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Background. The generalized ensemble approach with the molecular dynamics (MD) method has been
widely utilized. This approach usually has two features. (i) A bias potential, whose strength is replaced
during a simulation, is applied. (ii) Sampling can be performed by many parallel runs of simulations.
Although the frequency of the bias-strength replacement and the number of parallel runs can be
adjusted, the effects of these settings on the resultant ensemble remain unclear.

Method. In this study, we performed multicanonical MD simulations for a foldable mini-protein (Trp-
cage) and two unstructured peptides (8- and 20-residue poly-glutamic acids) with various settings.

Results. As a result, running many short simulations yielded robust results for the Trp-cage model.
Regarding the frequency of the bias-potential replacement, although using a high frequency enhanced
the traversals in the potential energy space, it did not promote conformational changes in all the
systems.
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20 Abstract

21 Background. The generalized ensemble approach with the molecular dynamics (MD) method 

22 has been widely utilized. This approach usually has two features. (i) A bias potential, whose 

23 strength is replaced during a simulation, is applied. (ii) Sampling can be performed by many 

24 parallel runs of simulations. Although the frequency of the bias-strength replacement and the 

25 number of parallel runs can be adjusted, the effects of these settings on the resultant ensemble 

26 remain unclear.

27 Method. In this study, we performed multicanonical MD simulations for a foldable mini-protein 

28 (Trp-cage) and two unstructured peptides (8- and 20-residue poly-glutamic acids) with various 

29 settings.

30 Results. As a result, running many short simulations yielded robust results for the Trp-cage 

31 model. Regarding the frequency of the bias-potential replacement, although using a high 

32 frequency enhanced the traversals in the potential energy space, it did not promote 

33 conformational changes in all the systems.

34

35 Introduction

36 In the past several decades, the molecular dynamics (MD) method has been widely applied to 

37 investigate the microscopic behavior of molecular systems. Although advances in high-

38 performance computing technology have extended the timescale that is reachable by MD 
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39 simulations (Salomon-Ferrer et al., 2013; Shaw et al., 2014; Abraham et al., 2015), there is still a 

40 large gap from experimental measurements. In particular, it is not straightforward to characterize 

41 the free-energy landscape (FEL) of a complex molecular system, because the characteristics of 

42 conformational ensembles obtained via canonical MD simulations largely depend on the initial 

43 conditions. To solve this problem, the generalized ensemble (GE) approach has been extensively 

44 developed and applied to the MD method. The GE approach enhances the conformational 

45 sampling using some tricks. First, in many GE methods, the conformational sampling can be 

46 performed with many parallel runs of simulations in a coupled or independent manner. For 

47 example, the replica-exchange MD (REMD) method (Sugita & Okamoto, 1999) involves 

48 performing many simulations of the same system, i.e., replicas, with different temperatures. The 

49 replicas with adjacent temperatures are coupled by exchanging their temperatures via Monte 

50 Carlo trials. On the other hand, the multicanonical MD (McMD) method (Nakajima, Nakamura 

51 & Kidera, 1997) can be performed by multiple independent runs, and a resultant ensemble is 

52 obtained by concatenating the trajectories of these runs (Ikebe et al., 2010). Second, the GE 

53 approach generates a non-Boltzmann distribution by applying bias potential, e.g., heating/cooling 

54 in the entire system or a part of the system, scaling the potential energies, and applying spring 

55 potentials for parts of system. These biases enhance the conformational changes of molecules 

56 and avoid trapping the molecular system at local minima in the FEL. During a simulation, the 

57 strength of the bias is frequently replaced, and the system alternates between different bias 

58 conditions. After simulations, a canonical ensemble can be obtained by reweighting each 

59 snapshot in the sampled conformational ensemble (Souaille & Roux, 2001; Shirts & Chodera, 

60 2008).

61 For using these two features, users must adjust some settings. First, the number of runs is 

62 an adjustable parameter. In the case of the REMD method, using a larger number of replicas 

63 allows wider overlaps of the energy distributions between adjacent replicas and results in a 

64 higher acceptance probability. However, increasing the number of runs proportionally increases 

65 the computational costs. Users must choose the optimal balance between the number of runs and 

66 the length of each run according to the available computational resources. Previously, Ikebe et al. 

67 reported that an increase in the number of independent runs of McMD yields efficient 

68 exploration of a wider area of the conformational space. (Ikebe et al., 2010) However, the 

69 balance between the number of runs and the length of each run has not been discussed. Second, 

70 the frequency of the bias-strength replacement is also adjustable. In the REMD method, the 

71 frequency of replica-exchange trials must be specified by users. Other methods using a 

72 continuous bias strength, e.g., McMD and adaptive umbrella sampling (AUS), can control the 

73 frequency of bias-strength replacement by using the virtual-system coupling scheme, (Higo, 

74 Umezawa & Nakamura, 2013; Higo et al., 2015) as described later. It is reported that the 

75 frequency of the bias-strength replacement affects the resultant ensembles for the REMD 

76 method. Although higher frequencies enhance the traversals in the temperature space, they are 

77 suspected as an origin of artifacts. (Periole & Mark, 2007; Sindhikara, Meng & Roitberg, 2008; 

78 Rosta & Hummer, 2009; Sindhikara, Emerson & Roitberg, 2010; Jani, Sonavane & Joshi, 2014; 

PeerJ Phy. Chem. reviewing PDF | (PCHEM-2019:07:39005:0:1:NEW 8 Jul 2019)

Manuscript to be reviewedChemistry Journals
Analytical, Inorganic, Organic, Physical, Materials Science



79 Iwai, Kasahara & Takahashi, 2018) Although the effects of these features have been examined, 

80 these studies were mainly based on simple model peptides with helix–coil transitions. The effects 

81 of the features for more practical cases, e.g., a protein folding–unfolding transition, are not fully 

82 understood. More importantly, the relationship between these effects and the complexities of 

83 molecular systems, e.g., the degree of freedom and ruggedness of the free-energy landscape, are 

84 expected to be revealed.

85 In this study, we aim to elucidate the effects of the number of runs and the bias-replacing 

86 frequency for the GE method on the resultant conformational ensembles of molecular models 

87 including a foldable mini-protein and disordered model peptides. We utilized the trivial-

88 trajectory parallelized virtual-system coupled McMD (TTP-V-McMD) method (Ikebe et al., 

89 2010; Higo, Umezawa & Nakamura, 2013), which is a variant of the McMD method, for 

90 simulating the three molecular models with an explicit solvent: (i) Trp-cage, (ii) 8-residue poly-

91 glutamic acid (PGA8), and (iii) 20-residue poly-glutamic acid (PGA20). We chose these models 

92 as test cases to examine the simulation conditions because they are sufficiently small for 

93 elucidating their conformational ensembles within a practical computational time in addition to 

94 the fact that their structural properties have been well studied thus far. Trp-cage, which is a mini-

95 protein consisting of 20 amino acids, has been widely studied as a prominent model of protein 

96 folding. (Ahmed et al., 2005; Péter Hudáky et al., 2007; Hałabis et al., 2012) Poly-glutamic acids 

97 have been used as model peptides to characterize the conformational properties of polypeptides. 

98 (Clarke et al., 1999; Kimura et al., 2002; Finke et al., 2007; Donten & Hamm, 2013; Ogasawara 

99 et al., 2018) We analyzed their FELs under various parameter settings to provide a guide for 

100 adjusting these parameters for the GE methods. The questions to be answered are as follows: 

101 “Which condition is more efficient: many short simulations or a small number of long-term 

102 simulations?” and “Which is better: frequent or less frequent replacement of the bias strength?”. 

103 Moreover, we discuss the relationship between the relaxation of the energy and that of the 

104 protein conformation. While the McMD method enhances the relaxation in the energy space, it is 

105 not guaranteed to enhance the relaxation in the conformational space. We analyzed these two 

106 relaxation processes using the McMD trajectories calculated with the various settings.

107

108 Materials & Methods

109 We calculated the FELs of the three explicitly solvated molecular models: Trp-cage, PGA8, and 

110 PGA20, by using the TTP-V-McMD method with various settings. The theory of McMD, 

111 virtual-system coupled McMD (V-McMD), and trivial-trajectory parallelization (TTP) is briefly 

112 presented in the following subsections. Then, the simulation protocol applied in this study is 

113 described.

114

115 McMD

116 The McMD method efficiently explores the conformational space of a molecular system, by 

117 applying a biasing energy term. The Hamiltonian H of the system is 

118 , (1)𝐻 = 𝐾 + 𝐸𝑚𝑐
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119 where K and Emc denote the kinetic energy and multicanonical energy, respectively. Emc is 

120 defined as follows:

121 , (2)𝐸𝑚𝑐 = 𝐸 + 𝑅𝑇ln Pc(𝐸,𝑇)

122 where E is the potential energy, and the second term corresponds to the bias potential. R is the 

123 gas constant, and Pc(E, T) denotes the canonical distribution at the temperature T:

124 , (3)Pc(𝐸,𝑇) =
n(𝐸)exp ( -

𝐸𝑅𝑇)
Zc(𝑇)

125 where n(E) denotes the density of states, and Zc(T) is the partition function of the canonical 

126 distribution at the temperature T. With this definition, the potential energy distribution of an 

127 ensemble obtained from the McMD, or the multicanonical distribution, Pmc(E), becomes 

128 uniform: 

129 Pmc(𝐸) =
n(𝐸)exp ( -

𝐸𝑚𝑐𝑅𝑇 )
Zmc(𝑇)

=
n(𝐸)exp ( -

𝐸𝑅𝑇)
Pc(𝐸,𝑇) Zmc(𝑇)

=
𝑍𝑐(𝑇)𝑍𝑚𝑐(𝑇)

= 𝑐𝑜𝑛𝑠𝑡.
130 (4)

131 As a result, the McMD method performs a random walk in the potential energy space and 

132 generates a uniform distribution of potential energy in a resultant ensemble. After a 

133 multicanonical ensemble is obtained, a canonical ensemble at any temperature in a sampled 

134 energy range can be generated by reweighting the probability of existence of each snapshot.

135 Eqs. (3) and (4) include an analytical form of n(E), which is usually unknown a priori. 

136 Therefore, n(E) is approximated as a parametric function, e.g., the polynomial function, and its 

137 parameters are estimated by iterations of McMD simulations to make Pmc(E) near-uniform. In the 

138 ith iteration, the bias potential is calculated using Eq. (2) with the canonical distribution obtained 

139 from the (i–1)th iteration, i.e., . As the result of the ith iteration, we obtain .  P
𝑖 - 1

c (𝐸,𝑇) P
𝑖

mc(𝐸) P
𝑖
c

140  can be calculated as(𝐸,𝑇)

141 . (5)P
𝑖
c(𝐸,𝑇) = P

𝑖
mc(𝐸)P

𝑖 - 1
c (𝐸,𝑇)

142 See Ref. (Higo et al., 2012) for details.

143

144 V-McMD

145 V-McMD introduces a virtual system, which interacts with the molecular system, and the 

146 multicanonical ensemble is calculated for the entire system consisting of these two subsystems. 

147 (Higo, Umezawa & Nakamura, 2013) In practice, this method can be roughly interpreted as a 

148 combination of McMD and the simulated tempering method. The simulated tempering method 

149 replaces the system temperature with the Metropolis criterion and performs a canonical 

150 simulation until the next replacement trial. On the other hand, in V-McMD, the potential energy 

151 space is split into several regions (Figure S1), and the molecular system is trapped in one of these 

152 regions. With a certain time interval (tVST), the molecular system replaces the region to be 

153 trapped. The state variable governing which region traps the molecular system is called the 

154 “virtual state,” and the system defined by the virtual state is called the “virtual system.” The 

155 energy range of each virtual state is defined to be overlapped with the adjacent virtual states. 
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156 When the molecular system has the potential energy Ek in the overlapped region of the ith and 

157 (i+1)th virtual states, the state transition between these two virtual states can occur. Because this 

158 transition does not change the atomic coordinates or potential energy, the Metropolis criterion of 

159 this state transition is always satisfied. The time interval of virtual-state transitions (tVST) should 

160 be determined arbitrarily by users. See Ref. (Higo, Umezawa & Nakamura, 2013) for details.

161

162 TTP

163 According to the theory of TTP, trajectories of multiple independent McMD runs with the same 

164 molecular system and different initial conditions can be treated as a single trajectory of an 

165 McMD simulation by concatenating the trajectories in an arbitrary order. This theory requires the 

166 condition that the initial coordinates of each run are sampled from the multicanonical 

167 distribution. Because the initial coordinates of production runs can be obtained from the near-

168 uniform potential energy distribution generated by iterative simulations, it is expected that this 

169 condition holds. The McMD method with the TTP theory, which is called the TTP-McMD 

170 method, can be considered as a hybrid Monte Carlo sampler, by assuming that the system 

171 transitions from the last snapshot of the ith run (the microscopic state mil) to the first snapshot of 

172 the jth run (the microscopic state mjf) via a Monte Carlo step (Figure S2). See Ref. (Ikebe et al., 

173 2010) for details.

174

175 Simulation protocol

176 We studied the three molecular systems, which are Trp-cage, PGA8, and PGA20 in an explicitly 

177 solvated cubic periodic boundary cell, by using the TTP-V-McMD method. Random coil 

178 structures of Trp-cage, PGA8, and PGA20 were constructed using the Modeller software (Webb 

179 & Sali, 2016) without any template. The termini of the PGAs were capped with acetyl and N-

180 methyl groups, and the termini of the Trp-cage were not capped. Each of these molecular models 

181 was plased into a cubic box filled by water molecules; the number of water molecules were 

182 5,097, 2,879, and 3,800 for Trp-cage, PGA8, and PGA20, respectively. In addition, a Cl–
 ion was 

183 added to the Trp-cage model to cancel the net charge of the system. The net charge of the PGA 

184 models was zero because all the Glu residues were protonated.

185 The system was relaxed by using the GROMACS software. (Pronk et al., 2013) Energy 

186 minimizations were successively applied using the steepest descent and conjugate gradient 

187 methods. Then, an MD simulation under a constant-pressure ensemble with the Berendsen 

188 barostat was performed for 1 ns. In the first half of the simulation, gradual heating from 10 to 

189 300 K was applied. In the simulation, the positions of the heavy atoms of the Trp-cage were 

190 restrained, the bond lengths were not constrained, and the integration time step (Δt) was 0.5 fs. 

191 Subsequently, an additional constant-pressure relaxation was applied for 1 ns with Δt = 2.0 fs, 

192 and the covalent bonds to hydrogen atoms were constrained using the LINCS method. (Hess et 

193 al., 1997; Hess, 2008) The final configuration of each model was used for the TTP-V-McMD 

194 simulations. The cell dimensions of these configurations were 54.0378 Å, 44.6116 Å, and 

195 49.1174 Å for Trp-cage, PGA8, and PGA20, respectively.
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196 For each model, the following steps were performed using our MD simulation program, 

197 which is called myPresto/omegagene and is tailored for GE simulations. (Kasahara et al., 2016) 

198 The protein conformation was randomized with a constant-temperature simulation at 800 K. By 

199 using 30 snapshots taken from a trajectory with an interval of 300 ps, 30 independent runs were 

200 simulated with a gradual decrease in the temperature from 629 to 296 K to estimate the density 

201 of states. Successively, the TTP-V-McMD simulations were iteratively performed while 

202 updating the estimation of the density of states. (Higo, Umezawa & Nakamura, 2013) A total of 

203 84 production runs were performed (Nrun = 84) for each of three different interval times for the 

204 virtual-state transitions (tVST) meaning the interval times for bias-potential replacement: tVST = 

205 0.002 ps ns, tVST = 0.2 ps, and tVST = 20 ps. The simulation length of each run (trun) was 50 ns 

206 except for the Trp-cage model with tVST = 0.2 ps, trun, of which the simulation length was 200 ns. 

207 In total, 50.4 μs of trajectories were simulated as production runs. The virtual system was 

208 divided into seven states that cover the energy range corresponding to the canonical distribution 

209 from 296 to 629 K (Table S1). The velocity scaling method (Berendsen et al., 1984) was applied 

210 to maintain the system temperature.

211 For the potential parameters, the AMBER ff99SB-ILDN force field, (Lindorff-Larsen et 

212 al., 2010) the ion parameter presented by Joung and Cheatham, (Joung & Cheatham, 2008) and 

213 the TIP3P water model (Jorgensen et al., 1983) were applied. The electrostatic potential was 

214 calculated using the zero-multipole summation method, which is a non-Ewald scheme. (Fukuda, 

215 2013; Fukuda, Kamiya & Nakamura, 2014) The zero-dipole condition with the damping factor α 

216 = 0 was used. (Fukuda, Yonezawa & Nakamura, 2011; Fukuda et al., 2012) 

217

218 Comparison of simulated ensembles among different settings

219 On the basis of the trajectories obtained from of the TTP-V-McMD production runs, the effects 

220 of the simulation conditions, i.e., the time interval for bias-strength replacement (tVST), the 

221 number of independent runs (Nrun), and the simulation time of each run (trun), were assessed.

222 For the Trp-cage model, we analyzed the FEL for various conformational ensembles on the basis 

223 of the two structural parameters: the root-mean-square deviation (RMSD) of Cα atoms from the 

224 native conformation (PDB ID: 1L2Y, model 1), which is denoted as RMSDnative, and the radius of 

225 gyration (Rg). The FEL is visualized as the map of the potential of mean forces (PMF) on the 

226 plane defined by these two parameters. We defined the reference ensemble as the ensemble 

227 calculated for the conditions of trun = 200 ns, Nrun = 84, and tVST = 0.2 ps, because it is expected 

228 to have the highest reliability owing to its abundance of samples (it comprises a total of 16.8 μs 

229 of simulations). The FELs analyzed in various conditions were compared with the reference FEL 

230 with regard to the Pearson correlation coefficient of the PMF (PCCPMF). To calculate the 

231 PCCPMF
 for a pair of FELs, bins without samples in one of the two FELs were ignored. In 

232 addition, the probability of the existence of the native conformations in each ensemble (Pnative) 

233 was measured to characterize each ensemble. The native conformations are defined as the 

234 conformations with RMSDnative ≤ 2.0 Å.
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235 For the PGA models, the FELs were analyzed using principal component analysis (PCA) 

236 based on the Cα–Cα distances (28 and 190 dimensions for PGA8 and PGA20, respectively). The 

237 PCAs were performed using aggregations of trajectories with all the three tVST conditions for 

238 each model. For each tVST condition, the ensemble calculated from the entire trajectory (trun = 50 

239 ns and Nrun = 84) was considered as the reference ensemble. The FELs were compared with 

240 regard to PCCPMF, similar to the Trp-cage case.

241 To assess the effects of Nrun and trun, PCCPMF (and Pnative for the Trp-cage model) were 

242 calculated for ensembles with subsets of the reference trajectories. Because there are many 

243 possibilities to pick Nrun runs from 84 runs and trun-length trajectories from the entire set of 

244 trajectories, we analyzed them by using the bootstrap approach. We constructed an ensemble by 

245 taking a random sampling of Nrun runs from 84 runs with replacement and repeated it 100 times. 

246 The statistics over the 100 ensembles were analyzed via simulation with this Nrun setting. This 

247 process was repeatedly performed for Nrun = 1, 2, ..., 84. For the case of trun, the trajectories were 

248 split into 5-ns bins, and an ensemble was constructed by taking a random sampling of trun/5 bins 

249 with replacement. We confirmed that the results of the bootstrap analyses with 100 and 200 

250 samples were consistent (Figure S3).

251 The sampling efficiency was measured in terms of the frequency of traversals between 

252 low- and high-energy regions, which were defined as the ranges [Emin, Elow] and [Ehigh, Emax], 

253 respectively. Here, Emin and Emax denote the minimum and maximum potential energies in all the 

254 trajectories, respectively, and Elow and Ehigh  are defined as follows.

255 (6)𝐸𝑙𝑜𝑤 = 𝐸𝑚𝑖𝑛 + 𝑋(𝐸𝑚𝑎𝑥 - 𝐸𝑚𝑖𝑛)

256 (7)𝐸ℎ𝑖𝑔ℎ = 𝐸𝑚𝑎𝑥 - 𝑋(𝐸𝑚𝑎𝑥 - 𝐸𝑚𝑖𝑛)

257 X is an arbitrary parameter in the range of 0 to 0.5. We assessed X = 0.2 and 0.3. The traversal 

258 frequency Ftravers
E was calculated as the number of traversals between the two energy regions 

259 during 1.0 ns. The traversal frequencies of RMSDnative and Rg (Ftravers
RMSD and Ftravers

Rg, 

260 respectively) were also analyzed.

261

262 Results

263 In the first part of this section, the results of the Trp-cage model are described. The reference 

264 ensemble is characterized in the subsection, “FEL of folding–unfolding equilibrium of Trp-

265 cage”. Next, the effects of the parameters trun, Nrun, and their balances are discussed in the 

266 successive subsections: “Effects of simulation time for each run,” “Effects of number of 

267 independent runs,” and “Balance between simulation time and number of runs,” respectively. 

268 Subsequently, the effects of the other parameter tVST are discussed in the subsection, “Effects of 

269 frequency of bias-strength replacement.” Additionally, the following subsection, “Effects of 

270 system complexity” describes the results of the PGA8 and PGA20 models and compares them 

271 with those of the Trp-cage model.

272

273 FEL of folding–unfolding equilibrium of Trp-cage 
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274 For the Trp-cage model, we performed 34 iterations of TTP-V-McMD simulations while 

275 updating the estimation of the density of states, n(E), and obtained a near-uniform energy 

276 distribution (Figure S4). On the basis of this estimation, we performed production runs with Nrun 

277 = 84, trun = 200 ns, and tVST = 0.2 ps. This is called the reference setting hereinafter. The resultant 

278 canonical ensemble reweighted at 300 K is referred to as the reference ensemble. 

279 The FEL of the reference ensemble projected on the RMSDnative–Rg
 plane is shown in 

280 Figure 1A. The most stable basin corresponds to the native structure consisting of an α-helix at 

281 the N-terminus, a 310-helix at the middle, and a loop region at the C-terminus (the secondary 

282 structural elements were recognized by using the DSSP software) (Kabsch & Sander, 1983). For 

283 example, the RMSDnative of one of the most probable structures in this basin was 0.994 Å (Figure 

284 1B). The energy barrier (approximately 3.3 kcal/mol) was observed at RMSDnative ≈ 3 Å in a low-

285 Rg regime. Around this barrier, the 310-helix at the middle of the peptide chain was partially 

286 deformed; this deformation can be the first step of an unfolding process (Figure 1C). The details 

287 of the unfolding pathway are not discussed in this paper. The second basin was widely spread 

288 around RMSDnative = 4–7 Å and Rg = 7–9 Å. This corresponds to the unfolded state, and examples 

289 of the unfolded structures taken from this basin are shown in Figures 1E and F. The difference in 

290 the PMF between the bottoms of the first and second stable basins was 1.014 kcal/mol, and the 

291 population of the native conformations (Pnative) was 22.37%. The landscape is qualitatively 

292 similar to that calculated using the REMD method reported by another group (Day, Paschek & 

293 Garcia, 2010). Our TTP-V-McMD simulation successfully identified the native structure as the 

294 most stable basin in the energy landscape, by using the reference setting.

295

296 Effects of simulation time for each run

297 The FELs of the Trp-cage model were drawn for a variety of trun values under the condition of 

298 Nrun = 84 and compared with the reference FEL. The FELs based on the trajectories of 0–25, 0–

299 50, and 0–100 ns are shown in Figures 2A, B, and C, respectively. The overall geometries of 

300 these FELs were qualitatively similar to the reference (Figure 1A); their PCCPMF values were 

301 0.936, 0.936, and 0.994, respectively. The bootstrap statistics of PCCPMF for each trun value are 

302 summarized in Figure 2D. For trun = 200 ns, the bootstrap average and the standard deviation 

303 (SD) of PCCPMF were 0.990 and 0.00720, respectively. Even in the worst case among 100 

304 randomly generated ensembles with trun = 200 ns, PCCPMF was 0.966. From this condition, a 

305 decrease in trun yielded a slow decay of PCCPMF, and PCCPMF reached 0.9 at trun ≈ 30 ns, which 

306 corresponds to 15% of the samples in the reference. Further decreasing trun resulted in a steep 

307 decrease of PCCPMF. Along with the decrease of the bootstrap average of PCCPMF, the SD was 

308 increased. This means that an insufficient simulation time causes a loss of robustness of the 

309 results. 

310 In contrast to the fact that the PCCPMF decays in a shorter trun than the reference, the 

311 balance between the folded and unfolded states (Pnative) was almost constant regardless of trun 

312 (Figure 2E); the bootstrap average of Pnative for trun = 5–200 ns was in the range of 0.220 to 0.225. 

313 However, the SD of Pnative was reduced with the increase of trun; the SDs of Pnative at trun = 5, 50, 
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314 and 200 ns were 0.0658, 0.0198, and 0.00838, respectively. The loss of robustness due to the 

315 insufficiency of the simulation time is demonstrated in terms of not only the similarity of the 

316 entire FEL but also the stability of the native fold.

317

318 Effects of number of independent runs

319 As in the previous subsection, the effects of the reduction of Nrun on the FELs were assessed 

320 under the condition of trun = 200 ns. Examples of FELs with Nrun = 10, 21, and 42 are shown in 

321 Figures 3A, B, and C, respectively; the PCCPMF values were 0.637, 0.939, and 0.993, 

322 respectively. Although the positions and wideness of the basins were similar to the reference, the 

323 FELs with a smaller Nrun were smoother and lacked small bumps on the landscapes. The 

324 bootstrap statistics of PCCPMF for various Nrun values (Figure 3D) were similar to those for trun 

325 (Figure 2D). The quantity of the samples required for PCCPMF ≥ 0.9 was approximately one-

326 fourth of the reference (Nrun ≈ 21). The average (and the SD) of PCCPMF at Nrun = 21 and 42 were 

327 0.906 (0.0733) and 0.956 (0.0399), respectively. Larger Nrun values are needed to obtain robust 

328 results.

329 Regarding Pnative, the influence of the reduction of Nrun (Figure 3E) differed from that of 

330 the reduction of trun (Figure 2E). A lower Nrun resulted in the underestimation of the population of 

331 native conformations. Pnative reached at plateau for Nrun ≥ 21. A certain number of runs was 

332 needed to obtain robust results, and trun = 200 ns was too short to reach equilibrium with a small 

333 number of trajectories for this system.

334

335 Balance between simulation time and number of runs

336 The evaluation for various trun values with Nrun = 84 runs (Figure 2) and that for various Nrun 

337 values with trun = 200 ns (Figure 3) indicate that reducing trun produced better results than 

338 reducing Nrun if the cumulative simulation time (Nrun × trun) was the same. Figure 4 shows direct 

339 comparisons of the results, indicating that high-Nrun conditions resulted in a higher PCCPMF and 

340 more similar values of Pnative to the reference, with lower SDs, than long-trun conditions. In 

341 particular, the qualitative difference between the two strategies is shown by the mean of Pnative. 

342 Reducing Nrun resulted in the significant underestimation of the fold stability, but reducing trun 

343 did not.

344 In addition, we performed bootstrap analyses for all the combinations of 40-trun settings 

345 (5, 10, 15, ..., 200 ns) and 21-Nrun settings (4, 8, 12, ..., 84). The average values of PCCPMF and 

346 Pnative in all the conditions are presented in Figures 5 and S5. The PCCPMF was proportional to 

347 log(Nrun × trun). While the trend of Pnative is ambiguous, the use of a larger number of samples 

348 resulted in a higher Pnative. In the case where only small amount of data was available, a lower 

349 ratio of trun/Nrun (purple plots in Figure 5) yielded better results.

350

351 Effects of frequency of bias-strength replacement

352 The parameter tVST controls the frequency of the bias-strength switching in the TTP-V-McMD 

353 method. We investigated the effects of this parameter by comparing the TTP-V-McMD 
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354 simulations of the Trp-cage model under the three conditions—tVST = 0.002, 0.2, and 20 ps—

355 with trun = 50 ns for Nrun = 84.

356 Table 1 summarizes the frequency of traversals between high- and low-potential energy 

357 regimes (Ftrv
E), as defined in Eqs. (6) and (7) with X = 0.3 and 0.2, as well as the frequency of 

358 traversals between RMSDnative (Ftrv
RMSD) and Rg (Ftrv

Rg). The simulations with a shorter tVST 

359 resulted in faster traversals in the potential energy space, indicating that with a shorter tVST, a 

360 wider potential energy range can be sampled in a shorter time. However, faster traversal in the 

361 potential energy space does not ensure faster transition of the protein conformation. For both X = 

362 0.2 and 0.3, although the setting of tVST = 0.002 ps yielded the highest Ftrv
E, this condition did not 

363 yield a higher Ftrv
RMSD and Ftrv

Rg compared to when a longer tVST was used. This result indicates 

364 that the relaxation of the conformation requires a longer time than that of the potential energy. If 

365 a strong bias is applied and the system takes a high-potential energy state, it can return to low-

366 energy states before conformational changes. Therefore, a moderate speed for traversals in the 

367 potential energy space is ideal for efficient conformational sampling. In the case of X = 0.2, tVST 

368 = 0.2 ps exhibited the most frequent conformational changes.

369 In addition, the resultant ensembles were slightly affected by the setting of tVST. We 

370 analyzed Pnative for ensembles of various trun values with Nrun = 84 using the bootstrap method 

371 (Figure S6). The results for all three tVST values showed similar trends, i.e., near-constant average 

372 values and the gradual decay of the SD with the increase of trun. While tVST = 0.2 ps showed a 

373 smaller Pnative than the other two tVST settings, the difference was smaller than the SD. On the 

374 other hand, higher SD values were observed in the following order:  tVST = 0.2 > 20 > 0.002 ps. 

375 This is consistent with the order of Ftrv
RMSD

 and Ftrv
Rg (Table 1). The result indicates that more 

376 frequent traversals between high- and low-RMSDnative conformations make it possible to explore 

377 a wider region of the conformational space; thus, the population of the native conformation 

378 decreases, and the SD increases. 

379 Regarding the PCCPMF with the reference setting (tVST = 0.2 ps, Nrun = 84, and trun = 200 

380 ns), the average PCCPMF values at trun = 50 ns differed among different settings of tVST (Figure 

381 S6). This indicates that changing tVST yields subtle differences in the resultant ensemble. 

382 Regarding the balance between trun and Nrun, the trends were similar for all the settings of tVST 

383 (Figure S7).

384

385 Effects of system complexity: comparison with the PGA models

386 We performed the same analyses for the molecular models of PGA8 and PGA20. In contrast to 

387 Trp-cage, these peptides did not exhibit a particular fold. The FELs of both PGA8 and PGA20 

388 were unimodal distributions, the basins of which consisted of a variety of collapsed 

389 conformations (Figure 6 for tVST = 0.2 ps). The ensembles included short secondary structural 

390 elements but they were unstable. Although the shape of the small bumps in the basins differred 

391 depending on the simulation conditions, the overall geometries of the FELs were similar (Figure 

392 S8 for tVST = 0.002 ps and 20 ps).
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393 Regarding the balance between trun and Nrun, Figure 7 shows the bootstrap averages of 

394 PCCPMF between the ensemble calculated by the full-length trajectory (trun = 50 ns and Nrun = 84) 

395 and those calculated by the reduced trajectories. No clear differences were found between the 

396 PCCPMF curve with reduced trun and that with reduced Nrun for both the PGA8 and PGA20 

397 (Figure 7 for tVST = 0.2 ps; Figure S9 for the other conditions). A small number of long 

398 simulations exhibited the similar efficiency as that of many short simulations. In addition, no 

399 significant differences were found between the results of PGA8 and PGA20. It is noteworthy that 

400 the conformational space of PGA20 is considerably wider than that of PGA8 and similar to that 

401 of Trp-cage, because the conformational space volume of polypeptides is determined primarily 

402 by their length, Therefore, we concluded that the effects of balance between trun and Nrun are 

403 determined by the complexity of the FEL (e.g., existence of the free-energy barrier) rather than 

404 the conformational space volume. An increase in the number of runs is more effective for a 

405 system with more complex FEL.

406 For the PGA models, the frequencies of traversals in the potential energy and Rg spaces 

407 (Ftrv
E and Ftrv

Rg, respectively) are summarized in Table 2. Both the PGA8 and PGA20 models 

408 yielded similar trends as the Trp-cage model (Table 1). Although frequent replacements of bias-

409 potential strength enhanced the traversals in the potential energy space, they did not enhance the 

410 conformational changes in terms of Rg. This implies that the conformational changes are much 

411 slower than the potential energy changes even if there is no free-energy barrier exists in the 

412 landscape. However, in contrast to the Trp-cage case, the drawback of the frequent replacement, 

413 that is, slow traversals in the conformational space, is unclear in the case of PGA20.

414

415 Discussion

416 We examined the performance of the TTP-V-McMD method with regard to two adjustable 

417 settings: (i) the balance between the number of runs (Nrun) and the simulation length in each run 

418 (trun) and (ii) the frequency of the bias-strength switching (tVST). For (i), in the Trp-cage model 

419 including folding–unfolding transition, we found higher robustness of the conditions with a 

420 larger number of runs than with longer simulations. In particular, the probability of the existence 

421 of native conformations in a resultant ensemble (Pnative) was more sensitive to the condition than 

422 the entire similarity of the FEL. However, for the cases of PGAs without free-energy barrier in 

423 their FELs, no significant effect was shown in the balance between the number and length of 

424 simulations. Therefore, the optimal balance depended on the molecular system, and the 

425 complexity of the FELs was a key feature rather than the degree of freedom. In any case, 

426 increasing the number of simulations was recommended because it is not worse than increasing 

427 the length of each run. This result is practically useful because performing many parallel runs is 

428 easier than executing a single long simulation. While the result obtained here encourages 

429 performing many short runs, it requires the condition that the initial structures of the production 

430 runs are uniformly sampled from the multicanonical ensemble, whose energy distribution is 

431 uniform. (Ikebe et al., 2010) As our protocol samples the initial structures of the production runs 

432 from the previous iteration of the McMD, it is expected that this condition holds.
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433 For (ii), whereas higher frequencies of bias-strength replacement enhance the sampling of 

434 a wider range of potential energy, they do not ensure the enhancement of the sampling of a wider 

435 range of conformations. This means that the enhancement of the sampling along one variable 

436 (e.g., potential energy or temperature) does not ensure the enhancement of the sampling along 

437 another variable (e.g., RMSD and Rg). Rapid traversals in the energy space sometimes obtain a 

438 high energy and return to the low-energy regime before conformational change regardless of the 

439 existence of free-energy barrier in the FEL. A moderate frequency is needed to maximize the 

440 performance for any molecular system.

441 The findings that we obtained by applying the TTP-V-McMD method provide insight 

442 into the characteristics of many other GE methods. (i) For GE methods that involve running 

443 independent parallel simulations, e.g., simulated tempering and AUS, performing many short 

444 runs can be more effective than increasing the length of each run. For GE methods where parallel 

445 runs are coupled, e.g., the REMD method, this conclusion should not be simply applied. For 

446 example, an increase in the number of runs in the REMD method resulted in larger overlaps of 

447 the distributions of neighboring replicas, along with an increase in the acceptance probability of 

448 replica-exchange trials. Our previous evaluation for the REMD method showed that a larger 

449 number of replicas does not always yield better results. (Iwai, Kasahara & Takahashi, 2018) The 

450 number of runs should be adjusted independently from the coupling condition of the parallel 

451 runs; for example, the number of runs in a REMD simulation could be increased by performing 

452 two or more independent REMD simulations with different initial conformations, and 

453 aggregating the resultant ensembles. (ii) Regarding the frequency of the bias-strength 

454 replacement, the conclusion that the interval should be long enough to relax the conformation 

455 could be transferred to other GE methods. For the REMD methods, the effects of the interval for 

456 replica-exchange trials have been reported; while some studies recommended shorter intervals 

457 (Sindhikara, Meng & Roitberg, 2008; Sindhikara, Emerson & Roitberg, 2010), the side effects of 

458 highly frequent exchange trials have also been reported and were consistent to our result (Periole 

459 & Mark, 2007; Iwai, Kasahara & Takahashi, 2018).

460

461

462

463 Conclusions

464 In this study, the effects of two parameters of GE methods, i.e., (i) the balance between the 

465 number of runs (Nrun) and the simulation length in each run (trun) and (ii) the frequency of the 

466 bias-strength switching (tVST) were extensively examined with using all-atom explicit-solvent 

467 models of three polypeptides that are a foldable mini-protein and disordered peptides. We 

468 suggest a guide to adjust the setting for general molecular systems and GE methods. (i) 

469 Increasing in the number of runs should be prioritized rather than increasing the simulation 

470 length. (ii) Highly frequent replacements of the bias potentials may yield side effects because 

471 conformational relaxation was slower than potential energy relaxation. The time interval for 

472 replacement should be longer than or equal to 0.2 ps. 
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Figure 1(on next page)

FEL calculated by the reference ensemble of Trp-cage.

(A) FEL based on the RMSDnative–Rg plane. The color gradation indicates the PMF. (B) Snapshot

taken from the first basin (blue) superimposed on the experimentally solved structure (gray;
PDB ID: 1Y2L, model 1). (C) Examples of snapshots near the first basin. The structures
colored dark cyan and light cyan correspond to the positions C1 and C2 marked in (A),
respectively. (D, E) Examples of unfolded structures in the second basin. The positions of
each snapshot on the FEL are marked in (A).
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Figure 2(on next page)

FELs of Trp-cage for various trun values with Nrun = 84.

(A, B, C) FELs based on the trajectories of 0–25 ns (A), 0–50 ns (B), and 0–100 ns (C). (D)
Bootstrap statistics of PCCPMF. The solid line is the average, the dashed lines are the sum of

the average and SD and the subtraction of the SD from average. The dotted lines indicate the
maximum and minimum values among 100 randomly generated ensembles in each
condition. (E) Statistics of Pnative shown in the same scheme as (D).
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Figure 3(on next page)

Characteristics of FELs of Trp-cage for smaller Nrun values with trun = 200 ns.

(A, B, C) Examples of FELs with Nrun = 10 (A), Nrun = 21 (B), and Nrun = 42 (C). (D, E) Bootstrap

statistics of PCCPMF (D) and Pnative (E). See also the legend of Figure 2.

PeerJ Phy. Chem. reviewing PDF | (PCHEM-2019:07:39005:0:1:NEW 8 Jul 2019)

Manuscript to be reviewedChemistry Journals
Analytical, Inorganic, Organic, Physical, Materials Science



0 8642

10

7

8

9

P
na

tiv
e

1.0

0.25

0.75

0

0.50

N
run

 
40 80200 60

E

1.0

0.6

0.8

0.4

P
C
C

P
M

F

0.2

N
run

 

Ave.

Max.

Ave. + SD

Ave. - SD

Min.

0 20 40 60 80

D

10

7

8

9

RMSD
native

 (Å)
0 8642

10

7

8

9

RMSD
native

 (Å)
0 8642

PM
F 

(k
ca

l/m
ol

)

0

2.5

5.0

7.5

C

10

7

8

9

R
g (Å

)
BA

Ave.

Max.

Ave. + SD

Ave. - SD

Min.

RMSD
native

 (Å)

PeerJ Phy. Chem. reviewing PDF | (PCHEM-2019:07:39005:0:1:NEW 8 Jul 2019)

Manuscript to be reviewedChemistry Journals
Analytical, Inorganic, Organic, Physical, Materials Science



Figure 4(on next page)

Direct comparison between reducing trun with the fixed-Nrun condition (blue line) and
reducing Nrun with the fixed-trun condition (red line) for the Trp-cage model.

The vertical axes indicate (A) the average of PCCPMF, (B) the SD of PCCPMF, (C) the average of

Pnative, and (D) the SD of Pnative. The horizontal axis indicates the accumulated simulation length

(Nrun × trun).
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Figure 5(on next page)

Distribution of (A) the average of PCCPMF and (B) Pnative along the logarithm of the
accumulated simulation length for various combinations of Nrun and trun extracted from
the trajectories th

The color of each plot indicates the log-ratio of Nrun to trun compared with the reference. The

definition is log[(trun/Nrun)/(200/84)]. This value becomes greater than 0 for conditions with a

higher ratio of trun to Nrun than the reference.
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Figure 6(on next page)

FELs calculated by ensembles of (A) PGA8 and (B) PGA20 using trun = 50 ns and Nrun = 84
with tVST = 0.002 ps.

(C, D, E) Examples of snapshots in the basins marked in the panels (A) and (B).

PeerJ Phy. Chem. reviewing PDF | (PCHEM-2019:07:39005:0:1:NEW 8 Jul 2019)

Manuscript to be reviewedChemistry Journals
Analytical, Inorganic, Organic, Physical, Materials Science



21

A B

F

0
PC1

-1

-1.0

1.0

-0.5

0.5

0.0

P
C

2

P
C

2

4.0

-4.0

8.0

0.0

0

2.5

5.0

7.5

EC D

PC1
1550-5 10

-8.0

P
M

F
 (

k
ca

l/
m

o
l)

C
D E

PeerJ Phy. Chem. reviewing PDF | (PCHEM-2019:07:39005:0:1:NEW 8 Jul 2019)

Manuscript to be reviewedChemistry Journals
Analytical, Inorganic, Organic, Physical, Materials Science



Figure 7(on next page)

Direct comparisons between reducing trun with fixed-Nrun (blue line) and reducing Nrun with
fixed-trun (red line) for (A, B) the PGA8 and (C, D) PGA20 systems.

The vertical axes indicate (A, C) the bootstrap average of PCCPMF, and (B, D) the SD of PCCPMF.

The horizontal axis indicates the accumulated simulation length (Nrun × trun). The results of tVST

= 0.2 ps are presented. See also Figure S9 for the other tVST conditions.
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Table 1(on next page)

Average values (and the standard errors) of the traversal frequencies over 84 runs for
the Trp-cage model.
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1 Table 1. Average values (and the standard errors) of the traversal frequencies over 84 runs for the 

2 Trp-cage model.

tVST (ps) 0.002 0.2 20

X 0.3

Ftrv
E (ns−1) 1.63 1.45 1.02

(0.06) (0.04) (0.04)

Ftrv
RMSD (ns−1) 0.057 0.060 0.062

(0.006) (0.004) (0.006)

Ftrv
Rg (ns−1) 0.040 0.044 0.050

(0.005) (0.003) (0.006)

X 0.2

Ftrv
E  (ns−1) 0.70 0.62 0.46

(0.03) (0.02) (0.02)

Ftrv
RMSD  (ns−1) 0.005 0.011 0.006

(0.001) (0.001) (0.002)

Ftrv
Rg  (ns−1) 0.008 0.012 0.007

(0.002) (0.001) (0.002)

3

PeerJ Phy. Chem. reviewing PDF | (PCHEM-2019:07:39005:0:1:NEW 8 Jul 2019)

Manuscript to be reviewedChemistry Journals
Analytical, Inorganic, Organic, Physical, Materials Science



Table 2(on next page)

Average values (and standard errors) of the traversal frequencies over 84 runs for PGA
models.
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1 Table 2. Average values (and standard errors) of the traversal frequencies over 84 runs for PGA 

2 models.

Model PGA8 PGA20

tVST (ps) 0.002 0.2 20 0.002 0.2 20

X 0.3 0.3

Ftrv
E (ns−1) 2.91 2.70 0.86 1.05 0.99 0.46

(0.03) (0.03) (0.02) (0.04) (0.03) (0.02)

Ftrv
Rg (ns−1) 0.44 0.47 0.47 0.045 0.044 0.049

(0.02) (0.02) (0.02) (0.005) (0.005) (0.006)

X 0.2 0.2

Ftrv
E  (ns−1) 1.58 1.53 0.50 0.4 0.41 0.22

(0.02) (0.02) (0.01) (0.02) (0.01) (0.01)

Ftrv
Rg  (ns−1) 0.117 0.147 0.146 0.011 0.013 0.015

(0.007) (0.007) (0.007) (0.002) (0.002) (0.003)

3
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