, of which 882 were437

approved, 10 were rejected (due to failing accuracy scores), and 53 were not438

completed (i.e. returned or abandoned). A total of 707 N sites with 216439

(31%) containing worker-delineated polygons were mapped, as well as 185 Q440

sites, with 65 (35%) having fields (Fig. 5).441

These sites were mapped by 15 different workers, from a pool of 18 who442

passed the initial qualification test. A further 18 took the qualification test443

but failed to pass. The distribution of mapping effort was highly skewed,444

with three workers completing 65% of the total assignments (Fig. 6A). The445

average Q:N assignment ratio for each worker was 18%, but there was high446

variability among workers who completed less than 50 assignments (Fig. 6A).447

The mean accuracy assessed across all Q sites (using Eq. 1 with Eq. 4) was448

0.91 (out of 1), but Q sites containing fields were mapped with lower overall449

accuracy (0.79) than sites without fields (0.97; Fig. 6B). Using just the inside450

component of the score (Equation 4), accuracy was higher for sites with451

fields (0.89 with fields versus 0.99 without). To understand these accuracy452

discrepancies more fully, the number of polygon vertices in the reference453

polygons can be used as proxy for cropland complexity, and thus assignment454

difficulty. Worker accuracy declined significantly, albeit weakly (p<0.048),455

in relation to this complexity (Fig. 6C). Worker effort also declined strongly456

as a function of map complexity (Fig. 6D); the more fields there were to457

map—or the more intricate their boundaries—the fewer vertices placed by458

workers, presumably to minimize mapping time. This reduction in effort may459

partially explain the increased error.460

Replacing Equation 4 with Equation 5 (the True Skill Statistic; TSS),461

which corrects for class prevalance (Allouche et al., 2006), to calculate map462

score (Eq. 1) removed the significant negative relationship between map463

score and complexity (F-statistic: 0.98; p<0.32). At sites with only a few464

fields, which are both less complex and typically having a much higher share465

of non-cropped than cropped area, Eq. 4 was more lenient than at more466

complex sites, because the worker received proportionally more credit for467

“mapping” the uncropped space. This tendency is seen in Fig. 6E, which468

shows that map scores calculated using Equation 4 were generally higher469

than those assessed using Equation 5; for sites with fields, scores were on470

average 0.1 higher, and up to 0.14 greater where fields were relatively simple471
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N no fields

N with fields

Q no fields

Q with fields

Prob 1

Prob 2

Prob 3

Prob 4

Figure 5: A map of DIYlandcover trial results over South Africa, showing the distribution
of mapped sites, color-coded according to their assignment type (Q or N) and whether they
contained worker-mapped crop field boundary polygons. The grey shading indicates the
four-category weighting derived from a logistic regression model of cropland occurrence.

(i.e. where truth maps had <25-50 vertices, indicating both low complexity472

and small areas).473

Accuracy appears to improve with experience, as workers’ average accu-474

racy scores increased in proportion to the number of Q assignments com-475

pleted. Accuracy gains increased rapidly below 20-25 completed Q assign-476

ments, after which they leveled out between 0.9 and 1 (Fig. 6F).477
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Figure 6: Results from initial DIYlandcover trial, including A) the total number of com-
pleted assignments per worker versus the ratio of Q to N type assignments (values in grey
next to points represent the percent of total assignments); B) the distribution of accu-
racy scores segregated by assignment type (black bars = Q type, grey bars = N type);
the number of vertices in reference map polygons versus C) accuracy score, D) the differ-
ence between the number of vertices in workers’ and reference map polygons, and E) the
difference between accuracy scores calculated using Equation 4 or Equation 5 (the True
Skill Statistic); F) the number of Q assignments completed by each worker versus worker
mean accuracy score. Significance of regression fits in C, D, F are: ∗p<0.05; ∗∗p<0.01;
∗∗∗p<0.001. C and D are linear models, F is asymptotic regression.
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We paid $132.30 to workers for the 882 approved assignments, with a478

total cost to the project of $145.53 after accounting for Amazon.com’s 10%479

Requester surcharge. Of this, $28.88 was paid for the 175 approved Q as-480

signments and $116.66 for the 707 N assignments. Our post-hoc application481

of the bonus algorithm, which requires workers to complete at least five Q482

assignments (8 of 15 met this requirement), would have added $21.89 (15%)483

to the trial’s cost.484

To examine the effective worker wage (i.e. the amount the worker would485

expect at these rates assuming constant, uninterrupted work), we divided486

total pay by the mean assignment duration, calculated as the difference be-487

tween assignment acceptance and completion times. Since workers could488

accept assignments without immediately completing them (maximum assign-489

ment duration was 24 hours), we could not precisely measure mapping time.490

However, our experience suggests that the most complicated sites require491

<30 minutes of mapping effort, thus we excluded any assignments taking492

longer than this. The resulting average effective wage was $10.80 hr−1 across493

all sites, but just $3.26 hr−1 for sites having fields compared to $13.40 hr−1
494

for sites without fields. Factoring in bonus payments, these would have been495

$11.65 overall and $3.55 and $14.53 for sites with and without fields (Table496

2).497

The flat rate cost to map a single square kilometer was $0.165, including498

the cost of accuracy assessment and Amazon.com’s fees, or $0.19 had we499

included bonus payments.500

4.3. Estimating the costs of scaling up501

We used the time and cost results from the trial to estimate the potential502

costs of mapping larger regions, in terms of worker payments and total map-503

ping time, using two different payment models. One models used fixed base504

rates (as in our trial), the other variable rates linked to potential mapping505

effort, and in each case we tested two different levels of payments: for the506

fixed case we used rates of $0.15 and $0.052; for the variable rate, payments507

rates were set using the following formula:508

2Estimated as the approximate difference between US and South African
minimum wages, http://businesstech.co.za/news/international/87614/minimum-wage-in-
south-africa-vs-the-world/
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R = $0.01 + (
n∑

w=1

−1)I (7)

Where R is the rate, w is a categorical weight derived from a map of509

cropland probability, and I is an increment, set here to $0.07 and $0.023 for510

the higher and lower pay models, respectively (see Appendix S3 for meth-511

ods). For the cropland weights, we converted the GeoWiki 1 km2 cropland512

percentage map (Fritz et al., 2015) into a 10 category map (where 1 = 0-10%513

cropland and 10 = 90-100% cropland). This map provided a more finely514

resolved set of weights than our four category map, and covered the entire515

continent. Since cropland percentages correlate positively with field area516

and number (albeit with area), these weights also provided a proxy mea-517

sure for likely mapping effort. We confirmed this assumption by extracting518

the new weights corresponding to the areas mapped, and used them in a519

least squares regression to model workers’ observed mapping times (R2=0.1,520

p<0.0001; Appendix S3). The map weights were extracted into a reordered521

vector using DIYlandcover’s weighted random sampling protocol (see 3.1),522

and then used with Equation 7 to assign payments for each site. We added523

the trial mean bonus rate ($0.023) onto these payments (and to the fixed pay524

rates), then calculated the cumulative cost for mapping all 29,924,000 km2
525

of Africa for each pay model, multiplied by 1.4 to represent 1) an additional526

10% of mapping effort for quality assessment, and 2) administrative costs of527

30%.528

To estimate the total time required to map the continent, we used the529

predicted mapping times resulting from the regression model. The model was530

run 1000 times on random subsets of the data to obtain prediction uncertain-531

ties for each weight level, from which the mean, 2.5th, and 97.5th percentile532

values were extracted. These predicted time values were assigned to their cor-533

responding weights in the reordered weights vector, from which mean, upper,534

and lower estimates of cumulative mapping hours were calculated (Appendix535

S3). We then created three hypothetical models of worker involvement, in536

which either 100, 250, or 500 workers, each mapping one hour per day, under-537

took the work, and used the resulting daily total mapping hours to convert538

the cumulative mapping time into estimates of how long it would take to539

map the entire continent (in years).540

The cost model results show that variable pay rates would be considerably541

more efficient than fixed rate methods (Figure 7, left panel). At the trial pay542
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rates, it would cost $7.23 million to map the entire continent, whereas it543

would cost just $3.47 million using a variable pay rate, which is not much544

higher than $3.04 million that would be required if pay was at the lower545

fixed rate. Applying the cheaper variable rate scheme, the cost would be546

just $2.07 million to map all of Africa. Applying these alternate payments547

rates for the sites mapped during the trial reveals that variable rates would548

produce overall effective wages comparable to fixed rates, while paying nearly549

50% higher, on average, for mapping sites with fields (Table 3).550

Total mapping time estimates vary widely according to the number of551

workers involved, ranging from more than 19 years to map the whole con-552

tinent with just 100 workers involved (i.e. 100 mapping hours per day) at553

the upper confidence limits of mapping time, to 1.2 - 3.8 years (mean = 1.9554

years) if 500 workers map.555
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Figure 7: Several estimates of the cumulative cost (left) and time (right) of using DIYland-
cover to map cropland throughout Africa. Cost estimates are based on either fixed (solid
line) or variable (dashed line) rates, using higher (blue) and lower (green) cost models for
each case. The cumulative mapping time is calculated in years, based on three different
levels of worker involvement (100 [red], 250 [blue], and 100 [green] workers, each mapping
for 1 hour/day). Solid lines indicate regression-predicted means, dashed lines the upper
and lower confidence bounds for each model.

5. Discussion556

The initial trial demonstrates that DIYlandcover can be an effective plat-557

form for generating high quality maps of discrete landcover types. This qual-558

ity is attributable to humans’ superior ability to recognize objects in patterns559
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Table 2: Effective wages for workers (in $ hr−1) under two fixed and two variable payment
schemes, calculated as overall averages and for mapping sites with and without fields, and
including mean bonus rates.

Payment method Overall With fields Without fields
Fixed high 11.65 3.55 14.53

Variable high 10.16 5.19 12.16
Fixed low 4.44 1.38 5.59

Variable low 4.43 2.07 5.39

in noisy backgrounds, and is the reason why expert image interpretation is560

a key component of training and assessing existing landcover mapping al-561

gorithms (e.g. Fritz et al., 2011, 2012; Hansen et al., 2013). Here we found562

that workers with less than 24 hours of mapping experience were able to map563

cropland with 91% accuracy. Although accuracy and mapping precision de-564

creased when sites contained crop fields, and in proportion to the complexity565

of those fields (Fig. 6), the overall accuracy was higher than the latest gen-566

eration landcover dataset of comparable resolution (82%; Fritz et al., 2015),567

and was close to that achieved by GTI’s trained workers. Compared to GTI’s568

performance at sites with fields, using the most comparable accuracy met-569

ric (Equation 4), DIYlandcover showed similar performance–even though the570

score was 6% lower than GTI’s 95% (see Appendix S1)–because GTI mapped571

using a more inclusive set of rules, thereby reducing error rates, and DIY-572

landcover’s accuracy algorithms are more precise than the one used to assess573

GTI performance (see Fig. 6B and Appendix S1). The positive relationship574

we see between worker experience and score (Fig. 6F) also suggests that575

DIYlandcover’s accuracy improves with time, and we expect that the im-576

plementation of bonus payments for performance will also improve mapping577

skill. These latter two points will need to be evaluated after a lengthier period578

of production, as does the affect of the different accuracy component weights579

(Eq. 1) in terms of influencing worker–and thus system–performance.580

The trial also suggested that DIYlandcover has the potential to generate581

map data relatively rapidly, given an adequate number of workers (Figure 7).582

With 500 workers each contributing one hour of work per day, we estimate583

that all of Africa could potentially be mapped in approximately 1.9 years,584

which is roughly six month faster than the time needed to create GTI’s map585

for South Africa. It is not unreasonable to think that this level of worker in-586

volvement is feasible on a for-pay crowdsourcing platform, particularly given587
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the payment rates we applied, which were substantially greater than the $2588

hr−1 received by Mechanical Turk workers (Marvit, 2014).589

Our cost assessment (Fig. 7) indicates that linking pay to cover occur-590

rence probabilities–and site selection to a finer gradation of weights–could591

greatly reduce the overall costs of “wall-to-wall” mapping, while maintaining592

fair worker wages. Although $3 million is a significant amount of money, we593

argue that it would be a fairly cheap price to pay for a vector-based map of594

individual crop fields covering all of Africa. The overall mapping costs could595

be reduced to $2 million if payments are made at the lower rates we assessed.596

We do not advise this approach when running the software on MT, as the597

worker base is primarily in the US given Amazon’s fairly strict payment598

rules3, and because there is growing concern about the exploitative nature of599

crowdsourcing (Marvit, 2014). However, it may be possible to pay fairly at600

lower rates if DIYlandcover is ported to job sites where workers can access601

it from countries with lower prevailing wages. For instance, in our example,602

had we been able to enlist workers in South Africa, where the exchange rate603

favors the dollar, we could have paid less and had mapping undertaken by604

workers who were familiar with those landscapes.605

Other costs related to system development time could also be reduced,606

particularly with respect to generating reference maps. Our trial reference607

maps took several weeks to digitize, and were based on the judgement of a few608

people. A third type of mapping HIT, one that allows repeated mapping by609

multiple workers, would help mitigate these problems of cost and subjectivity.610

The resulting maps could be combined to create a more robust “truth” based611

on between-worker agreement, as illustrated by the combined maps from the612

eight qualification sites used in the trial (Fig. 7). This approach could greatly613

minimize the time required to develop reference data, and we suspect that the614

consensus maps of many workers (which could be weighted based on worker615

quality scores) will be more accurate than those of one or two experts (the last616

assumption must be verified against field-collected boundary data). Another617

advantage of this approach, which will be incorporated in the next update618

of DIYlandcover, is that the quality assessment protocol would essentially619

become a form of peer review.620

Of course, the costs and necessary mapping time assessed here may still be621

too much for many users who need spatially comprehensive, large area land-622

3www.mturk.com/mturk/help?helpPage=worker
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Figure 8: The eight sites used in the South Africa trial qualification test. Columns 1 and
3 show the unmapped imagery; columns 2 and 4 display the combined maps of all 19
trainees. Map colors indicate the fraction of trainee maps that overlap.
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cover maps. To reduce costs, DIYlandcover could be ported to a server that623

supports voluntary crowdsourcing efforts, similar to the Geo-Wiki project624

(Fritz et al., 2012), but this would not address the problem of longer map-625

ping times. An alternative, more advanced, application would be to use626

DIYlandcover to train and test newer computer vision approaches for map-627

ping noisy landcover types, such as smallholder crop fields (e.g. Debats et al.,628

2015). In this case, DIYlandcover would work iteratively with the algorithm629

until an acceptable level of accuracy is achieved, with site selection weighted630

towards areas of greatest classification error after each step. This approach631

could strike the best balance between cost, mapping speed, and accuracy, as632

it would harness the complementary strengths of human (more effective at633

recognizing patterns in noisy RGB or black and white images) and computer634

image classifiers (able to extract patterns in high dimensional data, such as635

multispectral imagery, which are hard for humans to interpret). An alterna-636

tive possibility for this use case—where DIYlandcover validates broader-scale637

methods—would be test and refine the judgement-based size class estimates638

created under the Geo-Wiki project (Fritz et al., 2015). DIYlandcover is639

highly complementary to this methodology, given its emphasis on precisely640

measuring landcover geometries.641

Beyond the questions of accuracy, cost, and time, the geometric de-642

tail captured by vector boundaries is a key data dimension that is lacking643

from current landcover products, and difficult to obtain from automated ap-644

proaches. It is this capability to map individual features that may appeal to645

the broadest range of potential users, as geometry data provide information646

on a number of important social, economic, and environmental processes. For647

instance, crop field sizes can be effective predictors of agricultural economic648

metrics, and as such development-oriented agencies may be significantly in-649

terested in using this tool to generate these data (Fritz et al., 2015). Al-650

ternatively, conservationists wanting to identify habitat fragments to protect651

may be interested in more precise boundary data, as patch geometry cor-652

relate with extinction (Laurance et al., 2011) and thus conservation values.653

Other potential uses include mapping buildings, burn scars, water holes, and654

termite mounds, to name a few.655
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