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ABSTRACT
This study leverages a graph-based genetic algorithm (GB-GA) for the design of
efficient nitrogen-fixing catalysts as alternatives to the Schrock catalyst, with the aim to
improve the energetics of key reaction steps. Despite the abundance of nitrogen in the
atmosphere, it remains largely inaccessible due to its inert nature. The Schrock catalyst,
a molybdenum-based complex, offered a breakthrough but its practical application is
limited due to low turnover numbers and energetic bottlenecks. The genetic algorithm
in our study explores the chemical space for viable modifications of the Schrock
catalyst, evaluating each modified catalyst’s fitness based on reaction energies of key
catalytic steps and synthetic accessibility. Through a series of selection and optimization
processes, we obtained fully converged catalytic cycles for 20 molecules at the B3LYP
level of theory. From these results, we identified three promising molecules, each
demonstrating unique advantages in different aspects of the catalytic cycle. This study
offers valuable insights into the potential of generative models for catalyst design. Our
results can help guide future work on catalyst discovery for the challenging nitrogen
fixation process.

Subjects Catalysis, Theoretical and Computational Chemistry
Keywords de novo discovery

INTRODUCTION
A previous version of this article was deposited on a preprint server (Strandgaard et al.,
2023). Nitrogen fixation, a critical process for sustaining life on Earth, plays an essential
role in the global nitrogen cycle, and provides bioavailable nitrogen for the growth
and development of all living organisms. Although the atmosphere is composed of
approximately 78% nitrogen, its inert nature renders it inaccessible to most life forms.
Nature has evolved an intricate mechanism to overcome this barrier, primarily through
the activity of nitrogen-fixing microorganisms capable of reducing dinitrogen (N2) into
bioavailable forms such as ammonia (NH3). Nitrogen fixation driven by transition metal
complexes offers a less energy intensive alternative to the conventional Haber-Bosch
process (Westhead et al., 2023). These complexes can effectively catalyze the conversion
of N2 to NH3 under similar conditions as the nitrogenase enzymes in nature. A key
breakthroughwas Schrock’s discovery ofmolybdenum-based complexes capable of binding
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and reducing dinitrogen to ammonia under ambient conditions. His work led to the
development of the first well-defined, homogeneous catalyst containing a single metal site
for nitrogen fixation, known as the Schrock catalyst ([Mo(HIPTN3N)]) (Yandulov & Schrock,
2003; Schrock, 2005; Schrock, 2008). This molybdenum-based catalyst operates through a
series of proton-coupled electron transfer steps, which reduce dinitrogen to ammonia. The
Schrock catalyst represents a significant milestone in the field of small molecule nitrogen
fixation, as it was the first well-defined, homogeneous catalyst containing a single metal
site capable of converting dinitrogen to ammonia. However, its practical application in
large-scale nitrogen fixation has been limited due to several factors, including low turnover
numbers (Yandulov & Schrock, 2003). The Schrock catalyst is the best studied molecular
catalyst for dinitrogen reduction, both computationally and experimentally and studies
indicate that the last steps in the catalytic cycle are the energetic bottlenecks due to their
almost thermoneutral nature. For example, the equilibrium constant for replacing NH3

with N2 on the catalyst (NH3 
N2) has been experimentally measured to be about 0.1, and
the reaction energy of the final reduction step (NH3

+
→ NH3) has been measured to be

between 0 and 1 kcal/mol (Schrock, 2008). These findings have been further corroborated
and augmented by DFT calculations by Reiher, Neese, Tuczek and others (Reiher, Le
Guennic & Kirchner, 2005; Studt & Tuczek, 2005; Schenk, Kirchner & Reiher, 2009; Thimm
et al., 2015; Husch & Reiher, 2017). For example, Fig. 1 shows the catalytic cycle and the
corresponding DFT-free energy profile computed by Thimm et al. (2015). While this
energy profile shows a large energy increase upon the addition of the first proton (N2→

N2H+) computational studies by Schenk et al. (2008) found a more facile route where the
proton first binds to one of the N atoms on the ligands before transferring to the bound
dinitrogen. Therefore, both DFT free energy calculations and experiments suggest that
the main bottlenecks are the last reduction step NH3

+
→ NH3 and/or the displacement

reaction of a bound NH3 for N2 (NH3 → N2). Further computation studies by Schenk,
Kirchner & Reiher (2009) indicate two possible paths for the displacement step. Release of
NH3 followed by uptake of N2, or via an intermediate state where both NH3 and N2 are
bound to the molybdenum atom (NH3–N2).

Genetic algorithms have proven to be an effective tool for chemical space exploration
(Brown et al., 2019; Leguy et al., 2020; Henault, Rasmussen & Jensen, 2020; Jensen, 2019). A
main advantage is that the generation and curation of training data is not needed for such
methods as ligands can be evaluated on the fly by quantum-methods. Stochastic crossover
combined with quantum-method guided optimization means that GA based methods can
be easier to interpret than the notorious black box machine learning based methods. In this
study, we apply a genetic algorithm to search for alternatives to the hexa-iso-propyl-terphen
(HIPT) substituents that make the catalyst have favourable reaction free energies for the last
two catalytic steps. The GA discovered substituents are validated at the DFT level of theory
with the TZVP basis set and PBE/B3LYP functionals. Furthermore, the goal is to obtain
DFT calculated catalytic cycles for promising GA substituent candidates and from these
determine promising substituents. The design of catalysts using generative models is still in
its infancy (Chu et al., 2012; Seumer et al., 2023; Laplaza, Gallarati & Corminboeuf, 2022)
and requires additional work to fully exploit the methods potential. This is a preliminary
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Figure 1 Schematic of the Schrock cycle (left) and the free energy profile of the cycle as calculated by
Thimm et al. (right). The blue lines connecting intermediate states in the energy profile indicate protona-
tion steps, red lines indicate reduction steps and black lines indicate the chemical steps of N2 binding and
NH3 release.

Full-size DOI: 10.7717/peerjpchem.30/fig-1

study, where we determine the feasibility of this ambitious goal. Thus, we do not include
important design considerations such as the steric protection of the the Mo atom to avoid
H+ reduction or dimerization of the catalyst.

COMPUTATIONAL METHODOLOGY
The workflow implemented in this work can be divided into two major components.
A genetic algorithm (GA) for fast screening of chemical space and density functional
theory (DFT) methods for high-level quantum mechanical energy calculations. The two
components are explained in detail below.

Method—Genetic algorithm
The method deployed for search of chemical space was a graph-based genetic algorithm
(GB-GA) and the functionality of crossover and mutation operations on SMILES strings
in this study is identical to the one implemented by Jensen. The essential idea of the GA
was to modify the Schrock catalyst to create new possible substituents that improve upon
the original Schrock catalyst by replacing the HIPT substituents attached to the equatorial
amines in the triamidoamine core (Fig. 2). The GA gene is therefore organic molecules
with an attachment point indicating where it will be attached to the triamidoamine core as
replacement for the HIPT substituent. Here we only consider cases where all three attached
substituents are identical. The optimizing objective of the GA is to lower reaction energies
between key catalytic steps in the Schrock cycle (see the ‘Scoring’ section below).

Molecular processing
The starting population is constructed from randomly selected amines from a 250 K
molecule subset of the ZINC database (Sterling & Irwin, 2015). The entries in the database
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Figure 2 Workflow of the genetic algorithm. From a pool of molecules a starting population is created
and evolved for N generations, the loop is then terminated and the final population of well scoring candi-
dates is returned.

Full-size DOI: 10.7717/peerjpchem.30/fig-2

are all commercially-available compounds, which makes it ideal for virtual screening. From
these molecule we extract moieties that were connected to non-ring Nitrogen atoms by
single bonds. The single bond that was bound to nitrogen is instead attached to a dummy
atom, which is used to indicate the attachment point of the substituent. 50–100 substituents
(depending on population size) are then selected at random to form the initial population.

The fitness of each gene is evaluated by attaching three copies to the triamidoamine core
and generating a 3D structure using the ETKDG method in RDKit (Riniker & Landrum,
2015) (using the embedding parameters found in Table S3) where the coordinates of the
core are constrained to match a DFT optimised structure. The core either includes the
NH3, N2 or NH3–N2 reacting moieties, depending on which intermediates are needed in
the scoring function.

When computing the synthetic accessibility score (see ‘Scoring’) the dummy atom
indicating the attachment point is replaced with a H atom. When performing the mating
and mutation operations the dummy atom is replaced by an N atom as the dummy atoms
are also used during the mating operations and the mating operations are implemented so
that the substituent always contains at least one amine. It is possible that during crossover
or mutation, the attachment point is lost, in which case a new attachment point is made
from other amines in the molecule.

We found that other primary amines in the substituent (i.e., ones not removed to
form an attachment point) tended to form relatively strong bonds to Mo during structure
relaxations (see Fig. S6). Such strong interactions are not present at the DFT level and
appears to be an artifact of the quantum method used (see scoring). Therefore, such
primary amines groups were replaced with a H atom (see Section S3).
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Scoring
The fitness (or score) of a gene is mainly determined by the reaction energy (1E) of one of
three steps in the Schrock cycle, computed at the GFN2-xTB (Bannwarth, Ehlert & Grimme,
2019) level of theory, using the lowest energy structures out of four conformers generated
for each intermediate (Scoring in Fig. 2).

The xTB optimization of the embedded structures followed a four step procedure, each
step using the optimized structure of the previous step as a starting point. This is done to
have a stepwise relaxation of the substituent as simply optimizing directly on the initial
substituent coordinates from the embedding can lead to faulty optimizations and unwanted
intramolecular reactions.

First a GFN-FF (Spicher & Grimme, 2021) force-field optimization is performed on
the attached substituents, with the core atoms fixed. Then a GFN2-xTB optimization is
performed with the same constraints. The third optimization removes the constrains on the
core, except on theMo atom and the attached NxHy moiety. During the final optimization,
all atoms except theMo atom and the NxHy moiety are constrained. This is done to prevent
any detachment of the NxHy moieties during optimizations in the GA runs.

From the energies of the optimized structures, reaction energies between the
intermediates are obtained according to the reactions stated in Eqs. (1), (2), (3). These
represent three sub-reactions from the Schrock cycle, chosen since they are deemed to be
the determining factors in the overall reaction, and from here on these are referred to as
scoring functions. For simplicity, the scoring functions will be referred to in a reduced
form without the molybdenum prefix, for example NH3→ N2.

Mo–NH3+N2→Mo–N2+NH3 (1)

Mo–NH3
+
+e−→Mo–NH3 (2)

Mo–NH3+N2→Mo–NH3–N2. (3)

Each reaction energy 1E is then multiplied by the score modifier suggested by Gao
& Coley (2020), using the synthetic accessibility scoring function developed by Ertl &
Schuffenhauer (2009), to help ensure synthetic accessibility (SA).

The current population is merged with the previous population, ranked by score, and the
top N unique substituents are selected as the next population, where N is the population
size. Finally, the scores of the population are normalized according to Eq. (4).

Normalized scorei=
Scorei−Max(Scores)∑N

i=1(Scorei−Max(Scores))
. (4)

The worst scoring substituent has a normalized score of 0 and the rest a number between
0 and 1, with all scores summing to 1. Substituents are then selected for mating and
mutation using roulette selection and these normalized scores. We found that occasionally
the bonding in the substituents rearranged and these were discarded by giving them

Strandgaard et al. (2023), PeerJ Physical Chemistry, DOI 10.7717/peerj-pchem.30 5/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-pchem.30


an artificially high energy score of 9999, ensuring removal from the population. The
connectivity is computed based on the overlap charge density from an extended Hückel
calculation in RDKit with an overlap threshold of 0.15.

A typical GA search is performed for 50 generations, using a population size of 50,
and a mutation rate of 0.5. The usual run time for a GA run with these parameters for 50
generations would be around 5-12 h, depending on the size of the evolved substituents. In
general, 8 cpu cores were assigned to each substituent in the population. Thus, for runs
with 4 conformers, 2 cores were used for each conformer. We performed 23 GA searches
in total. 11 for Eqs. (1), 9 for (2) and 2 for (3). Relevant parameters for all GA runs can be
seen in Table S1.

Method—DFT verification
The substituents in the final populations of the GA searches, obtained using GFN2-xTB,
are reevaluated at the DFT level of theory (Fig. 3). For all DFT calculations ORCA 5
(Neese, 2022) was used. Following Thimm et al., we used PBE (Perdew, Burke & Ernzerhof,
1996)/ZORA-def2-TZVP (Weigend & Ahlrichs, 2005; Pantazis et al., 2008)/D3BJ (Grimme
et al., 2010; Grimme, Ehrlich & Goerigk, 2011) (SARC-ZORA-TZVP for Mo) for single
point evaluations using GFN2-xTB structures as well as for geometry optimisation of select
substituents, and B3LYP (Becke, 1993; Becke, 1988; Lee, Yang & Parr, 1988)/ZORA-def2-
TZVP/D3BJ for single points using the PBE optimized structures. For PBE calculations the
Split-RI-J (Neese, 2003) approximation is applied and for B3LYP we used the RIJCOSX
(Neese et al., 2009; Izsák & Neese, 2011) approximation. Relativistic effects are treated with
the zeroth order regular approximation (ZORA (van Lenthe, Baerends & Snijders, 1993)).
See Table S3 for more details. We refer to these levels of theories simply as PBE and
B3LYP here after. Thimm et al. used the def2/J auxilliary basis set in their ORCA3 (Neese,
2012) calculations, while we used the larger SARC/J basis set recommended for ZORA
calculations with ORCA5. Thimm et al. used the COSMO (Klamt & Schüürmann, 1993)
solvation model, which is no longer available in ORCA5. Instead we used the CPCM
(Barone & Cossi, 1998) model. Due to computational limitations, GFN2-xTB is used to
compute free energy contributions.

Each step in the DFT verification stage is visualized in Fig. 3. The top 10-50 substituents
from each of the 23 GA runs were extracted for validation. This led to a pool of 299
substituents. These were re-evaluated with PBE singlepoint calculations in step 2. The
energy distribution of these 299 substituents can be seen in Fig. S4. Then, substituents with
more than four rotatable bonds were removed, since it is difficult to perform a thorough
conformational search on very flexible substituents. Furthermore, we discard substituents
with reaction energies for their specific scoring function with 1E> 20 kcal/mol. This
relatively high cutoff is used to minimize the chance of discarding substituents that might
have an improved energy score at a higher level of theory. This left us with 141 possible
substituent candidates.

Next we perform a more thorough conformational search on the 141 substituents, by
re-calculating the scoring function with 100 conformers for each intermediate and optimize
with GFN2-xTB (step 3; Fig. 3). Here an additional, fifth optimization, is added in addition
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Figure 3 Workflow for the DFT verification of substituent candidates from genetic algorithm runs.
The bottom label of each tile refers to the remaining pool of molecules at this particular step of the verifi-
cation process.

Full-size DOI: 10.7717/peerjpchem.30/fig-3

to the four optimizations performed during GA runs. The final optimization is performed
on the full structure with no constraints on the atoms to allow for a full structure relaxation.

We then perform PBE single point energy evaluations on the 10 lowest GFN2-xTB
energy structures and select the lowest PBE energy structure for geometry optimisation
at the PBE level of theory. We noticed that xTB optimizations occasionally lead to the
detachment of the NxHy moiety, and such structures tend to have higher energies at the
PBE level and are thus discarded at this step (Fig. S7).

GFN2-xTB had been used to obtain low energy conformers in the conformer search,
thus the conformers did likely not represent the lowest energy on the DFT surface. As such,
the final lowest DFT SP energy conformers were passed to full DFT-PBE optimization (step
4; Fig. 3) in order to obtain the relaxed structures and thereby relaxed reaction energies at
the PBE level.

As a last step before final substituent selection, the retrosynthesis tool Manifold
(Anonymous, 2022) is used to predict the minimum number of synthetic steps required to
synthesise each substituent from commercially available building blocks, and discard those
with four or more synthetic steps.

After the filtering in step 4 we select the top 15 substituents for scoring functions Eqs.
(1) and (2). As there was only 13 substituents left from scoring function Eq. (3) at this
point, all of these are selected. For this total of 43 substituents, molSimplify is used to
create all 15 catalytic intermediates and these are optimized at the PBE level of theory. This
procedure succeeded for 20 of the substituents. See Figs. S9 and S10 for visualization of
the 43 substituents. The remaining 23 substituents generally failed due to SCF convergence
problems for all or some of the intermediates. In general, we found that the SCF convergence
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to be very sensitive to small changes in molecular structure, which can often be fixed by
manual intervention. However, as this was not necessary for 20 of the substituents we did
not pursue this further. B3LYP singlepoints reaction profiles with GFN2-xTB free energy
corrections were obtained for these 20 substituents. From these 20 we then chose 3 for
closer examination of the reaction profiles and structures.

RESULTS
Reference energies
For modelling the alternating protonation and reduction steps of the Schrock cycle we
apply the same procedure as Thimm et al. (2015) with lutidinium (Lut) acting as proton
donor and decamethylchromocene (Cp2

∗Cr) acting as electron donor. Calculated energies
for both are found in Table S5.

Figure 4A compares the electronic energy profiles of the Schrock catalyst (with the
HIPT substituent) obtained in this study to that obtained by Thimm et al. (2015). Figures
S2 and S3 contain additional direct comparisons between the reaction energies of all sub
reactions. The differences in reaction energies are in the range 0–10 kcal/mol and only
the reaction energy of the N2H+

→ N2H step deviates by more than 10 kcal/mol. There
are three possible reasons for the observed discrepancies: the different solvation model
and auxiliary basis set in ORCA3 and ORCA5, and conformation differences (Thimm et
al. do not provide coordinates). The overall reaction energies, which corresponds to the
following reaction

N2+6[Cp2
∗Cr]+6LutH+→ 2NH3+6[Cp2

∗Cr]++6Lut (5)

are nearly identical. Since this involves many charged species, one would expect that this
reaction energy is most sensitive to solvation effects. The good agreement thus indicates
that differences due to the solvation models are likely to be relatively small (although it
should be noted that the electronic energy of CpCr2+ was found to be extremely sensitive
to the starting structure). Additional calculations reveal that the effect of the difference in
auxiliary basis set have negligible effects on the electronic energy. The main source of the
relatively modest difference in the electronic energy profiles shown in Fig. 4A is therefore
most likely due to conformational effects.

As mentioned in the previous section, computational limitations prevented us from
computing the vibrational free energy corrections at the DFT level of theory. Figure 4B
compares the free energy profiles of the Schrock catalyst computed using GFN2-xTB free
energy corrections to that obtained by Thimm et al. Comparing Figs. 4A and 4B it is evident
that computing the free energy corrections using GFN2-xTB does not introduce bigger
discrepancies for the results from Thimm et al. than those due to conformational effects.
See Fig. S1 for direct comparison of the vibrational corrections. This matches their findings
of the electronic energy differences as the main contributor to the free energy differences.

DFT verified substituents
As previously mentioned, we are able to obtain complete catalytic cycles at the DFT level
of theory for 20 of the GA-generated substituents. For the substituents scored on the last
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Figure 4 Reaction profiles for the Schrock catalyst calculated with PBE optimizations and B3LYP sin-
glepoints as compared to Thimm et al. (2015). (A) Electronic energies, (B) Free energies where the en-
ergies obtained in this work have been augmented with xTB vibrational corrections instead of DFT. Dot-
ted blue lines indicate proton transfer and red lines indicate electron transfer. The x-axis labels refer to the
state of the NxHy moieties on the molybdenum.

Full-size DOI: 10.7717/peerjpchem.30/fig-4

step where NH3 is displaced by N2 five cycles were obtained. Six catalytic cycles were
obtained for substituents scored on the last reduction (NH3

+
→ NH3), and nine full

catalytic cycles for the substituents scored on binding of N2 to form the six-coordinated
intermediate (Table 1). The last column in the table indicate the highest or next highest
change in reaction energy compared to the reference catalyst. The full reaction profile for
each substituent is found in Section S5.2.

The two key questions are whether the xTB electronic energy-based GA search provides
favorable reaction free energies at the B3LYP level and, if so, whether the reaction free
energies of other steps in the catalytic cycle are affected. For the NH3→ N2 reaction the
GA-derived substituents all display more favorable reaction energies than the Schrock
catalyst reference (7.86 kcal/mol), while for the NH3

+
→ NH3 reduction four of the six

substituents have favorable reduction energies. Finally, for the NH3→NH3–N2 step, there
are three substituents for which the reaction energy is lower than for the HIPT substituent.
However, all energy differences are still positive. To see a xTB and DFT comparison of
scoring step reaction energies for the 20 substituents see Fig. S8. We select one substituent
from each scoring function group for further analysis; these are marked in bold in Table 1.
Mol1, Mol8, Mol12 were hand-picked based on their scores and reaction profile.

Reaction profiles
NH3 and N2 exchange
The free energy profile ofMol1 (Table 1) is shown in Fig. 5 together with the PBE optimized
3D structures of the NH3 and N2 intermediates. The energy of the former is indicated by
the lower green bar in the column marked NH3 → NH3–N2 that is connected to the
preceding green bar by a red line (indicating reduction). The energy of this structure is
11.44 kcal/mol higher than the N2 structure, whereas the corresponding structure for HIPT
substituent is 7.86 kcal/mol lower. The likely reason is that the region around the NH3 is
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Table 1 Overview of substituents with fully converged catalytic cycles at the end of the DFT verifica-
tion. The energies in 1G◦ indicate the energy difference of the scoring step used. They were obtained from
B3LYP singlepoint calculations on the PBE optimized structures with xTB vibrational corrections. 11G◦ref
indicates deviations between the highest or next highest free reaction energies of the catalysts compared to
the reference Schrock catalyst.

NH3→ N2 7.86
NH3

+
→ NH3 0.13Schrock catalyst:

NH3→ NH3−N2 11.87
SMILES Scoring/label 1G◦ 11G◦ref

NH3→ N2
1*C(C)(C)CCC1CCCCC1 Mol1 −11.44 9.88 (NH3

+
→ NH3)

1*C(C)Cc1ccc(Cc2ccccc2)cc1 Mol2 −12.32 11.66 (NH3
+
→ NH3)

1*C1(CCCCCl)CCCCC1 Mol3 −11.84 7.82 (NH3
+
→ NH3)

1*C(C)Cc1ccc(CCl)cc1 Mol4 −12.45 8.76 (NH3
+
→ NH3)

1*C(C)(C)CC(=C)C Mol5 −9.80 8.80 (NH3
+
→ NH3)

NH3
+
→ NH3

1*c1ccccc1N=CC(=O)Cl Mol6 −27.28 50.10 (N2H2→ N2H3
+)

1*c1cc(C#N)cnc1C#N Mol7 −23.39 35.21 (N2H→ N2H2
+)

1*c1c(C#N)ccnc1C(=O)Cl Mol8 −12.43 16.56 (N2→ N2H+)
1*c1cc(C(=O)CO)cnc1C#N Mol9 −2.05 18.09 (N2→ N2H+)
1*c1cc(CC(=O)O)cnc1C#N Mol10 2.32 52.73 (NH3→ NH3−N2)
1*c1c(C#N)ccnc1C#N Mol11 5.28 23.12 (N2H→ N2H2

+)
NH3→ NH3−N2

1*CCCOc1ccnc2cccnc12 Mol12 4.57 24.98 (NH2
+
→ NH2)

1*CC=Cc1ncnc2ccccc12 Mol13 5.53 22.99 (NH+
→ NH)

1*CCCc1ncnc2ccccc12 Mol14 10.36 84.85 (N2H+
→ N2H)

1*CCOC(=O)c1ncnc2ccccc12 Mol15 12.81 19.86 (N2→ N2H+)
1*C=NC(=O)c1cccc(Br)c1 Mol16 15.27 25.11 (N2H→ N2H2

+)
1*CCc1ncnc2ccccc12 Mol17 16.86 16.97 (NH+

→ NH)
1*CC(=O)c1cc(C(C)=O)ccc1F Mol18 18.48 41.51 (NH+

→ NH)
1*CCCOc1ncnc2cccnc12 Mol19 24.48 35.47 (NH+

→ NH)
1*CC(=O)c1cc(O)c(C(C)=O)cc1O Mol20 35.88 33.81 (N2H+

→ N2H)

Notes.
1*Denotes the attachment point and all values are in kcal/mol. Substituents marked in bold were selected for further analysis in
‘Reaction profiles’. Reaction energies for all 20 catalytic cycles can be found in the supplementary data and the 2D representa-
tion of each molecule can be seen in Fig. S10.

sterically crowded compared to the N2 complex. For example, H atoms on the NH3 are as
close as 1.95 Å to the H atoms on the nearby methyl groups, whereas the corresponding
H-N distance for the N2 complex is 2.45 Å. For comparison the closest H-H distance
between NH3 and the HIPT substituent is 2.32 Å, which is also consistent with a less
sterically crowded environment around the NH3 and a comparatively lower energy for this
intermediate.

Unfortunately, there is not a similar increase in the energy of the NH3
+ intermediate,

which results in a 9.8 kcal/mol barrier to reduction (compared to 0.1 kcal/mol for the
Schrock catalyst). This barrier (10.6 kcal/mol) is also present in a catalyst where the HIPT
substituents are replaced by methyl groups. So, in a sense this barrier is a ‘‘canonical’’
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Scoring function
ΔE : NH3     N2

Figure 5 Mol1 on the Schrock core (left) and the corresponding energy profile calculated with B3LYP
(right) as compared to the energy profile of the Schrock catalyst. The [1*] on the 2D molecule in the top
left corner denotes the attachment point of the molecule. The 3D structure of [Mo–N2] is shown on the
lower left and [Mo–NH3] on the top.

Full-size DOI: 10.7717/peerjpchem.30/fig-5

barrier presumably due to the decrease in Mo charge upon reduction that results in a
weaker Mo-NH3 interaction (the Mo-N distance increases by 0.035 Å).

Note, the role of the Mo catalyst is to lower the energies between each reaction step.
The only way for a substituent scored on this last reaction step to achieve this, is to move
the NH3 state upwards, as the energy of the N2 state is fixed at the reaction energy for
the reaction in Eq. (5). Thus, future GA optimisations on this part of the energy profile
should include more intermediates (e.g., Mo-NH3

+) to prevent this barrier to reduction
from appearing.

NH3
+ reduction

The free energy profile ofMol8 (Table 1) is shown in Fig. 6 together with the PBE optimized
3D structures of the NH3

+ and NH3 intermediates. It is clear that the GA has achieved the
objective of making the reduction exergonic, by destabilising the NH3

+ more than NH3.
The structure of the NH3

+ intermediate has short distances between both the Mo
and NH3 group, and the Mo and carbonyl oxygens on the substituents which lengthen
significantly upon reduction (from ca 2.1 to 2.5 Å), indicating a decrease in the strength of
these interactions. We propose that these interactions increases the positive charge on Mo
compared to a methyl substituent (with Mullliken charges of 1.92 vs 1.66), which increases
the electrostatic repulsion with the NH3

+ moiety, leading to a destabilization relative to
neutral NH3.

TheMol8 NH3 intermediate is also slightly destabilized relative to HIPT so the catalysts
regeneration is now essentially isogonic (equal in energy).

N2 binding to form 6-coordinated complex
The free energy profile ofMol12 (Table 1) is shown in Fig. 7 together with the 3D structures
of the NH3 and NH3–N2 intermediates. The energy of NH3–N2 structure is 4.6 kcal/mol
higher than the NH3–N2 structure, whereas the corresponding energy difference for the
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+

Scoring function 

ΔE : NH3
+     NH3

Figure 6 Mol8 on the schrock core (left) and the corresponding energy profile calculated with B3LYP
(right) as compared to the energy profile of the Schrock catalyst. The [Mo–NH3]

+ is shown at the bot-
tom and [Mo–NH3] at the top.

Full-size DOI: 10.7717/peerjpchem.30/fig-6

Scoring function 

ΔE : NH3     NH3N2

Figure 7 Mol12 on the schrock core (left) and the corresponding energy profile calculated with B3LYP
(right) as compared to the energy profile of the Schrock catalyst. The [Mo–NH3] is shown on the left
and [Mo–NH3–N2] on the right.

Full-size DOI: 10.7717/peerjpchem.30/fig-7

Schrock catalyst is 11.9 kcal/mol. So while the N2 binding is still not exergonic, the GA
search manages to significantly lower the energy difference. Furthermore, the N2–Mo
distance (2.079 Å) is significantly shorter than for HIPT (3.076 Å, Fig. S12), where the N2 is
essentially unbound. As a result of the stronger N2 binding, the axial ligands are roughly in
a square planar arrangement with a roughly 180◦ NL-Mo-NL angle for the N2 binding site
(where NL is a ligand N). We hypothesize that the cost of increasing this angle is offset by
a stronger interaction between the naphthyridine rings. While this can be hard to quantity
with individual distances, we note that the surface area of the naphthyridine rings are 1,607
and 1,620 Å2 for NH3–N2 and N2, which supports this assertion.
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CONCLUSION AND OUTLOOK
In conclusion, this work presents a genetic algorithm for in silico catalyst discovery of
nitrogen fixation catalysts by searching chemical space for replacements to the HIPT
substituent on the Schrock catalyst. From an extract of the ZINC database of 250K
molecules, a genetic algorithm based workflow with the GFN2-xTB quantum method
was used to discover 299 possible substituent candidates that went through a series of
DFT validation steps which resulted in a final pool of 20 substituents for which full
PBE-optimized catalytic cycles were obtained. These substituents were observed to lower
energies for crucial reaction steps at both the xTB and the B3LYP level of theory. For
one scoring function other sub-reactions energies were increased to a minor degree by
the introduction of new substituents, for the remaining two scoring functions, other
sub-reaction energies were severely increased by the HIPT substituent replacement.

The structures and energy profiles of one promising substituent from each scoring
function were examined in greater detail. Each of the three GA evolved substituents were
seen to lower the reaction energies for the particular scoring step they were evaluated
on. Thus emphasizing the capabilities of the genetic algorithm. The disparity of the
substituents from different scoring functions and the varying degree for which they were
able to effectively catalyze all sub-reactions highlights the importance of the choice of
scoring function. It became evident that scoring on a single reaction step in some cases
was a lacking approach as barriers were introduced for other sub-reactions in the catalytic
cycle.

Further studies should investigate how an extension of the genetic algorithm scoring
functions would impact the quality and disparity of the output substituents. This study
has highlighted the importance of considering multiple reaction steps to hinder the
introduction of barriers. The scoring function could therefore be extended to include
more than two intermediates in order to perform multi-objective optimization of multiple
reaction energies. This could either be reaction energies for selected forward and backwards
reactions or for separate sub-reactions of the Schrock cycle. Furthermore, future scoring
functions could consider the first N2 protonation step and both types of charge transfer
(protonation and reduction), in order to prevent the introduction of barriers of sub-
reactions not involved in the scoring function. Other things to consider could be the effect
of new substituents on the two possible pathways for the NH3→N2 exchange, or the steric
protection of the Mo atom.
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