Peer.

Physical Chemistry

Submitted 23 December 2019
Accepted 27 May 2020
Published 22 June 2020

Corresponding author
Prashanth Athri,
prashanthathri@gmail.com

Academic editor
Ho Leung Ng

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-pchem.9

© Copyright
2020 George et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Laplacian score and genetic algorithm
based automatic feature selection

for Markov State Models in adaptive
sampling based molecular dynamics

Anu George, Madhura Purnaprajna and Prashanth Athri

Department of Computer Science & Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa
Vidyapeetham, India

ABSTRACT

Adaptive sampling molecular dynamics based on Markov State Models use short
parallel MD simulations to accelerate simulations, and are proven to identify hidden
conformers. The accuracy of the predictions provided by it depends on the features
extracted from the simulated data that is used to construct it. The identification of the
most important features in the trajectories of the simulated system has a considerable
effect on the results.

Methods. In this study, we use a combination of Laplacian scoring and genetic
algorithms to obtain an optimized feature subset for the construction of the MSM.
The approach is validated on simulations of three protein folding complexes, and two
protein ligand binding complexes.

Results. Our experiments show that this approach produces better results when the
number of samples is significantly lesser than the number of features extracted. We also
observed that this method mitigates over fitting that occurs due to high dimensionality
of large biosystems with shorter simulation times.

Subjects Theoretical and Computational Chemistry, Biophysical Chemistry

Keywords Molecular Dynamics, Markov State Models, Laplacian scores, Computational
Chemistry, Accelerated Molecular Dynamics

INTRODUCTION

The study of biomolecular dynamics and interactions play a crucial role in understanding
cell functions, and development of novel drugs (e Vivo et al., 2016; Sledz ¢ Caflisch, 2018)
Molecular dynamics (MD) simulations have the unique capability to track conformational
changes, which in turn allows the establishment of target-specific and conformation-
specific drug discovery research (Lecina, Gilabert ¢ Guallar, 2017). The cost of bringing a
drug to the market is still estimated to be 2.6 billion dollars (USD) (DiMasi, Grabowski ¢
Hansen, 2016). Techniques like MD, and other computer-aided drug discovery (CADD)
tools, reduce the burden of exorbitant drug discovery and development costs to healthcare.
Various experimental methodologies such as NMR, fluorescence, X-ray crystallography and
high-throughput screening are routinely used in drug discovery and development. While
they are still the core to conducting drug discovery research, CADD tools can contribute to
making the process rationally driven, reduce trial and error costs and allow accurate high
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throughput explorations that are otherwise too expensive to conduct. CADD tools have
proven to complement experimental techniques by making the discovery process more
systematic and rational, and even opening up new search spaces previously unexplored.
The past decade has even seen CADD tools contribute to upstream discovery research that
resulted in full life cycle drug development programs, effectively translating research from
the bench to the bed-side (Leelananda ¢ Lindert, 2016).

MD is a low-throughput CADD technology that has vast applications (FHollingsworth
¢ Dror, 2018), and central to that is the ability of MDs to provide time-continuous
structural variation data of residues, co-factors, small molecules, etc., alongside the ability
to clearly understand the modalities of interaction with the biomolecule in question in 3D.
Experimental structures are rigid representations of the structure. MDs use Newtonian
physics, chemical property parametrizations (Alder ¢» Wainwright, 1957) to transform this
static information to dynamic trajectories, which in turn provide advanced analytic and
predictive capabilities to researchers. Many applications of MD simulations exist. For
example, studies that explore conformational changes (Flocco & Mowbray, 19955 Grant,
Gorfe & McCammon, 2010; Lindorff-Larsen et al., 2011; Schwantes, Shukla & Pande, 2016),
binding-unbinding (Fabritiis et al., 2008; Buch, Giorgino ¢ De Fabritiis, 20115 Kohlhoff
et al., 20145 Meyer et al., 2014), and others that influence fundamental drug design in
conjunction with experimental work (Martinez et al., 2003; Namboori et al, 20105 Mohan et
al., 2010y De Vivo et al., 20165 Childers ¢» Daggett, 2017). In this study, we explore the usage
of Laplacian scoring based enhanced feature selection that can be employed in adaptive
sampling MD. Below, we introduce each of the components briefly before we move to a
detailed Methods section.

MDs provide a time-continuous trajectory, which comprises movement of atoms
in microscopic, spatial and temporal detail. Frequencies of oscillation of atoms are
in the range of femtoseconds, which is a limitation when the biological process being
investigated require longer timescales. This is especially true in the context of all-atom
calculations of MD (Vanatta et al., 2015; Kohlhoff et al., 2014). In recent times, all-atom,
single, long simulations of few micro- to milliseconds are able to run on highly specialized
hardware (Shaw et al., 2014), and supercomputers (Stone et al., 2007; Dakka et al., 2018).
Microsecond range calculations are now possible even on workstations or server machines
via GPU computing (Salomon-Ferrer et al., 2013) at costs that are orders of magnitude
lower, as compared to specialized hardware or large compute clusters. However, the
timescales of biological processes for molecules with millions of atoms, such as RNA
Polymerase, are still out of reach (Da et al., 2016; Wang et al., 2018).

Apart from the above hardware-assisted acceleration, enhanced sampling techniques
such as Replica-Exchange (Sugita ¢ Okamoto, 19995 Zhang et al., 2016), Meta-
Dynamics (Zheng ¢ Pfaendtner, 2015), Transition path sampling (Bolhuis et al., 2002),
Adaptive sampling MD (Noé et al., 2009; Plattner & Noé, 2015; Pande, 2014), high-
throughput simulations (Buch et al., 2010; Harvey ¢ De Fabritiis, 2012) and other
methods (Laio ¢ Parrinello, 2002; Namboori et al, 2010; Vargiu et al., 2008; Tiwary &
van de Walle, 2016) have also proven to accelerate MD calculations. Adaptive sampling
MD initiates many short parallel simulations from different starting conformers of the
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biomolecule, and repeats this in sequential iterations. Each iteration of the set of simulations
that run in tandem, constitute an epoch. The starting structures in successive epochs
are determined based on the analysis of MSM constructed, which is in turn calculated
using features obtained from the previous epochs ( ). The final integrated
trajectory is an aggregation of many epochs. Adaptive sampling MD, based on Markov State
Models (MSM), is shown to explore under-sampled regions of the conformational space.
This allows it to effectively overcome energetic barriers, and eventually sample optimal
conformations ( ; ) through MSM analysis.
Identification of meta-stable states in the bio-dynamics and acceleration of simulation,
depends on the efficiency of the MSM constructed. It is characteristic of MSMs based on

optimal features to better identify hidden conformers ( ). At the end of all
the epochs, the MSM constructed is used to predict the characteristics of interactions. These
may include protein-ligand binding free energy ( ), transition rate between
different protein conformations with possible binding sites ( ), hidden
conformer states in protein folding ( ), etc.

Examples of statistical learning techniques include Laplacian eigenmaps, spectral
clustering, and Laplacian scores. In the context of applications to MD trajectory
analysis, they have been successfully used to select features that can identify hidden
conformers ( ). Also, Genetic algorithms (GAs), a class of meta-
heuristics, are a good fit to automate the selection of optimal set of features to construct
efficient MSMs ( ; ). In our study, we explore a
method for improving MSM efficiency, as measured by the established Generalized Matrix
Rayleigh Quotient (GMRQ) scoring system ( ), by combining both
Laplacian scoring (to provide a heuristic initialization) and GAs. As a result of this study,
we identify features using this technique with a goal to construct better MSMs, as quantified
by GMRQ scores. Various features can be used to discriminate between conformers, and
features we have collected are detailed later. Time-structure Independent Component
Analysis (TICA) ( ) is a dimensionality reduction method that is
used in the MSM construction. The use of lesser number of features as compared to data
samples, assures that the co-variance matrix used by TICA is a positive definite. This can be
achieved by feature selection. This in turn avoids redundancy, and ensures a more accurate
representation of the features by the TICA components. In summary, we propose the use of
Laplacian scores in conjunction with GA for feature selection to produce improved MSMs.
The goal of this study was to verify if the use of these two selection criteria, in conjunction,
can lead to an efficient MSM. We worked on the hypothesis that this would lead to a more
efficient selection of meta-stable states or hidden conformers for the next epoch of the
adaptive sampling MD, and result in the acceleration of the overall simulation since low
energy conformers are found rapidly.

Feature selection is an important step that avoids increased sampling and over-fitting.
Automatic feature selection is being widely researched to construct efficient MSMs (

; ). Feature selection techniques, towards better
MSMs, endeavor to select optimal sets of Collective Variables (CVs) (
), or in other words, those that identify the most important residues with respect to
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the slowest processes. If all features are used, it results in poor clustering performance,
which will adversely affect the MSM. Further, when the number of frames in simulation
data is less than the number of features, it results in poor generalization of the MSM
due to over-fitting (Dy ¢ Brodley, 2004). This will necessitate the need for increased
sampling at a higher computational cost (Malmstrom et al., 2014). However, the increased
sampling is in direct opposition to one of the primary goals of accelerating the single
long simulation through the use of short parallel simulations. Manual selection of CVs
based on prior information about the system and human intuition have also been used
to construct MSMs (Lovera et al., 20125 Ahalawat ¢ Mondal, 2018). Nonetheless, this can
lead to loss of information and very slow convergence in thermodynamic and kinetic
property calculations. The automatic feature selection methods of highly-discriminant
non-redundant features, like the one proposed in this study, provide a more generalized
model with reduced computational complexity (Garcia ¢ Garcia-Pedrajas, 2018).

In summary, and to highlight some of the principal points of the discussions above, in
our approach, the initial feature selection is performed by Laplacian scoring (/{e, Cai ¢
Niyogi, 20065 Sgourakis et al., 2011), and the model is optimized using a GA (Chen et al.,
2018) on this subset. The time-structure independent components (tiCs) in TICA is used
to identify the states in the system by grouping kinetically similar structures (Schwantes
& Pande, 2013; Pérez-Herndndez et al., 2013). During the MSM construction step, if the
number of features is larger than the number of samples in the dataset, the co-variance
matrix used for TICA is not guaranteed to be a positive definite. It means that some of the
features can be expressed as a linear combination of the other features. This emphasizes
the need for use of feature selection before dimensionality reduction to avoid over-fitting.
Hence, in this study we use Laplacian scoring to pre-rank and select the features based on its
importance. The ability of Laplacian score to identify only the significant features (Sgourakis
et al., 2011), avoids the need for large amount of simulation data and over-fitting of data in
the MSM constructed. Hence, these Laplacian scored feature subsets are used as a heuristic
initialization of the zeroth population in the GA. The GA further improves the MSM
efficiency, by adopting natural evolution strategies such as crossover and mutation (Clen
et al., 2018; Mittal & Shukla, 2017). It is important to note that our method only provides
an extra tool to perform effective GA-based searches for MSM based studies. We have
shown that this improves the results in specific datasets used in this work. It can be seen
as an adjunct tool that could be opportunistically used alongside previous techniques
mentioned above.

MATERIALS AND METHODS

We have applied Laplacian scores driven winnowing, and the subsequent, GA based feature
selection to improve the MSM models of the following complexes (previously studied,
further detailed in subsection ‘Datasets to evaluate the approach’) Villin (PDB ID:2F4K),
Fs Peptide (Ace-A_5(AAARA)_3A-NME), WW domain (PDB ID: 2F21), Piperidine-
Thrombin with Thrombin taken from PDB ID: 3D49 and Benzamidine-Trypsin (PDB
ID:3PTB). This work was carried out on the Intel vLab Knights Landing cluster that
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Workflow of our approach
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Figure 1 The proposed methodology for the identification of the optimal features.
Full-size Gl DOI: 10.7717/peerjpchem.9/fig-1

consists of 252 Intel Xeon-Phi nodes connected with Omni-Path (Intel OPA) 100 Series
interconnect and academic desktop with Intel Core i7-7500U @2.70 GHz with Nvidia
GPU GTX TITAN Black @889 GHz. An outline of MSMs (see Husic ¢ Pande, 2018) for a
detailed review of MSM), and the application of MSM in adaptive sampling MD follows.
We have inherited this part of the workflow from previous studies. Finally, we also provide
details about the additional components of our workflow.

Markov State Models (MSM)

MSMs are used to model randomly changing systems. They have been used to study
time-series events in which the current state depends only on the previous state and not on
any other states before it (Tang, Bevan ¢~ Grover, 2017). It has a wide variety of applications
in the field of physics, chemistry, medicine, finance, management etc. It has been used for
biological modelling such as the simulation of brain function (George & Hawkins, 2009),
viral infection of single cells (Gupta ¢ Rawlings, 2014), analysis of bacterial genome (Skewes
& Welch, 2013), as well as MD simulations using adaptive sampling techniques (Doerr et
al., 2016; Doerr ¢ De Fabritiis, 2014) etc.

Figure 1 represents the workflow adopted towards the application of MSM to analyze
MD trajectories of bio-molecules. The goal is to find meta-stable conformers, with a few
variations as explained below. Prediction accuracy of MSM, as indicative by GMRQ score,
can be improved by selecting optimal features from the simulation trajectory data.

MSM is represented by an Nx N matrix which gives information about the probability of
transition between N states (Singhal, Snow & Pande, 2004; Noé ¢ Fischer, 2008). In Fig. 2,
xij is the average of transition count matrix and its transpose. The probability of each row
in the average transition count matrix is calculated to obtain the MSM. From the MSM,
the eigen-flux is calculated. Eigen flux (-n1 for s4, n2 for s3, n3 for s2 and n4 for s1) of each
state shows the transition from source state to the sink state, and this is used to identify
the slowest process (Beauchamp et al., 2011). The N states in the MSM represents the state
decomposition into which the simulation data is clustered. The ideal MSM, or in other
words, the ideal state decomposition reveals even the slowest dynamical process. In this
specific use case, it is the conformational change occurring in the simulated system. The
probability with which transition to a state j occurs is calculated as

N
pit+1)=> pi(t)Ty(z) (1)
i=1
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Figure 2 1. Starting structure (frames f) of the bio-molecule used for parallel simulation. 2. 10 (ar-
bitrary number for illustration) parallel trajectories (t1 through t10) produced by MD software, such
as ACEMD, GROMACS,AMBER, etc. 3. The frames per structure, having reduced to 2 dimensions us-
ing TICA. 4. MSM constructed with each of the values in a cell of the matrix, x;;, where i is the source
state, and j is the destination state showing the probability of transition. from i to j. The figure has been
drawn based on Fig. 1 in Husic & Pande (2018).

Full-size Gl DOI: 10.7717/peerjpchem.9/fig-2

It can be generalized as

N
plt+1)=> p(1)T(r) (2)
i=1

where p;(t+ 1) is a population vector after time 7; 7 is lag time; p;(¢) is a population vector
at time t; Tj;(7) is the probability of transition from state i to state j; T'(7) is the probability
transition matrix that represents the MSM.

The eigenvalues }; and eigenfunctions ¥; of T(7) can decompose the transition
probability matrix (Shukla et al., 2015) as in Eq. (3). The eigenfunctions represents the
slowest processes that occurs in the simulated system.

T(t)®Yi= 1 (3)

Generalized Matrix Rayleigh Quotient (GMRQ) derived from the variational principle
of conformation dynamics (Noé ¢» Nuske, 2013) is a metric used to evaluate the efficiency
of the MSM (McGibbon ¢ Pande, 2015). MSMs with higher GMRQ scores provide higher
discriminatory abilities towards identifying the slowest dynamical process occurring in
the system (McGibbon ¢ Pande, 2015). Variational principle is used in the calculus of
variations, or changes to develop a function that maximizes the variables dependent on it.
Based on variational principle, the eigen values and eigen functions are estimated for the
MSM constructed using the simulated data. GMRQ score of the MSM is the sum of the
first p eigenvalues of T'(7). They also identify the slow processes, p. The upper boundary
for the GMRQ score is set by variational principle as shown below (Husic ¢ Pande, 2017,
Noé & Nuske, 2013):

p p
GMRQ = in < Z,\,- (4)
i=1

i=1
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where A;; A; are estimated and real i-th eigenvalues respectively. The efficiency of MSM is
improved by trying to reach the upper boundary set by the sum of real eigenvalues (1;).
MSMs with higher GMRQ scores are better able to identify the slowest conformational
change in the system (Noé ¢~ Nuske, 2013; McGibbon ¢ Pande, 2015).

Adaptive sampling MD based on MSM and Optimized feature
selection for MSM

We have used simulation trajectories that are produced by adaptive sampling MD, based
on the MSM. In this protocol, the first step in the construction of MSM involves the
extraction of feature, namely, dihedral angles, distance between amino-acid residues, root
mean square deviation (RMSD) from the raw Cartesian coordination, etc. This step is
called featurization. The selection of optimal features or collective variables have a critical
impact on the thermodynamic and kinetic property calculations predicted by the model,
and is explored in many studies (Sharmsi, Cheng & Shukla, 2018; Mittal & Shukla, 20175
Sultan et al., 2014). Consequently, using the optimal feature set for the construction of
MSM affects its prediction accuracy. Identification of the most critical dihedral or contact
features assist in identifying the optimum conformers. These conformers are then used
as starting structures for the next epoch of adaptive sampling in MSM based adaptive
sampling MD. Appropriate feature selection circumvents issues due to energy barriers
leading to convergence of thermodynamic properties (such as free energy of binding in the
case of protein-ligand binding simulation), or folding of the unfolded protein (Doerr ¢ De
Fabritiis, 2014).

Feature selection is an unsupervised machine learning task. One method of categorizing
them identifies three sub-classes, namely, filters (Devakumari ¢ Thangavel, 20105 Mitra,
Murthy & Pal, 2002; Tabakhi ¢ Moradi, 2015), wrappers (Dy ¢ Brodley, 2004; Dutta, Dutta
& Sil, 2014; Breaban ¢ Luchian, 2011), and hybrids (Solorio-Ferndndez, Carrasco-Ochoa ¢
Martinez-Trinidad, 20165 Li, Lu ¢ W, 2006). In filter methods, the importance of a
feature is studied based on the intrinsic properties of the data. They are not selected by
training on the model on which it is to be used. In wrapper-based methods, the features
are first used to train the model. Then their impact on the performance of the model
is evaluated. Filter methods are computationally less expensive than wrapper methods.
Hybrid methods combine the advantages of both filter and wrapper methods (Li et al.,
2008). In this method, the feature subset works best when the same model used for feature
selection is used subsequently (Solorio-Ferndndez, Carrasco-Ochoa ¢ Martinez-Trinidad,
2020). Laplacian-score based feature selection is a filter-based method. This method finds
the features that have the power to preserve the clusters in the data. Features that can
maintain the structure of the plotted nearest neighbor graph are selected.

Laplacian scores have been used to reveal hidden structures in the complex
conformational space of the intrinsically disordered peptide, AB(1-42) (Sgourakis et al.,
2011). Laplacian scores identified crucial interactions in these conformers, which provided
new drug design hypothesis that can, potentially, be used to discover drugs that inhibit
the oligomers and fibril formation critical to the progression of Alzheimer’s disease. In
this study, inspired by the success of the study mentioned above, the initial population
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of a GA’s chromosomes have genes pre-filtered through Laplacian scores-based ordering.
In bio-molecules, conformational changes happen in localized regions (Fan et al., 2015).
Laplacian score ranks the features based on its ability to preserve the local structure of the
graph constructed based on the k-nearest neighbor algorithm (/1e, Cai &> Niyogi, 2006).
Due to this property of the Laplacian score, it is used to identify a subset of the features.
The feature subset selection is further optimized through the GA.

Datasets to evaluate the approach

Molecular dynamics trajectories of five systems are used to validate our approach by
analyzing the kinetic and thermodynamic properties predicted by the MSMs. The
features selected were derived from the GA run, whose initial population was based

on our Laplacian score ranking scheme. The simulation dataset of the two protein-ligand
complexes are Piperidine-Thrombin Doerr et al. (2016) and Benzamidine-Trypsin Scherer
et al. (2015). The protein folding trajectories of Fs Peptide (Beauchamp et al., 2011), WW
domain (Lindorff-Larsen et al., 2011) (generously shared by D.E Shaw Research), and Villin
simulation Doerr et al. (2016) were also analyzed as a part of this study.

Our approach

Figure 1 provides a detailed view of the protocol we have implemented, while the principal
choices for each component of the workflow are shown in Table 1. The hyperparameters for
the protocol were chosen based on the published research, HTMD and Msmbuilder tutorial
(Chen et al., 2018; Doerr et al., 2016; Beauchamp et al., 2011). Scikit-learn (Pedregosa et al.,
2011) was used for feature preprocessing, and to calculate the Laplacian scores, IPython
(Pérez &» Granger, 2007) for the execution of the python scripts in the form of a pipeline.
MDTraj (McGibbon et al., 2015) was used to analyze the simulation trajectories, and HTMD
(Doerr et al., 2016) was used for the construction of free energy heatmaps, standard free
energy plots and cktest graphs for the MSMs. These graphs were constructed for selected
residues to implement our approach, and for all residues to re-implement previous work
(for comparison). MSMBuilder (Beauchamp et al., 2011) was used for MSM construction
and GMRQ scoring.

e Featurization: Featurization is performed to transform rotational and transitional
motion from the simulation data to a vector. Dihedral angles and distance between CA
atoms of amino-acid residues, from the Cartesian coordinates were extracted as features
from the simulation data (for the 5 bio-systems). Dihedral featurization comprises
backbone and side chain dihedral angles, along with sine and cosine of these angles
(Beauchamp et al., 2011). All of the above are calculated for each frame in the simulation
trajectory. In our approach, we used the sine and cosine of back bone dihedral angles
for dihedral features. It has been proved to be one of the important metrics that is able
to identify different conformers in an MD trajectory (Cossio, Laio ¢» Pietrucci, 2011).
Contact featurization calculates the distance between each pair of amino acid residue,
or the distance between the specified pair of residues for each frame (Beauchamp et
al., 2011). In this study, we implemented contact featurization as a vector of distances
between CA atom of each amino acid residue and ligand for the protein-ligand systems,
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Table 1 Attributes used in each stage of the proposed approach.

Featurization: Types

o Dihedrals- measured as phi and psi angles of respective
amino acid residues

o Contacts- measured as distance between CA atoms of
amino acid residues

Feature Selection Method

Genetic algorithm with initial population selected using
Laplacian scored features

Dimensionality Reduction Method
TICA algorithm with 4 components and lag time of 2 ns
Clustering Method
Mini-Batch K-means with 200 clusters
MSM Model- Hyperparameters
o N_timescales =5 Lag time (ns) = 50
e Scoring using GMRQ
Genetic Algorithm- Hyperparameters
o Crossover Probability = 0.8
e Mutation Probability = 0.2

and the distance between the CA atoms of amino acid residues for the protein-folding
simulation data.

e Laplacian scoring: An average, across all trajectories, of the Laplacian scores obtained
for each feature is calculated. The features were then sorted based on this average
Laplacian score (of each feature). This ordered list is used to build the initial population
for the GA. Laplacian Score (LS) is fundamentally based on Laplacian Figenmaps and
Locality Preserving Projection. The algorithm for calculating the Laplacians (He, Cai ¢
Niyogi, 2006) is given below. Let L, denote the Laplacian score of the rth feature. Let f,;
denote the ith sample of the rth feature; where i=1,...,m.

1. Construct a nearest neighbor graph—G with m nodes—. The ith node corresponds
to x;. We connect the edge between nodes i and j, if x; and x; are close, i.e., x; is
among k nearest neighbors of x;, or x;j is among k nearest neighbors of x;.

2. The weight matrix S of the graph, models the local structure of the data space.
(xix-)2
Sij=e 3 , when nodes i and j are connected, and S;; = 0 otherwise.
3. For the r'" feature, we define: f, =[f;1,fr2, ...,fm,]T,Dz diag(S1),1=11,..., 117, L=

DS where the matrix L is called graph Laplacian (Chung, 1997). Let

. £,ID1
fr=f="7r5 ! (5)
4. The Laplacian score of the r'" feature is:
7TL Fal
L= fr_T—fi (6)
7Dy,
e Genetic Algorithm (GA):

— Initial population - Features are shortlisted based on Laplacian score. To avoid
over-fitting or under-fitting, we use the thumb rule of selecting %th of the number

George et al. (2020), PeerJ Physical Chemistry, DOl 10.7717/peerj-pchem.9 9/24


https://peerj.com
http://dx.doi.org/10.7717/peerj-pchem.9

Peer

of samples ( ) as the target number of features. This subset is
then used as the initial population for GA. Under-fitting occurs when the number
of features that represent the model are significantly lesser than the number of data
points available. In MD centered protein systems, the number of features or the
dimensionality is high due to the nature of the problem, and thus probability of
under-fitting is negligible.

— Fitness calculation - The fitness of the feature subset is scored based on GMRQ score
of the respective MSM. Dimensionality reduction is performed using TICA (

). Dimensionality reduction produces a linear combination
of the features, and the top components (called time structure-based independent
components or tICs) capture the most prominent processes in the simulation. Further,
clustering of frames is performed using MiniBatchKmeans clustering (

). The MSM is constructed using the clusters identified and the transition
probability between these clusters. The number of clusters, lag time of TICA and
MSM, number of components used for TICA and n_timescales which represents
the timescale of the n slow processes is presented in Table 1. K-fold cross-validation
(K =5) is used to avoid over-fitting. The value of GMRQ score for the MSM is
calculated based on the k-fold cross validation.

— Selection - Selection of parents is performed for the production of off-springs for
the next generation. This is performed based on the fitness of the feature subset. This
helps in the selection of ideal traits, which in this case is the important CVs.

— Crossover - The crossover probability decides the number of parents taking part and,
in effect, the number of off-springs generated. We have used a single point crossover.

— Mutation - It is performed to increase the gene variations in each of the generations.
Single point mutation is carried out, in which a randomly selected gene is replaced
with the highest ranked feature based on its Laplacian score, which is not already
present in the chromosome.

— Repeat the above four steps for the specified number of generations

e MSM construction and GMRQ scoring: The MSM is constructed using the most
optimal CVs obtained after the GA. This is then compared with MSM constructed
using all the features in terms of the GMRQ score, and also compared using the implied
timescale. The methodology is summarized in the Fig. 1

Details on Bio-systems studied
Five systems were analyzed in this work (The original complexes have been uploaded in
figshare).

e Benzamidine-Trypsin ( ) : This work studies the binding of serine
protease beta-trypsin to inhibitor benzamidine. It comprises 10 microseconds of
simulation data, with component trajectories of 200 nanoseconds each.
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e Piperidine-Thrombin ( ) : Thrombin is a serine protease that acts in
the coagulation pathway to convert factor XI. The simulation dataset of Piperidine-
Thrombin comprises 810 trajectories of 200 nanoseconds each, resulting in a cumulative
simulation length of 162 microseconds.

e Fs Peptide ( ) : Fs peptide is a system widely used to study
intricacies of protein folding. The simulations were carried out using the AMBER99SB-
ILDN force field with OpenMM 6.0.1. The Fs peptide dataset includes 28 trajectories of
500 nanoseconds each, totalling to 14 microseconds of data.

e Villin( ) : Villin is an actin binding protein. The Villin dataset consists
of 1,374 trajectories of 100 nanoseconds each and total simulation data of length 137.4
microseconds.

e WW domain ( ) : WW domain is a protein domain that plays

an important role in the interaction between protein ligands. The WW-domain dataset
consists of 325 trajectories with a total of 1,137 microseconds.

RESULTS

The effectiveness of MSMs that use features selected through GA with Laplacian-based
initialization is compared to MSMs that used all features. The metrics used are GMRQ
scores, and the implied timescales obtained for the slowest process for the two different
sets of features. Recall that dihedrals and contacts are used to generate the feature set. The
features selected by our approach in systems where we saw an improvement MSM metrics
are shown in Fig. 3.

Among the important residues identified for Villin, are 47 and 69. These are two of the
most important hydrophobic residues that play an important role in the folding of Villin
( ). In the Benzamidine-Trypsin system, residues 79, 175, 180, 190 are
observed to play important roles in ligand-binding process (

) and calcium binding loop ( ). Indeed, these were also identified
as important residues using our workflow. This validates that the proposed approach is
able to identify residues important to the biological process being studied.

Comparison of GMRQ scores

In this section, we have compared the GMRQ scores of MSM models obtained when the
full set of dihedral angle-based features and the full set of features calculated using all
contacts are considered, against the ones where we use only selected features using our
approach. The summary of these results are shown in Table 2. For the Benzamidine-Trypsin
system, the model with select features has a higher GMRQ score of 3.21 and 2.59. The
GMRQ scores of MSMs constructed for Villin and Fs Peptide systems with reduced set
of dihedral and contact features are both higher by 19.15%, 19.95%, 17.44%, 11.25%
respectively, as compared to when constructed with all the features. This indicates that
the features identified by our method is able to capture the most important features
and reduce the noise by avoiding unwanted features in certain cases. However, in the
case of Piperidine-Thrombin and WW-domain systems, the GMRQ score of the MSM
constructed with reduced set of selected features is less than the score obtained with all the
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Figure 3 The most important features identified by our approach for three systems (A) Benzamidine -
Trypsin (B) Villin and (C) Fs Peptide.
Full-size Gal DOI: 10.7717/peerjpchem.9/fig-3

features selected. This may be due the fact that the interactions captured by the reduced
set of features is not enough to capture the slowest process that occurs in the respective
simulation data.

The Table 3 shows that our approach is able to mitigate model inaccuracies caused by the
over-fitting that occurs when the length of simulation (and hence, number of observations)
is relatively shorter, while the number of features are higher. The variance in the GMRQ
score for the model with selected residues is 5 to 10 times lesser than when all residues are
used for MSM construction. This shows that the MSM constructed using selected residues
is able to generalize better, and overcome over-fitting issues. The WW-domain is not
given in the Table 3 as simulation length of 1,137 microseconds is adequate, and hence,
over-fitting does not occur.

Some studies use the Chapman—Kolmogorov property (No¢ et al., 2009; Prinz et al.,
20115 Bowman, Pande ¢ Noé, 2013) as a measure of self-consistency of individual MSMs.
Nonetheless, since our goal was to find the optimum MSM that identifies the slowest
implied timescale, we have used GMRQ scores for the primary analysis. The analysis of
Chapman-Kolmogorov test is given for the three systems that produced better results (see
Table 2 for the ranking) through our approach is provided in form of figures in the (Figs.
S1 through S3).
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Table 2 Comparison between GMRQ score of different features and the efficiency of MSM improved
with feature selection using Laplacian score and GA.

System Feature GMRQ score (all) GMRQ score (selected

used as Benchmark with Laplacian

score and GA)
Benzamidine-Trypsin Dihedral 3.54 3.21
Contacts 1.87 2.59
Piperidine-Thrombin Dihedral 5.68 5.65
Contacts 5.25 5.09
Villin Dihedral 3.76 4.48
Contacts 3.71 4.45
WW-domain Dihedral 4.66 4.46
Contacts 5.29 5.23
Fs Peptide Dihedral 4.53 5.32
Contacts 4.8 5.34

Table 3 Compares the variance in the GMRQ score when all features are used and features selected
using Laplacian with GA is used. This shows that using selected features helps to avoid over-fitting.

System Variance in Variance in
GMRAQ score GMRAQ score
(all features) (selected with
Laplacian score
and GA)
Benzamidine-Trypsin 0.27 0.04
Piperidine-Thrombin 0.06 0.005
Villin 0.42 0.08
Fs Peptide 0.92 0.18

Standard free energy prediction

The free energy surface is indicative of the thermodynamic and kinetic properties of the

system. The free energy surface and the standard free energy plots of the meta-stable

states, identified as macro-states in MSMs, of the Villin system are given in Fig. 4. One

of the main advantages of an MSM is its ability to predict the thermodynamic and

kinetic properties of the system. The meta-stable states identified by the MSM model map

to different conformers of the bio-molecule in the simulation. These are identified as

different points on the free energy surface. The stable, lowest energy state is the bonded

state in protein-ligand binding simulation, and folded state in protein folding simulation.

For the sake of brevity, the same for the other two high scoring MSM models, namely,

Benzamidine-Trypsin system, Fs Peptide and Villin (dihedral features only) are given in

Figs. 54 to S6.

The free energy surfaces of the Villin system for full-set and selected of features are given

in Figs. 4A and 4C respectively. The standard free energy of each of the meta-stable states
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Figure 4 Free energy surface projected on the first two TICA dimensions and the corresponding stan-
dard free energy of meta-stable states of Villin for the MSM models. (A) Free energy surface of MSM
constructed with all contacts, (B) Standard free energy of meta-stable states plotted in (A), (C) Free energy
surface of MSM constructed with selected with selected contacts, (D) Standard free energy of meta-stable
states plotted in (C).
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identified in the corresponding free energy heat map are shown for full-set and selected
of features in Figs. 4A and 4D. Figure 4A shows four meta-stable states on the free energy
surface that was plotted using all the contact features. The standard free energy of each
of the meta-stable states identified in Fig. 4A) is shown in Fig. 4B). The lowest energy of
—2.29 kcal/mol, observed for the meta-stable state 2, is identified as the sink state by the
MSM model. Similarly, four meta-stable states are identified (Fig. 4C) for the MSM model
that used contact features between selected residues that were identified by our approach.
The standard free energy of each of the meta-stable states is plotted in Fig. 4D, and lowest
energy of —2.31 kcal/mol is observed for the meta-stable state 2, identified as the sink state

George et al. (2020), PeerJ Physical Chemistry, DOl 10.7717/peerj-pchem.9 14/24


https://peerj.com
https://doi.org/10.7717/peerjpchem.9/fig-4
http://dx.doi.org/10.7717/peerj-pchem.9

Peer

Table 4 Comparison of implied timescale between different features and the efficiency of MSM im-
proved with feature selection using Laplacian score and GA.

System Feature Implied timescale Implied timescale
in ns (all features) in ns (selected with Laplacian
Benchmark score and GA)
Benzamidine-Trypsin Dihedral 3,980.45 1,069.21
Contacts 5,571.51 14,082.11
Piperidine-Thrombin Dihedral 2,453.09 1,530.06
Contacts 5,017.45 4,055.23
Villin Dihedral 1003.65 1,725.33
Contacts 788.59 1,169.06
WW-domain Dihedral 7,934.28 7,101.21
Contacts 8,679.26 8,535.81
Fs Peptide Dihedral 1,515.48 2,034.63
Contacts 1,943.93 2,198.82

by the MSM model. The lower standard energy stable state (—2.31 kcal/mol) is identified
by the MSM model constructed using selected residues identified by our approach.

Implied timescale comparisons

Implied timescale values refer to the time taken by the slowest processes captured by MSMss.
Table 4 shows that the MSMs constructed using the selected dihedral and contact features
of Benzamidine-Trypsin, Villin and Fs Peptide are able to capture slowest processes. Since
our goal is to capture the slowest timescale that represents the folded or the protein-ligand
bonded state, the other four slower timescales is given in the Fig. 57, for the interested
reader. Five timescales are compared for systems with better MSMs as identified by our
approach, namely, Benzamidine-Trypsin, Fs Peptide and Villin.

The MSM constructed using the full-set of all the contacts with the ligand, in the
Piperidine-Thrombin system, is able to capture the slower process. Nonetheless, it can be
seen that, in this case, GMRQ score for the model from the reduced set is not significantly
higher against the one with the full-set of contact-based features.

DISCUSSION

Optimal feature selection to identify an optimal set of collective variables, in other words,
residues of the simulated bio-molecules, ensures that the co-variance matrix calculated
during dimensionality reduction phase is a positive definite matrix. Additionally, avoiding
over fitting, due to the lack of sampling data relative to a large number of features in
each frame of the samples is highly desirable. In this work, we show that enhanced feature
selection using Laplacian scoring addresses both these issues i.e., the requirement of
increased sampling and avoiding over fitting.

In the protein-ligand system, Benzamidine-Trypsin, the contact features between
selected residues (Fig. 3A) are able to identify the slowest processes correlated to the
binding of Benzamidine to Trypsin, better than when all the features are selected. This
may be because using all the contact features adds noise to the model when the MSM is
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constructed with all contacts. Results also show that contact features are relatively more
discriminant towards identifying the slowest processes, as compared to dihedral features.
This suggests that researchers should empirically check the set of features that best fit the
system in hand, when using Laplacian scoring. In this system, the number of features (for
example, 888 dihedrals) are very large as compared to the number of frames (200). Our
proposed methodology, allows the use of selected features for construction of efficient
MSM, and thus shows that this approach is useful when the size of the molecules are larger,
and have smaller length simulations.

In the protein folding systems used, when the amount of simulation data is more than the
number of dihedral and contact features extracted, the GMRQ score of MSM constructed
with all the features is higher than when using a reduced set of features selected by our
approach. The GMRQ score of MSM constructed for WW-domain with all features is
higher. Whereas, in the case of Villin and Fs Peptide, MSM with the reduced set of features
has higher GMRQ score, and is able to identify the slowest process.

CONCLUSIONS

Identification of CVs, that is feature selection, is one of the the critical steps in the
construction of MSM. The features determines the ability of MSM to capture the slowest
processes and thus the hidden conformers in the molecular dynamics simulation data. The
GMRQ score of the MSM provides a metric to calculate the accuracy of the prediction made
by the MSM. In this study, we have shown that, in some systems, more efficient MSMs are
constructed using Laplacian score with GA using GMRQ score as fitness score. This method
helps to identify which of the features, between dihedrals or contacts, is to be chosen for
the construction of an efficient MSM. The most significant advantage of this method is
that it helps to reduce the amount of sampling and overcomes the bottleneck of long
simulation. It has the potential to circumvent over fitting caused by large dimensionality
of the simulated data. This approach has been applied to simulation data involving folding
of protein and protein-ligand binding. In this approach, MSM building had the goal of
finding out the slowest process in the simulation. In protein folding, the movement from
the unfolded state to the folded state, and in protein-ligand binding the binding of ligand
to the protein are the slowest process in the simulation data identified by MSM.

The time required to find out the optimal subset of features is significant due to
use of wrapper method, along with filter based feature selection. The GMRQ score of
MSM constructed with all the features is higher for longer simulations. Nonetheless, this
approach significantly reduces the amount of sampling required to construct an efficient
MSM as shown in the case of Benzamdine-Trypsin, Villin and Fs Peptide systems, and
hence helps to take advantage of adaptive sampling MD which involves a large number
of short simulations. This method helps to construct MSM with higher GMRQ score and
find out the optimum features that maximally affects the slowest process in the simulation
data. In summary, our study shows that heuristic initialization of the GA population can
automatically select the essential features that contribute to the construction of MSM with
improved GMRQ score. To our knowledge, this is the first approach that uses Laplacian
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score along with GA to automatically select features to construct MSMs with a reduced set of
features. The code used is available at GitHub: https://github.com/anuginu/MSM_latest.
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