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In the last decade a number of algorithms and associated software were developed to
align next generation sequencing (NGS) reads to relevant reference genomes. The results
of these programs may vary significantly, especially when the NGS reads are contain
mutations not found in the reference genome. Yet there is no standard way to compare
these programs and assess their biological relevance. We propose a benchmark to assess
accuracy of the short reads mapping based on the pre-computed global alignment of
closely related genome sequences. In this paper we outline the method and also present a
short report of an experiment performed on five popular alignment tools .
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Abstract9

In the last decade a number of algorithms and associated software have been10

developed to align next generation sequencing (NGS) reads with relevant11

reference genomes. The accuracy of these programs may vary significantly,12

especially when the NGS reads are quite different from the available reference13

genome. We propose a benchmark to assess accuracy of short reads mapping14

based on the pre-computed global alignment of related genome sequences.15

In this paper we propose a benchmark to assess accuracy of the short
reads mapping based on the pre-computed global alignment of closely related
genome sequences. We outline the method and also present a short report
of an experiment performed on five popular alignment tools based on the
pairwise alignments of Escherichia coli O6 CFT073 genome with genomes
of seven other bacteria.

Keywords: Benchmark, NGS, alignment, short reads, BLAST, SOAP,16

Bowtie, bwa, SHRiMP17

Introduction18

Next Generation Sequencing (NGS) technologies provide fast and cost-19

effective alternatives to the established Sanger sequencing, and powers im-20

pressive scientific achievements and development of novel biological applica-21

tions in medicine, ecology, forensics, epidemiology and other fields of science22

[26, 27]. High throughput NGS technology comes with challenges in man-23

aging large datasets and the “big data” questions in biology. Open access24

publications and public domain data liberation, made way for development25
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of a plethora of tools for analysis of these datasets. With hourly paid cloud-26

based computing services being increasingly available, researchers are now27

in need of a benchmark method to select the perfect tool, that is fit for28

purpose. Our endeavor is to establish a benchmark method for short read29

aligning tools.30

31

De novo assembly of long sequence reads from Sanger-based sequencing32

process produces reliable genomic sequences [24]. Sanger sequence reads are33

typically 650 to 850 bases long while the NGS methods produce much shorter34

reads that are 50-450 bases long. The reads are assembled to chromosomes35

using well established algorithms, such as Celera Assembler[20], Arachne [2],36

Atlas, CAP3 [14], Euler [23], PCAP[15], Phrap [10, 11], RePS [30], Phusion37

[19]. Most of the assemblers follow the “overlap-layout-consensus” algorith-38

mic strategy [22] or are based on a de Bruijn graph[6]. Usually, the “overlap”39

portion of the assembly process is the most computationally intensive. Us-40

ing NGS reads for assembling whole genomes significantly reduces the costs41

of genome sequencing.42

43

However, most of the existing sequence assembly programs are not suit-44

able for short sequence reads generated by NGS methods [21]. This is partly45

because, the information contained in a short read is not sufficient to find46

a position of a read in a genome [32]. Moreover, the number of NGS reads47

is several orders of magnitude larger than the Sanger sequencing reads. For48

a novel or little-explored genomes, this can prove very difficult. Therefore,49

different algorithmic strategies more suitable for the short reads assembly50

have been developed. Usage of two sets of restriction enzymes creates over-51

lapping libraries and reduces errors. It is also possible to use long and short52

reads together to take advantage of the low cost of NGS sequencing and53

computational unambiguity of long reads [31, 28, 7]. Finally, there is an54

“alignment-layout-consensus” approach that uses a reference genome. One55

of the implementations of this strategy is AMOS Comparative Assembler56

[24].57

58

When a reference genome is used to guide a sequence assembly, the59

quality of the resulting assembly depends on the specific algorithm used,60

on frequency of repeats in the pair of genomes, and evolutionary distance61

between them. In addition, insertions in the target genome cannot be assem-62

bled using the “alignment-layout-consensus” approach and presence of re-63

arrangements will negatively affect the quality of assembled contigs [24]. It64

has been demonstrated [24] that the “alignment-layout-consensus” approach65
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works well for a pair of strains of the same bacteria (92-94% coverage of the66

target genome), but fails for more distinct sequences (11.4% coverage of the67

target genome using more diverse organisms such as Streptococcus agalactiae68

vs. Streptococcus pyogenes). S. pyogenes is a human pathogen, exclusively69

adapted to the human host, and S. agalactiae is one of the principal causes70

of bovine Streptococcal mastitis [18]. An array of computationally efficient71

tools for mapping of short reads onto reference genomes, such as SOAP,72

Bowtie, SHRiMP and BWA, has been developed. Well-established sequence73

alignment tools like BLAST [1] can also handle short reads alignment.74

75

It is important to determine the limits of applicability of the reference-76

based alignment method depending on the divergence between the reference77

and target species. In this paper we chose a simulation approach using global78

whole genome alignments as gold standards. Simulation enables us to gen-79

erate “NGS reads” of arbitrary length without investing in sequencing, map80

them to a reference genome and assess the correctness of a mapped position.81

To estimate error rate of these programs we propose a benchmark, which82

uses the large-scale alignment between syntenic regions of genome sequences83

as the true alignment. The aligned fragments of the whole genome alignment84

were cut into short sequence ‘reads and the ability of different programs to85

reproduce the true alignment using these reads was tested. This proposed86

benchmark is a convenient way to select programs that are most suitable87

for the reference-based genome assembly. It gives clear, realistic and robust88

estimates of the accuracy of the alignment programs. The benchmark also89

defines the limits of sequence similarities for selecting a reference genome.90

91

In this paper, we compare performance of the five popular freely avail-92

able alignment programs using whole-genome alignment between between93

several strains of model bacteria Escherichia coli and between strains of E.94

coli and several species of Salmonella. We focused our analysis on bacterial95

species for a number of reasons. They have manageable size genomes, vari-96

ety of nucleotide composition, and alignment of bacterial reads to genomes is97

essential for environmental and clinical applications, annotation of variants,98

determination of toxicity, drug resistance and pathogenicity of the analyzed99

strain [3],[29].100

101
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Proposed Methods102

We propose the following procedures to institute the benchmark method.103

To evaluate the effectiveness of an alignmener, we propose to compare the104

alignments done by the tool with a gold standard alignment from other105

independent sources. Researchers at various laboratories have invested sig-106

nificant efforts in obtaining a consensus global alignment among several107

model species. We intend to make use of these alignments to achieve a sin-108

gle benchmark score for a given tool.109

110

Our procedure starts by extracting the reference genome and query111

genome from a peer reviewed global alignment. We call this the “Gold112

Standard Alignment (GSA)”. We split the query sequence into short reads113

of pre-defined lengths. The rationale is that a “perfect” tool per se, will114

be able to align these small sequence fragments to their accurate alignment115

positions within the reference genome, replicating the results of GSA. The116

precision rate close to one will present a “near perfect” tool [25].117

118

Different alignment tools present alignments in different formats. Our119

procedure does not rank the tools based on the developer’s claim of accuracy.120

For example, the E-value reported by the BLAST tool is not used in the121

result of our scoring. We collect an information set, R from the alignment122

results containing: (i) read id (r(n)), (ii) reference sequence identifier (ref),123

(iii) start position of the read (stp). This information is then compared with124

their counterparts from the GSA.125

126

To evaluate the quality of mapping of reads to the reference genome, we127

used a scoring method formed of True Positives (TP), False Positive (FP),128

False Negative (FN). When a short read or fragment is mapped exactly to129

the same position on the reference genome as defined by GSA, we award one130

point towards TP. If a fragment is mapped to a different position than the131

one defined by the global alignment, a penalty is awarded to FP. However, if132

the candidate tool failed to align a fragment to the correct location as GSA,133

then a penalty point is awarded to FN. To conclude benchmark of each can-134

didate tool, we use Rijsbergen’s F1 score as a measure of test accuracy [25].135

136

We used true positive rate (r) and positive predictive rate (p), to com-137

pute the F1 score. Sensitivity or True Positive rate, also called “Recall”, is138

computed by dividing of the total number of correct results by the number139

of alignments that were expected: r = TP/(TP + FN).140

4
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141

Positive Predictive Value (“Precision”)is computed by dividing of the142

total number of correct alignments by total number of alignments detected143

by the tool: p = TP/(TP + FP ).144

145

The F1 score is computed from Precision and Recall, and it ranges from146

zero to one:147

F1 = 2× ((p× r)/(p+ r)).148

149

Algorithm 1: Benchmarking of a list of NGS Short Reads Aligner

Data: GSA: Gold Standard Alignment between two sequences
Model, M: Reference genome of GSA
Query, Q: Query genome of GSA
Tools, T: List of the candidate tools

Initialization;
Data Preparation: Simulate short reads, q(n) ⊂ Q of variant

bp lengths n ⊂ {50, 100, 150, 400};
foreach t ⊂ T do

foreach q(n) do
Align the reads to the model genome;

From new alignment results generate R← {q(n), ref, stp} :
Compare R with GSA and produce a set S ← {TP, FP, FN}
where

True Positive Rate, r ← TP
TP+FN ;

Positive Predictive Value, ρ← TP
TP+FP ;

Rijsbergen’s accuracy measurement score, F1 = 2 ∗ ρ∗r
ρ+r

end

end
Result: Benchmark Score, F1

5

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1007v1 | CC-BY 4.0 Open Access | rec: 25 Apr 2015, publ: 25 Apr 2015

P
re
P
rin

ts



Table 1: List of paired strains and their whole genome alignment statistics

Genome Accession Identity Al. Length

S. enterica Typhi Ty2 NC 004631.1 56.58 29480
S. enterica Typhi CT18 NC 003198.1 54.43 29159
S. typhimurium LT2 NC 003197.1 58.02 29025

S. enterica Paratyphi-A SARB42 NC 006511.1 52.91 32221
E. coli O157:H7 EDL933 NC 002655.2 76.38 34335

E. coli K12 NC 000913.2 79.48 38457
E. coli Sakai O157:H7 NC 002695.1 77.46 34316

Implementation150

We designed the computational experiment using model species Es-151

cherichia sp. and Salmonella sp. For our test cases we used the pre-152

computed global alignments of the following pairs of bacterial strains done153

by the VISTA consortium of Lawrence Berkeley National Laboratory and154

Joint Genome Institute [12, 9].155

156

We used seven pairs of alignments between Escherichia coli O6 CFT073157

and seven other strains of Escherichia and Salmonella. Table 1 contains158

a list of paired strains together with whole genome alignment statistics.159

Average percent identity is calculated as the number of identical nucleotides160

divided by the alignment length. Average alignment length is computed161

from all fragments in the corresponding whole-genome alignment.162

GSA Selection Justification163

We chose VISTA global alignments the GSA, since this technique gen-164

erates long continuous DNA fragments of orthologous genomic intervals.165

VISTA uses a combination of global and local alignment methods consisting166

of three steps; (a) obtaining a map of large blocks of conserved synteny be-167

tween the two species by applying Shuffle-LAGAN glocal chaining algorithm168

[5] to local alignments by translated BLAT [16]; (b) using Supermap [8], the169

fully symmetric whole-genome extension to the Shuffle-LAGAN [4], and (c)170

applying Shuffle-LAGAN the second time on each syntenic block to obtain171

a more fine-grained map of small-scale rearrangements.172

Short Reads Simulation173

As proposed in the method, to maintain consistency we used Escherichia174

coli O6 CFT073 genome as a reference genome. We used the second genome175

6
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Table 2: List of alignment tools used

Tool Name Version Used

BLAST+: NCBI Basic Local Alignment Search Tool 2.2.26
Bowtie 2: Bowtie Short Read Aligner 2.1.0

SHRiMP: SHort Read Mapping Package 2.2.3
SOAP2: Short Oligonucleotide Analysis Package 2.2.1

BWA: Burrows-Wheeler Aligner 0.7.0

from each pairings as the query genome. Using a simple R program, we176

simulated short reads of lengths of n bp where n=50, 100, 150, 400 from the177

reads. Each nucleotide was used as a start point of a new read as long as178

they ended with a read of expected length (n bp).179

Selection of Candidate Tools180

There is a large number of alignment tools available in the public domain.181

We intend to use most (if not all) of the tools to produce a comprehensive182

benchmark database. However, for this case study we used only a subset of183

the most popular alignment tools. Table 2 presents a list of the tools and184

their versions that were used. To maintain consistency, we did not use the185

latest versions of all the tools and rather dependent on the stable releases186

of the tools from a contemporary release time.187

All of the tools were used as-is and without modification. Default pa-188

rameters were used and the user guides were consulted only to install and189

run examples as recommended by developers.190

7
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Results and Discussion191

The aim of the experiment was to examine how the tools perform with192

reads of varying lengths. Very short reads of 50 base pairs and relatively193

longer reads 400 base pairs were of special interest. We used the evolutional194

tree as a biological reference to observe accuracy of the benchmark. We195

expect that, if the genomes are identical, all five candidate programs should196

provide close alignments with high precision, yielding in F1 scores close to197

1. Likewise, the tools are expected to yield a lower F1 scores for alignments198

performed between more distant organisms.199

200

Our experiment demonstrated limits of sequence similarity for differ-201

ent programs. As expected, for alignments between various strains of same202

species (E. coli), all programs performed reasonably well, with the excep-203

tion of SOAP2. For shorter reads of 50bp and 100bp, all five candidate204

tools demonstrated good F1 scores. However, as the reads lengths started205

to increase, at 150bp and 400bp, SOAP and BWA did not stay in-par with206

BLAST+ and SHRiMP.207

208

For closely related genomes, BLAST+’s performance matched its repu-209

tation, however, for distant genomes, the performance was rather poor. For210

alignments between Salmonella ep. and E. coli, for reasonably shorter reads211

(50-100bp), BLAST+ was outperformed by SHRiMP. As the read lengths212

increased, BLAST+ showed a recovering trend.213

214

In our experiment, Bowtie started with a below-par accuracy score for215

short reads, and with the increase of reads lengths, the accuracy continued216

to decrease.217

218

For more distant species, SHRiMP performs significantly better. In al-219

most all cases, SOAP showed the worst performance. Poor performance of220

SOAP can be explained by the fact that mapping of the reads in SOAP221

is mismatch-dependent. In an earlier study [13] it was observed that the222

suboptimal hits reduce from 21% to 1%, when mismatch rate was changed223

from 2 to 6 mismatches invoking the different behavior of the tool, which224

partially depends on the mismatch. More recently, it was demonstrated that225

SOAP has a lower read mapping accuracy in meta-genome experiments and226

it shows significant differences in the coverage depth [17], which agrees with227

our demonstrated results.228
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Figure 1: F1 Score for different reads lengths.

CONCLUSIONS229

We developed and experimented a benchmark strategy to assess the cor-230

rectness of alignments produced by different tools. We tested our method231

on five tools and on a set of case study data. Our tested method proves232

our hypothesis about closely related genomes. If the genomes are identical,233

the tools perform well. If the genomes are distantly related by evolution234

such as E.coli and Salmonella, the tools perform differently. In our case,235

SHRiMP over-performs rest of the tools and SOAP performed reasonably236

bad. BLAST and Bowtie performed well after SHRiMP. BLAST showed237

consistent result as per our hypothesis. We conducted this experiment on238

a set of data to establish the benchmark method. We aim to extend our239

study for different species (i.e Homo sapiens vs Pan troglodytes) and adding240

a range of different tools for comparative analysis.241

Availability of Supporting Data242

The gold standard global alignments were collected from VISTA website243

available at :244

http://pipeline.lbl.gov/data/ecoli2/.245

246

Simulated reads and outputs of BLAST, Bowtie, SHRiMP and SOAP are247

accessible via http://cbio.uk/benchNGS/. UNIX executable of a program248

created using this algorithm is also available at the same link.249
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