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ABSTRACT
Protein engineers conventionally use tools such as Directed Evolution to find new
proteins with better functionalities and traits. More recently, computational techniques
and especially machine learning approaches have been recruited to assist Directed
Evolution, showing promising results. In this article, we propose POET, a compu-
tational Genetic Programming tool based on evolutionary computation methods to
enhance screening and mutagenesis in Directed Evolution and help protein engineers
to find proteins that have better functionality. As a proof-of-concept, we use peptides
that generate MRI contrast detected by the Chemical Exchange Saturation Transfer
contrast mechanism. The evolutionary methods used in POET are described, and the
performance of POET in different epochs of our experiments with Chemical Exchange
Saturation Transfer contrast are studied. Our results indicate that a computational
modeling tool like POET can help to find peptides with 400% better functionality than
used before.

Subjects Theoretical and Computational Chemistry, Biophysical Chemistry
Keywords Protein optimization, Genetic programming, Directed evolution, MRI contrast agents,
Evolutionary computation

INTRODUCTION
Advances in computational techniques for learning and optimization have been extremely
helpful in peptide (sequences of amino acids) design and protein engineering. Proteins
are the workhorses of life, the machinery and active components necessary for allowing
biological organisms to survive in their environment. Throughout millions of years,
biological evolution has found a vast variety of proteins. Literature suggests∼ 20,000 non-
modified proteins have been discovered in human body so far following the hypothesis that
one gene produces one protein (Ponomarenko et al., 2016). However, not all of the protein
search space has been explored by natural evolution yet. In science, protein structure and
function prediction has been an active topic for structural biology and computer science.
Protein engineers mainly use the three methods of Rational Design, Directed Evolution
(DE) and De Novo design to find their proteins of interest. Rational Design creates new
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molecules based on extensive prior knowledge of the 3D structure of proteins and their
properties. Directed Evolution does not require as much prior knowledge for protein
optimization and instead, uses random mutagenesis and screening of variants to find fitter
proteins. De novo design uses computational means to design algorithms that learn from
the 3D protein structure and their folding mechanisms to synthesise novel proteins (Singh
et al., 2017).

Computational approaches to the design of proteins have been examined since the
early 1980s (Hellinga, 1998). In that line of work, linear sequences of amino acids
representing proteins in their basic sequential information are given to algorithms as
inputs in order to create models able to predict their secondary properties and to predict
features of their variants, such as inter-residue distances, 3D structural shapes, and protein
folding. Obtaining this information is crucial to predicting protein function and creating
new variants. Different techniques have been applied to this problem to date, some of
which formulate it as a classification problem where a classifying algorithms aims to
find the protein class with respect to structural properties or traits of the peptide under
consideration. Others have taken a more continuous approach and predict numerical
values corresponding to the characteristics of a protein structure. In that case, the applied
techniques are trained to estimate unknown numerical properties of a protein, like
inter-residue distances or hydrophobicity levels.

Protein engineering by Directed Evolution
As we said before, proteins and peptides play an extremely important and integral part in
the life cycle of organisms. They carry out all kinds of natural functions such as forming
muscle tissues, creating enzymes and hormones, and are the building blocks of food and
bio-medicine. Looking at a living cell as a factory would make proteins the workers.
These complex structures are formed from sequences of amino acids, which code for their
structural and phenotypic properties (Alberts et al., 2017). Evolution by natural selection
has produced numerous protein wild-types throughmillions of years, yet has only explored
a fraction of the vast protein search space. There are a total of 20 amino acids that can
code for proteins. To find a peptide consisting of 10 amino acids in a search space of
2010 amino acid sequences is a complex undertaking. Exploring this large search space in
order to discover new and possibly better protein variants is one of the activities of protein
engineering.

As protein engineers studied proteins to understand these complex structures better and
optimize their functionalities or even develop new protein functions, they came up with
DE, now a common technique for reaching these goals (Arnold, 1998). The DE technique
starts with a pool of proteins with similar functionalities to the desired one and imitates
mutation and natural selection in order to create the next generation of fitter proteins,
ultimately optimizing them. Since DE is performed in vitro, it is a time-consuming and
costly approach that requires careful monitoring and screening of massive numbers of
mutant proteins in each generation.

In recent years, many researchers have started to use computational and Machine
Learning (ML) methods to generate models that can predict the phenotypic behavior
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of proteins, based on their genetic and molecular makeup (Yang, Wu & Arnold, 2019).
In contrast to wet lab experiments, however, using computational models enables the
exploration of more of the search space in a significantly shorter amount of time. These
computational models need to be well-trained in order to be effective which requires a
lot of data. Figure 1 shows a general overview of the difference between a conventional
Directed Evolution and a Machine Learning-guided Directed Evolution (ML-DE). In DE,
after monitoring, unimproved mutants are discarded, and only improved proteins get the
chance to be selected for diversity generation. Unfortunately, this approach often causes
DE to get stuck in local optima. Meanwhile, in ML-DE, computational models choose
potential mutants allowing to cover more of the search space and thereby increasing the
chance of escaping from local optima. Even though the state of the art has not reached
this point, an ideal computational model should accurately predict any protein function
in a matter of seconds greatly reducing the need for wet lab methods such as DE; it could
therefore significantly benefit the world of science and medicine.

Genetic programming
Genetic Programming (GP) (Koza, 1992; Banzhaf et al., 1998) is an extension of the Genetic
Algorithm (GA) (Holland, 1992), an algorithm inspired by the Darwinian conception of
natural evolution (Darwin, 1909), in which computational problem-solving models—
usually in the form of computer programs—are evolved and optimized over a repeated
generational cycle. Although all GP algorithms follow a core inspired by natural evolution,
they come in various forms and representations. Normally, the GP process starts with a
population of random individuals representing unknown solutions to a given problem.
These individuals are evaluated by a pre-defined fitness function to measure how well they
can solve the problem. A selectionmechanism is then used to choose parent individuals that
will undergo evolutionary operators (crossover andmutation) and form the next generation
of population. Usually, fitter individuals have a better chance to get selected. During
crossover, parts of the representation of the selected parent individuals are combined
to create one or more offspring individuals with details depending on the algorithm.
The mutation operator randomly alters parts of the newly created offspring individuals.
Sometimes, an additional survival selection step filters out only the better offspring for
inclusion in the population. The entire cyclical process continues until a termination
condition, such as finding a model that satisfies user requirements, is met.

Protein optimization engineering tool
Some of the design principles in developing protein-function-predicting models include
determining (i) how much and what type of information should be given to the system,
(ii) to what extent the results should be trusted, and finally, (iii) what type of problem
solver should be used. We propose Protein Optimization Engineering Tool (POET), a GP
computational tool that can aid DE in order to find new proteins with better functionalities.
The magnetic susceptibility or Chemical Exchange Saturation Transfer (CEST) contrast of
peptides is our goal here to show a proof-of-concept of the efficacy of the method.

CEST (van Zijl & Yadav, 2011) is a magnetic resonance imaging (MRI) contrast
approach in which peptides with exchangeable protons or molecules are saturated and
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Figure 1 Difference between conventional DE andML-DE. (A) Conventional DE starts with parent protein undergoing mutagenesis to produce
close variants. Detailed lab screening is done to throw out the unimproved variants and select the improved ones for the next generation of the
mutagenesis. This process continues until a desirable mutant is found. (B) Commonly in ML-DE, sequence-function models replace the rigorous
screening and selection task in conventional DE. ML-DE is able to explore more of the search space in the same amount of time and has a lower risk
to get stuck in a local optimum. In (B) any of the orange dots can be rationally chosen as the start of the optimization, while in (A) the search space
is limited to the direction of the search.

Full-size DOI: 10.7717/peerjpchem.24/fig-1

detected indirectly through enhanced water signals after transfer. The main advantage of
CEST based proteins is that they can be encoded into DNA and expressed in live cells
and tissue, thus allowing tracking non-invasively with MRI (Gilad et al., 2022; Airan et
al., 2012; Gilad et al., 2007; Perlman et al., 2020). POET here aims to aid DE by predicting
better functioning CEST contrast proteins and replacing the rigorous and costly task of
screening and mutagenesis.

Figure 2 gives a high-level overview of the POET structure. POET can be divided into
the three major phases of (i) model training, (ii) protein optimization & prediction, and
(iii) wet lab experiments. During model training, POET receives an abstract dataset of
amino acid sequences in FASTA format and a trait value corresponding here to their CEST
contrast. POET uses GP to learn valuable motifs in the protein sequences, assigns weights
to them, and creates collections of rules (motifs and weights) as its models. Given a pool
of protein sequences to choose from, an optimized POET model can then select potential
proteins with regard to the best expected CEST behavior. During this protein optimization
& prediction phase, a set of random protein sequences of arbitrary length (here set to 12)
are chosen to go through mutagenesis to find highly fit sequences. Evaluation is performed
using the best previously trained POET model. Once enough generations of mutation and
selection have been done, POET chooses the proteins that are fittest in predicted function
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Figure 2 A high-level overview of POET. POET starts with training its sequence-function models using
a curated dataset of protein sequences and their respective CEST contrast values (Model Training). Pro-
tein Optimization evolves a random pool of protein sequences to predict fitter variants by using previously
trained models for evaluation. Different colors for protein sequences indicate that POET can start from
a random pool and is able to find fitter proteins in a different search space from the starting pool. Pre-
dicted variants are evaluated in wet labs, and their measured values are added back to the protein dataset
to evolve fitter CEST predicting models. The small computer sign on the left side of the proteins differen-
tiates between natural and computational protein sequences.

Full-size DOI: 10.7717/peerjpchem.24/fig-2

for the third phase, wet-lab experiments. During wet-lab experiments, the predicted
sequences are chemically synthesized, and their respective CEST contrast is measured in
MRI. This concludes one round of POET which we call an epoch. The measured values
are added to the protein dataset and the POET experiment continues for another round.
The addition of newly added data is expected to improve the dataset and the potency of
POET models to predict fitter sequences in the next epoch. POET omits the limitation of
the costly and time-consuming monitoring of the peptides in each generation of DE and
predicts a set of proteins that show potential based on the previous results found in its
already known dataset.

The rest of the article is structured as follows: Section 2 discusses the related literature,
Section 3 introduces materials andmethods used for developing POET. In Section 4 reports
on our empirical findings and results. Section 5 summarizes and gives a brief perspective
on next steps and possible future research directions.

RELATED WORKS
The scientific literature indicates how practical computational approaches can be in
protein engineering and particularly ML-DE. In the late 1990s, Simulated Annealing (SA)
was adopted to predict and discover the structure of a hyperthermophile variant of a
protein that could easily bind to human proteins (Malakauskas & Mayo, 1998). They used
Streptococcal protein Gβ1 domain (Gβ1) as the wild-type protein and managed to find a
more stable variant with amelting temperature higher than 100 ◦C. In 2005, Sim, Kim & Lee
(2005) used a fuzzy K-Nearest Neighbor (KNN) algorithm to predict how accessible protein

Miralavy et al. (2022), PeerJ Physical Chemistry, DOI 10.7717/peerj-pchem.24 5/29

https://peerj.com
https://doi.org/10.7717/peerjpchem.24/fig-2
http://dx.doi.org/10.7717/peerj-pchem.24


1TM-Score is a metric to quantify
similarities between topological structures
of proteins. Scores lower than 0.17
correspond to unrelated proteins, while
scores higher than 0.5 generally indicate
the same fold.

residues are to solvent molecules. They incorporated PSI-BLAST profiles as feature vectors
and showed accuracy improvements in comparison to neural networks and support vector
machines. They used a reference dataset of 3460 proteins and a test dataset of 229 proteins
to evaluate their models. Wagner et al. (2005) tackled the same problem but by employing
linear support vector regression and showed the applicability of such computationally
less expensive method in predicting protein folding and relative solvent accessibility of
amino acid residues. In 2020, Xu et al. (2020) compared the accuracy performance of
44 different ML techniques on four public and four proprietary datasets, showing that
different datasets cause dissimilar performance levels for the same algorithms; nonetheless,
most ML techniques show good promise in the area. Notably, Xu (2019) used deep learning
to predict inter-residue distance distribution and folding of protein variants with fewer
homologs (protein with the same ancestry) than commonly required. DeepMind (Senior et
al., 2020) introduced AlphaFold, which applies deep residual-convolutional networks with
dilation to predict protein inter-residue distances and benefited from this intermediary
data to accurately predict protein shapes with a minimum TM-Score1 of 0.7 on 24 out of
43 free modeling domains outperforming the previous best methods. In 2021, AlphaFold2
was released (Jumper et al., 2021) that can predict the 3D structure of proteins greatly close
to the experimental results from their sequence representation outperforming its previous
version. AlphaFold2 uses a different neural network system than its predecessor. The key
differences in the neural network system is the allowance of continuous refinement of all
parts of the structure, a novel equivariant transformer and a loss term that emphasizes on
the orientational correctness of the residues. Most related researches in the field of protein
engineering focus on predicting the structural properties of the proteins. However, the
presented work aims to predict the phenotypic performance of the proteins from their
sequence representation by evolving sequence-function models.

Many research groups have shown that evolutionary approaches can be valuable in
solving the protein structure and function prediction challenge. Siqueira & Venske (2021)
defines the Protein Structure Problem (PSP) and introduces different classes of evolutionary
algorithms and quality metrics to solve the problem. In 1997, Khimasia & Coveney (1997)
defined this challenge as an NP-Hard optimization problem and, aside from performance
evaluation, showed how a Simple Genetic Algorithm (SGA) can be applied to evolve simple
lattice-based structure-predicting models. Rashid et al. (2012) examined five variants of
the GA for solving a simplified protein structure prediction and applied three methods
of (i) exhaustive structure generation, (ii) hydrophobic-core directed macro-move, and
(iii) a random stagnation recovery for enhancing each of these algorithms. Koza & Andre
(1999) used GP and the idea of Automatically Defined Functions (ADFs) to predict the
family of D-E-A-D box proteins. UniRep (Alley et al., 2019) applied sequence-based deep
representation learning to generate an evolutionary, semantically, and structurally rich
representation of protein properties that heuristic models could incorporate to predict
structures and functions of unseen proteins. Seehuus, Tveit & Edsberg (2005) and Seehuus
(2005) utilized Linear Genetic Programming (LGP) (Brameier & Banzhaf, 2007) for motif
discovery. Their results indicated a better accuracy for discovering motifs in different
protein families than traditional tree GP. Fathi & Sadeghi (2018) proposed a GP approach
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to predict peptide sequence cleavage by HIV protease, and Langdon, Petke & Lorenz (2018)
used Grow and Graft GP (GGGP) to predict the RNA folding of molecules. Borro et al.
(2006) employed Bayesian classification to extract features from protein structure and
achieves an accuracy of 45% in predicting enzyme classes. Leijto et al. (2014) based their
work on Borro et al. (2006) and proposed an evolutionary system combining GA with
Support Vector Machines (SVM) for the same purpose, achieving an accuracy of 71%
and outperforming the previous classification methods. Although, the goal of POET is not
protein classification, similar to the previous literature explored in this section, uses a novel
evolutionary approach to evolve sequence function models.

Wu et al. (2019) proposed an ML-DE technique in which a combination of K-Nearest
Neighbor, Linear Regression (LR), Decision Trees, Random Forests and Multi-Layer
Perceptron (MLP) (from scikit library Pedregosa et al., 2011) approaches are used to
generate sequence-function models able to predict how fit a protein is concerning a
specified task. The best model is applied to evaluate proteins during an exhaustive
computational mutagenesis. They evaluated their proposed method by finding fitter
human GB1 binding proteins and show improvements over conventional DE methods.
Linder et al. (2020) focused on improving the lack of diversity during mutagenesis for DNA
and protein synthesis while not sacrificing fitness. They proposed a differentiable generative
network architecture in which deep exploration networks are incorporated to generate
diverse sequences by punishing similar sequence motifs. They employed a variational
auto-encoder to ensure the generated diversity does not result in loss of fitness. They
trained their system to design fitter proteins with regards to polyadenylation, splicing,
transcription, and Green Flourescent Protein (GFP) fluorescence. In a performance
evaluation on the same testbed, their proposed architecture designed fit sequences in
140 minutes while the classical approach of SA would need 100 days to achieve the same
results. In 2021, Repecka et al. (2021) introduced ProteinGAN, a tool that uses Generative
Adversarial Networks to learn important regulatory rules from the semantically-rich
amino acid sequence space and predicts diverse and fit new proteins. ProteinGAN was
experimented with to design highly catalytic enzymes, and the results show that 24% of
their predicted enzyme variants are soluble and are highly catalytic even after going through
more than 100 mutations. Hawkins-Hooker et al. (2021) emphasized how the availability
of data regarding protein properties could be helpful for computational algorithms and
trained their variational auto-encoders on a dataset consisting of approximately 70000
enzymes similar to luxA bacterial luciferase. They used Multiple Sequence Alignment
(MSA) and raw sequence input for their system and showed that MSA better predicts
distances in the 3D protein shape. They also diverged into predicting 30 new variants
not originally in their dataset. Cao et al. (2019) and Samaga, Raghunathan & Priyakumar
(2021) applied neural networks to predict the stability of proteins upon mutations. In
2021, Das et al. (2021) utilized deep generative encoders and deep learning classifiers to
predict antimicrobials through simulating molecular dynamics. POET uses CEST contrast
values of proteins as the function for evolving sequence-function models. The authors of
this work could not identify a research which focuses in discovering such proteins at the
time this document was prepared.
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2A complete set of expressed proteins by an
organism.

Evolutionary algorithms have been employed in motif extraction, function prediction,
drug discovery, and directed evolution for a long time. Yokobayashi et al. (1996) applied
a GA to replace mutagenesis and screening in DE. They used a dataset of 24 peptides
with six amino acid sequences and their respective inhibitory activity levels. In their GA,
each individual shared the same sequence as a data point of the dataset. The population
of individuals went through recombination, while the fitness evaluation happened in wet
labs with protein synthesis. They showed a 36% increase on average inhibitory levels of
the population after six generations of their experiment. Archetti et al. (2007) incorporated
four variants of GP (Tree-GP, Tree-GP with Linear Scaling for fitness evaluation, Tree-GP
with constant input values and Tree-GP with dynamic fitness evaluation) to predict oral
bioavailability, median oral lethal dose and plasma-protein binding levels of drugs of
the dataset available in Yoshida & Topliss (2000). They used Root Mean Square Error
(RMSE) (Willmott & Matsuura, 2005) as their prediction error evaluation metric and
compared their results with classic ML techniques (LR, Least Square Regression, SVM,
and MLP), showing better performance on the GP side. Seehuus, Tveit & Edsberg (2005)
proposed ListGP, a linear-genomeGenetic Programming to discover importantmotifs from
protein sequences. They employed the PROSITE dataset introduced in Hulo (2004) which
represents motifs as regular expressions and contains information about the relevance
between motifs and protein domains. ListGP showed improvements compared to Koza-
style GP with Automatically Defined Functions for the task of classifying 69 protein
families at 99% confidence interval level. Other evolutionary algorithms such as Immune
GA (Luo & Wang, 2010) and the Multi-Objective Genetic Algorithm (Kaya, 2007) have
also been applied to the problem of motif discovery before. Chang et al. (2004) utilized a
Modified Particle Swarm Optimization (PSO) for discovering motifs in protein sequences.
They translate amino acid symbols into numbers using a one-to-one translation table.
Their results for two protein families of EGF and C2H2 Zinc Finger showed 96.9% and
99.5% accuracy, respectively. Much like the researches described in this paragraph, POET
uses an evolutionary technique to evolve and produce sequence-function models able
to predict the phenotypic performance of a given protein sequence. To do so, POET
explores possible motifs found in the given input protein sequence and weighs them to
determine the importance of these motifs while having a specific protein function in
mind. Similar to Yokobayashi et al. (1996) POET models are utilized to replace parts of
the Directed Evolution to accelerate the process. A key difference between POET and
other works done in the field is incorporating a cycle made of both computational and
wet-lab experiments. The sequence-function models evolved by POET are used to predict
new potential candidates (with respect to a specified function) and these candidates are
synthesized and experimented to validate the predictions and also to enhance the initial
dataset of the proteins by adding more data points.

Availability of the relevant data is critical for training or evolving protein structure
predicting models. Uniprot (Uniprot Consortium, 2018) is a massive dataset of protein
amino acid sequences and their respective names, functions, and various structural
properties containing more than 500,000 reviewed and more than 200,000,000 unreviewed
entries. Proteomes2 in this dataset belong to Bacteria, Viruses, Archaea and Eukaryota.
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Brenda (Chang et al., 2020) is a dataset containing functional enzyme and metabolism
data. This dataset consists of more than five million data points for approximately 90,000
enzymes in 13,000 organisms. Structural information of proteins, their metabolic pathways,
enzyme structures, and enzyme classifications are among the data found in this dataset.
Unlike most previous efforts, POET does not use a publicly available dataset. In fact, the
initial dataset used for this experiment only consisted of 42 data points and one of the
contributions of this research is to provide a comprehensive dataset of protein sequences
and their respective CEST contrast values.

While researches in the field of motif discovery and ML-DE are closer to what POET
does, other methods and algorithms are also discussed above to show promising results
for applying computational approaches in protein engineering. These results aid protein
engineers and computer scientists by discovering unknown protein properties and showing
how the challenges in the field could be computationally formulated. Furthermore, some
contributions evaluate the performance of different computational algorithms on the same
general problem. Computer-aided protein engineering and optimization reduce the cost
and time constraints of this line of research and enable exploring parts of the protein search
landscape not easily achievable before. In this article, we propose the Protein Optimization
Engineering Tool (POET), a Genetic Programming tool to aid protein engineers with
finding potent protein variants concerning a specified function. Specifically, POET can
be compared to algorithms used for Machine Learning-guided Directed Evolution. In the
following subsection, we discuss Directed Evolution and ML-DE in detail.

MATERIALS AND METHODS
We employ Genetic Programming as the computational problem solver of POET. In the
following sections, different parts of POET are explained in more detail. Complete details
on the wet-lab experiments and the methods used for synthesizing and evaluating the
proteins can be found in (Bricco et al., 2022).

Representation and Models
The Genetic Programming representation used in POET is a table of rules with four
columns (Fig. 3). Each rule consists of a unique rule ID, a motif, a weight, and a status
bit denoting whether the associated motif has been previously found in protein sequences
of the dataset or not. It is essential to track the status of rules since only rules with the
status of ‘‘1’’ are expressed for model evaluation or sequence prediction. Unexpressed rules
with the status of ‘‘0’’ might be altered by undergoing recombinational operators in later
generations and become useful once their motifs become less random and are found in
the training dataset. Protein Optimization Engineering Tool models are initialized with
constrained random motifs and weights in the first generation of evolution.

Evolved POET models predict the CEST contrast levels of a given protein sequence
in the manner described in Algorithm 1. First, the input protein sequence is searched
for motifs available in the model’s rule table. Once the search is completed, the sum of
the weights of the found motifs represents the CEST contrast prediction made by the
predicting model. POET always prioritizes longer amino acid motifs over shorter ones. For
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Figure 3 A simple POETmodel consisting of four example rules with sequences and values obtained
from an early POETmodel. Each symbol in the motif sequence represents one amino acid. Rules 1, 3, and
4 have a status of 1 and are found in dataset. Rule 2 is not found in the dataset and is not expressed for
evaluation and prediction purposes. Weights can be negative or positive float values.

Full-size DOI: 10.7717/peerjpchem.24/fig-3

example, if the protein sequence in hand is ‘‘TKW’’ and all ‘‘T,’’ ‘‘K,’’ and ‘‘TK’’ motifs are
present in a model table, ‘‘TK’’ is prioritized over ‘‘T’’ and ‘‘K’’ rules and the position index
points to ‘‘W’’ ignoring both of the shorter rules. As shown in the pseudo-code, the reverse
sequence of the same motif is also evaluated for each rule. This is an attempt to extract
more meaningful information from the abstract sequence space while exploring more of
the search space in one go. Imagine a model which has a rule with the motif of ‘‘AKQY’’
which would have a reverse sequence of ‘‘YQKA’’. Considering the reverse sequence of this
rule will remove the need for having another rule with the motif of ‘‘YQKA’’ in the model,
leaving more space in the model’s rule table for new motifs to be found during evolution.
Furthermore, it is computationally less expensive to store and use both motifs as the same
rule. Also in CEST contrast, this assumption is reasonable since the interactions that lead
to contrast should only involve the functional groups and the peptides that we worked
with are too small to allow for the formation of complex secondary and tertiary structures.
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Data: sequence,model
Result: predictedCEST
predictedCEST← 0 ;
position← 0 ;
while position< length(sequence) ; /* Loop through sequence symbols */

do
for rule: model.rules; /* Loop through model rules */

do
if status is 0; /* Unexpressed rule */

then
continue;

end
if length(rule.pattern)+position> length(sequence) then

continue; /* sequence is not long enough */

end
motif ← rule.motif ;
reversedMotif ← reverse(motif ) ;
portion← sequence[position : (position+ length)] ;
ifmotif = portion or reversedMotif = portion; /* motif is found */

then
predictedCEST← rule.weight+predictedCEST ;
break ;

end
end
position← position+1;

end
return predictedCEST ;

Algorithm 1: Pseudo-code for computing the predicted CEST contrast levels using a
POET model. length() represents a function returning the size of a given input string ar-
ray. This algorithm takes a protein sequence and a predicting model as input to output
the predicted CEST contrast value.

Selection mechanism and evolutionary operators used in the GP
Tournament selection (Miller, Brad & Goldberg, 1995) with elitism is used as the selection
mechanism of POET. The individual with the highest fitness will always be selected for
the next generation with no change (elitism). The rest of the population undergoes a
tournament selection in which a pool of five individuals is randomly chosen, and the two
fitter individuals are selected for performing crossover and creating a new offspring for the
next generation.

Crossover: In the POET’s crossover mechanism, every two fit parents chosen by
tournament selection are used to generate one new offspring. All expressed rules (rules
with a status bit of 1) and 20% of unexpressed rules for both parents are selected to form the
new offspring. In order to avoid bloat, if the total number of rules in the offspring model
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Figure 4 A simple crossover example in POET where the maximum allowed rule count for each
model is 5. All the parents’ expressed rules are selected to form the offspring. Unexpressed rules have a
20% chance of being selected while undergoing recombination. In this example, only unexpressed rule
2 of parent A is selected while the unexpressed rule 3 of parent B is not. Recombination of rules forms a
new offspring table with size 7. Since the offspring size exceeds the allowed rule count by 2, two rules are
removed during the model shrinking process. Unexpressed rules are prioritized to be removed in such
a case. Since after removing all the unexpressed rules, the offspring still does not have a legal size, the
shortest expressed rule is removed to form the final offspring.

Full-size DOI: 10.7717/peerjpchem.24/fig-4

table exceeds the maximum allowed size (an arbitrary value representing how large POET
models can get with respect to number of rules), POET uses a shrink step to cut down the
number of unexpressed rules and, if necessary, some of the expressed rules (prioritizing
removing shorter rules over more extended rules) for the model to reach the permitted
model size. At every step, model tables are sorted, arranging from longer motifs to shorter
ones to follow the same design principle of prioritizing the discovery of longer motifs.
Figure 4 illustrates a simple example of crossover in POET.

Mutational Operators: Multiple mutational operators are used in POET, all of which
have a chance to increase the diversity of the models and help explore different valleys of
the fitness landscape:
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1. Add Rule Mutation (ARM): Adds a randomly generated rule to the model.
2. Remove Rule Mutation (RRM): Randomly selects a rule and removes it from the model.
3. Change Weight Mutation (CWM): Alters the weight of a randomly selected rule of the

model by adding or subtracting a small random value (between 0 and 1) to/from it
(equal chance).

4. Add to Pattern Mutation (APM): Randomly selects a rule and adds a amino acid symbol
to its pattern.

5. Remove from Pattern Mutation (RPM): Randomly selects a rule and removes a symbol
from its motif.
POET uses Algorithm 2 to apply these mutational operators on individual models.
Data: population
Result: population ; /* Mutated population */

for individual in population ; /* Loop through population */

do
if rand(0,1)<ARM rate ; /* Add Rule Mutation */

then
individual←ARM (individual);

end
if rand(0,1)<RRM rate ; /* Remove Rule Mutation */

then
individual←RRM (individual);

end
for rule in individual.rules ; /* Loop through individual rules */

do
if rand(0,1)<CWM rate ; /* Change Weight Mutation */

then
rule←CWM (rule);

end
if rand(0,1)<APM rate ; /* Add to Pattern Mutation */

then
rule←APM (rule);

end
if rand(0,1)<RPM rate ; /* Remove from Pattern Mutation */

then
rule←RPM (rule);

end
end

end
Algorithm 2: Pseudo-code of the mutation evolutionary operator of POET. ARM and
RRM happen on individual models, while CWM, APM, and RPM can mutate every rule
of an individual. Each of these mutational operators has a configurable mutation rate.
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Evaluation of models
RMSE is used as the metric to evaluate the fitness of the POET models. During model
evaluation, RMSE is calculated by measuring the error between the predicted and the
actual values for the CEST contrast of all the proteins in the dataset. RMSE is an error
measurement, and therefore lower values of it indicate accurate predictions. Since error
values are squared when using RMSE as the fitness metric, models with high error rates are
punished more than those whose error rate is lower. The following equation describes the
RMSE formula:

RMSE =

√
1
n
6n

i=1

(
di− fi

)2
where n is the number of data points, i is an index referring to each individual, di is themea-
sured value and fi is the predicted value for individual i. To better train POETmodels starting
with a relatively small dataset, 10-fold cross-validation (Arlot, Sylvain & Celisse, 2010) was
used. In k-fold cross-validation, the dataset is divided into k groups, and each model gets
evaluated k times. Each time, a group is selected to act as the test set while the rest work
as the training set. This process continues until all groups are selected as the test set. The
individual’s fitness is the average fitness among all the k iterations. K-fold cross-validation
helps evolve more accurate and generalized models, especially if the dataset is small.

Data:model , symbols, generations
Result: population ; /* Predicted protein population */

population← init_random() ; /* Randomly initialize the population */

gen← 0;
while gen< generations do

for sequence in population do
old_sequence← sequence;
random_site← rand(0,length(sequence);
random_symbol← rand_choice(symbols);
sequence[random_site]← random_symbol ; /* Alter a random site */

ifmodel.predict(sequence)<model.predict(old_sequence) then
sequence← old_sequence ; /* Keep the altered sequence */

end
end
gen← gen+1;

end
sort (population);
return(population);

Algorithm 3: Evolving protein sequences using a trained Protein Optimization Engi-
neering Tool sequence-function model. rand_choice() chooses a random element from a
given list of elements. model.predict() predicts the fitness of a given protein sequence us-
ing the best previously trained model. Starting from a random population of sequences
increases the novelty in prediction.
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Optimization and prediction of peptides that produce high CEST
contrast
The proposed system is a multi-epoch feedback system, here used to predict better proteins
concerning their CEST contrast level measured by MRI. As illustrated in Fig. 2, in each
epoch of the experiment, a dataset containing protein sequences and their respective
CEST contrast values evaluated in MRI is given to POET. POET computationally evolves
protein sequence-function models over generations, and the fittest model is selected for
the next step. Then a pool of randomly generated protein sequences is given to the fittest
POET model for evaluation. A copy of the best sequence regarding predicted fitness is
saved without change (elitism), and the pool of the protein variants undergo mutagenesis,
with every mutant being only one symbol away from their parent protein. If there is no
improvement after mutation of a sequence, the old sequence reverts, and no changes are
applied to that individual. This process repeats for an arbitrary number of generations.
Afterward, the fittest predicted proteins in the sequence pool of the latest generation are
chosen for wet-lab measurements. Finally, the new data points are added to the dataset to
improve the POET models’ accuracy and learn from previous epochs. Algorithm 3 exhibits
the details of this implementation.

External knowledge on soluble proteins
Medical characteristics of protein engineering make it very important for CEST protein
agents to be soluble in water. Therefore, applying a simple hydrophobicity threshold
improves finding soluble proteins and better predictions. We use the data shown in
Table 1. If the sum of the hydrophobicity levels of amino acids in a peptide sequence is
less than zero, we consider the peptide insoluble and do not use that sequence in protein
optimization and prediction (sequence fitness is set to zero). This step is applied during
the prediction of new proteins in which a population of protein sequences are evolved to
discover proteins that potentially have high CEST contrast values. In the prediction step,
if a generated sequence does not follow the hydrophobicity rule (sum of hydrophobicity
levels is below zero), it will be considered to have a CEST contrast of zero and is not
evaluated using an evolved model.

Dataset and code availability
For the first epoch of the experiment, a dataset containing only 42 data points derived
from available literature was used. After that, at least ten new data points were added in
each epoch dataset through wet-lab experiments based on the predicted proteins. In the
final epoch of the experiment, the dataset contained 159 data points of protein sequences
and their respective CEST contrast values, with some of the new variants being wild types.
Table 2 shows the dataset curated during POET epochs. The curated dataset as well as the
source code for running POET experiments written in the Python programming languages
are provided with this article.
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Table 1 Table of amino acids and their respective hydrophobicity values (Rose et al., 1985).

Symbol Hydrophobicity Symbol Hydrophobicity

I −0.31 Q 0.58
L −0.56 C −0.24
F −1.13 Y −0.94
V 0.07 A 0.17
M −0.23 S 0.13
P 0.45 N 0.42
W −1.85 D 1.23
J 0.17 R 0.81
T 0.14 G 0.01
E 2.02 H 0.96
K 0.99

RESULTS
Experimental setup
The experiments were performed for eight epochs. Multiple experiments were run with
different configuration of parameters and the ones that produced the best results were
chosen. Table 3 shows a brief overview of the used experimental parameters of POET for the
case study. Experiments were conducted onMichigan State University’s High-Performance
Computing Center (HPCC) computers details of which are available in (ICER, 2022). Each
of the experiment repeats were run in parallel using a single HPCC CPU core (2.5 GHz)
and 8 GB of RAM on a single node.

Evolution of models per epoch
In each epoch of the experiment, POET is run 50 times, each repeat evolving a population
of 100 models over 10,000 generations. The overall best model is used to predict the
protein sequences to be tested in a wet lab at the end of each epoch. Table 4 summarizes
the performance of the trained models throughout the experiments. Training RMSE is the
RMSE calculated for each epoch dataset. For example, to predict the proteins of epoch 7,
models were trained using all the available data of epochs 1 to 6. Test RMSE is calculated for
the training set coming from the 10-fold cross-validation. Best Overall RMSE is measured
for the best models of each epoch on all available data and not only the epoch data. Finally,
Average Overall RMSE indicates the RMSE levels of the 50 best models of each epoch on
average against all available data. Test RMSE for all the epochs is slightly greater than
the training fitness for the same epoch showing a slight over-fitting of the models. Each
POET model can have a maximum number of 100 rules that can be either expressed or
unexpressed. There were no assumption on the number of expressed or unexpressed rules
for eachmodel, however, it is interesting to report these values since they could be a ground
for further future analysis. The best model of each Epoch approximately uses all of the
possible 100 rule space while almost 50% of those rules are expressed (on average around
44 rules out of 97 are expressed). Experiments performed for each epoch are not built
upon the previous evolved models. In other words, the evolution of models start with a
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Table 2 All the available data in the dataset used for all the epochs of POET including the mock test data and the discovered protein sequences. All the data points
with epoch N and less than N were used to evolve models and predict the data points marked as N +1.

# Sequence CEST
contrast
value
(3.6 ppm)

Epoch # Sequence CEST
contrast
value
(3.6 ppm)

Epoch # Sequence CEST
contrast
value
(3.6 ppm)

Epoch # Sequence CEST
contrast
value
(3.6 ppm)

Epoch

1 KKKKKKKKKKKK 12.5 1 45 GIFKTTKCKHNS 7.61 2 89 HDDKNKESDD 7.479407 6 133 KPCKWAGRACAK 16.69529 TEST

2 KSKSKSKSKSKS 17 1 46 SNHKMSECRGLR 5.98 2 90 QERRDDILWD 2.296864 6 134 CQLAWRPCAKAS 19.532 TEST

3 KHKHKHKHKHKH 12.7 1 47 FNSNKITPTSNM 5.29 2 91 KRIIEDDQLE 15.19034 6 135 QCAGWVQKRQIQ 23.37685 TEST

4 KGKGKGKGKGKG 10.8 1 48 VNSDPSNGQMRD 4.15 2 92 VCNRIEPLKPIL 21.82239 7 136 RRCQAQEFWLGA 9.515134 TEST

5 KSSKSSKSSKSS 13.2 1 49 LSNRRGREQYAG 7.08 2 93 LHSSQWLKVDHLL 18.17873 7 137 GLIEARAMQQCC 2.704976 TEST

6 KGGKGGKGGKGG 11.8 1 50 QTATENSQMNSG 3.64 2 94 VINKVISNPCVN 8.107188 7 138 QCRAGAMPAMYV 12.05809 TEST

7 KSSSKSSSKSSS 13 1 51 QTEHYENSARNS 1.09 2 95 GNKKNWRWYKNR 14.71334 7 139 NFLRAQRQCQKQ 18.16368 TEST

8 KGGGKGGGKGGG 12.1 1 52 KDRTSKPKRPWC 8.67 3 96 ICLKSQPICGID 29.49547 7 140 AQCCQHRKGYMN 14.69376 TEST

9 RRRRRRRRRRRR 22 1 53 GRKRGAIWKDTK 12.75 3 97 LWSDIKMKLKKT 49.37196 7 141 NRVTESVRNVKM 3.683273 TEST

10 RSRSRSRSRSRS 12.8 1 54 CCWHNPKWRRTR 18.46 3 98 NWRDCLSLIVPN 3.179373 7 142 NVVVQRRNHHTS 28.05341 TEST

11 RGRGRGRGRGRG 17.2 1 55 KYTKTRKQSSKA 22.48 3 99 KMGKLIGIPVLK 47.83688 7 143 VINKVISCPCVN 8.109024 TEST

12 RHRHRHRHRHRH 5.5 1 56 RGKMPLRWMTRK 17.14 3 100 NDISMCNKNNNW 8.824446 7 144 GGRVWEWNVAA 6.08351 TEST

13 RTRTRTRTRTRT 18.7 1 57 GNCPMKVCSPMG 8.89 3 101 VSLQCWELGPNK 15.70919 7 145 NNKCQVVAAFVM 5.401218 TEST

14 RTTRTTRTTRTT 16.3 1 58 VNLPMVMPNLRM 4.53 3 102 TVSEPVMMVSVS 7.771304 8 146 VLTWSAVNNNVQ 0 TEST

15 RTTTRTTTRTTT 18.9 1 59 GPMPMNAKMKLC 5.81 3 103 PRSWEVKEKETM 18.27337 8 147 NCGVNLVNAVGQ 0 TEST

16 TTTTTTTTTTTT 6.5 1 60 KVIRYVVAPMKL 8.94 3 104 PGGVRSNDLLEV 11.18031 8 148 HIAVVNWVNVGH 0 TEST

17 TKTKTKTKTKTK 14.1 1 61 IKGMNIKMPTDQ 9.95 3 105 PVNRLGKMSKNR 28.83256 8 149 CNNIQGRNNSVW 0 TEST

18 DTDTDTDTDTDT 2.2 1 62 MWQMKWTRKTRE 16.24 4 106 VGSVKSGNLRMR 26.22986 8 150 VPNIQVKGSK 4.99326 TEST

19 ETETETETETET 1.7 1 63 HGRKWKRTKFDD 15.49 4 107 TSKSKKRMTAKK 29.83349 8 151 PVARKVVQICHP 18.63698 TEST

20 TTKTTKTTKTTK 12.6 1 64 DKRKIKQKMWWG 10.86 4 108 ETNVRVKVVSES 5.707696 8 152 VTRMTIQVKGSK 30.16713 TEST

21 DTTDTTDTTDTT 4 1 65 RRMVNRTITRMW 15.01 4 109 EPSNLPKGMNEK 24.69024 8 153 MAMADAAAPMNA 6.965346 TEST

22 ETTETTETTETT 4.4 1 66 HWSTCTRTRTLS 17.1 4 110 RLWNSGEGRGEN 12.26758 8 154 MKVAAAMAPKQV 38.66109 TEST

23 TTTKTTTKTTTK 13.8 1 67 WWWKPKREDFMK 6.58 4 111 ELNTGLVLVNWK 0 8 155 PVVYKTVIQCCD 4.333159 TEST

24 DTTTDTTTDTTT 4 1 68 HIKWRLTKGTRT 16.08 4 112 RPPMLNVVRVVG 6.489129 TEST 156 KVLWRMPAQIIQ 13.51793 TEST

25 ETTTETTTETTT 4 1 69 WDRTSTRPSSVL 13.46 4 113 KWVVRPRIRRLL 14.62156 TEST 157 VSVVATGCVWET 14.33556 TEST

26 TTTTTKTTTTTK 13.8 1 70 KPWHGCASRTKR 16.19014 4 114 IGVLRSVKQTVR 28.55074 TEST 158 AKCKVQSANVCK 37.82153 TEST

27 DTTTTTDTTTTT 7.2 1 71 KKRLHWIRWHCG 12.01536 5 115 VINKVISNPCVN 8.516833 TEST 159 VAWVMKAHVCTM 4.201038 TEST

28 ETTTTTETTTTT 5.9 1 72 RKHHGWRWEQWK 13.59362 5 116 ETNVRVKVVSES 2.368102 TEST
(continued on next page)
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Table 2 (continued)
# Sequence CEST

contrast
value
(3.6 ppm)

Epoch # Sequence CEST
contrast
value
(3.6 ppm)

Epoch # Sequence CEST
contrast
value
(3.6 ppm)

Epoch # Sequence CEST
contrast
value
(3.6 ppm)

Epoch

29 DSDSDSDSDSDS 2.5 1 73 WFGLQRHLKKKD 19.0715 5 117 RLPKRVQGNVEK 30.61573 TEST

30 DSSSDSSSDSSS 7 1 74 CHLKDLRKMGLR 10.1388 5 118 GLGNQHVVVLGV 3.528919 TEST

31 DSSSSSDSSSSS 9.1 1 75 KMWDWEQKKKWI 34.11149 5 119 KVRCLVEARPSW 8.194995 TEST

32 KKRKKHKKGKKP 11.9 1 76 QRHDSHRHGLWL 7.543669 5 120 HLVVSPRVSWGC 5.30282 TEST

33 KKAKKKGKKHKK 9.9 1 77 LELKLGKRPMGW 29.24477 5 121 IIRSPICCVSRV 12.89188 TEST

34 KKGKKKGKKHKK 11.3 1 78 GQRWLYKMKDSM 11.86265 5 122 DKRKIKQKMWWG 19.13841 TEST

35 KKGKKKGKKPKK 9.3 1 79 MWVKGMKHKKMK 13.23495 5 123 RKHHGWRWEQWK 20.00466 TEST

36 MPRRRRSSSRPVRRRRR
PRVSRRRRRRGGRRRR

19 1 80 LDHTWGKWGHQS 11.50256 5 124 EMRQWKWMWENA 6.580628 TEST

37 DWNNYLYQNLH 0 1 81 DKVCKIQKRKWH 12.51172 5 125 PIKQIAWPIIEH 13.6599 TEST

38 SYYWLWWHQQI 0 1 82 WDWEQKKKWI 31.26163 6 126 KMWDWEQKKKWI 24.09143 TEST

39 NWNWWGLSYLA 0 1 83 ERQEEKIKKW 20.79427 6 127 ARNRKKIMMRWI 29.01464 TEST

40 NQYSNWNKNYK 6.94 1 84 SDGSKIKDRD 8.630329 6 128 NAPWKHWRIINE 8.898582 TEST

41 NENQWHYYWRQ 0 1 85 SSDQDRDKWL 16.82505 6 129 NKQRRMLSRERS 28.52089 TEST

42 NGTLYLNNYYE 0 1 86 LLRLLGLVER 3.037419 6 130 LSQQPRKRATWR 12.60838 TEST

43 NSSNHSNNMPCQ 14.06 2 87 KEEVWLKWLI 13.42497 6 131 IRRWNDRIRITS 13.90809 TEST

44 IRTYLRKRNSTQ 8.03 2 88 KGKLDKDRNL 23.28052 6 132 MAALLYQHRLARR 3.528221 TEST
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Table 3 Experimental parameters used for the case study.

Parameter Value

Population size 100
Tournament size 5
Max rule motif length 9
Max table rule count 100
Number of generations 10,000
Unused rule crossover rate 20%
Mutation rate 16% for all types

Table 4 Comparison of performance of the overall best POETmodels at generation 10,000 for all the
epochs.

Epoch Data
points

Training
RMSE

Test
RMSE

Best
overall
RMSE

Average
overall
RMSE

Total
rules #

Expressed
rules #

E1 42 1.272 1.307 10.189 16.583 97 44
E2 51 1.558 1.576 11.001 15.882 97 45
E3 61 2.238 2.258 10.185 13.276 96 45
E4 71 2.308 2.326 10.096 12.786 96 44
E5 82 2.898 2.919 8.974 11.531 97 44
E6 92 3.651 3.674 8.247 11.349 96 44
E7 102 3.923 3.944 8.686 10.646 97 44
E8 112 4.891 4.916 7.845 9.954 97 44

random population from scratch in each epoch but with a larger dataset. An increase in the
RMSE level of the best model is evident as the epoch number increases (Training RMSE
column) showing the difficulty of finding fitter models on more data points. This increase
does not indicate that models of later epochs are less accurate since the dataset used for
evaluating each model is different. To support this claim and to show that the RMSE levels
actually improve over epochs, it is interesting to see how well the same best models for
each epoch perform when tested against all available data. When tested against all available
data (Average Overall RMSE column), as the epoch number increases, the RMSE values for
average of the models decreases, showing that the trained models are improving on average
in each epoch (also illustrated in Fig. 6). As for the best models of each epoch, RMSE levels
slightly increase for epoch 2 and epoch 7 compared to epoch 1 and epoch 6, respectively.
However, RMSE of the best model in epoch 8 is lower than all previous epochs.

To further clarify the results, Fig. 5 illustrates the evolution of models for all eight
epochs. The drop in RMSE values in early generations is visible in all the experiments and
is due to starting with randomly initialized populations. The same evolutionary method
is used throughout all the epochs; however, the number of data points in each epoch
varies from the previous one due to the addition of new data at the end of each epoch. For
example, for epoch 1, the training dataset had only 42 data points making it easier for the
algorithm to achieve lower RMSE values by quickly over-fitting the data. Meanwhile, 111
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Figure 5 Evolution of the POETmodels over generations for eight epochs of the POET experiment.
The fitness metric is Training RMSE (RMSE over epoch data), and therefore, lower values indicate more
accurate measurements.

Full-size DOI: 10.7717/peerjpchem.24/fig-5

data points were available in the dataset used for epoch 8, which explains higher RMSE
values. Furthermore, in earlier epochs, the 50 best models performed more similarly, while
models performance varies more in the later epochs.

In each epoch, aftermodel training, the best POETmodel is used to choose fitter proteins
in a large pool of artificially generated protein sequences. In this process, all the generated
sequences are evaluated using the model and the top 10 sequences are subsequently selected
to be tested in wet labs. A mock test was designed to analyze this process on a small dataset
of 43 protein sequences with actual measured CEST contrast values. None of the data
points in this set were used in the training of the best POET model (best model of E8).
These data points were given to the best POET model to evaluate and sort based on their
predicted CEST contrast values. For a perfect model, the order of proteins after sorting
would be the same as the order of these proteins sorted based on their actual CEST contrast
values.

Figure 7 shows predicted order made by the best model of Epoch 8 in orange and their
actual order in the dataset in blue. Although not significantly, the two series positively
correlate with Pearson correlation coefficient value of 0.63. In each POET epoch, 10 new
sequences are chosen to be evaluated in wet labs. An interesting observation is that five out
of the top 10 fittest protein sequences are among the top 10 predictions of the best model.
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3MTRasym refers to Asymmetrical Metric

Figure 6 Improvement of the POETmodels in each epoch of the experiment.Overall RMSE (RMSE
over all available data) levels for the best models of each epoch (blue) and the average overall RMSE of all
the models in each epoch (orange) are tested against all available data.

Full-size DOI: 10.7717/peerjpchem.24/fig-6

Figure 7 Predicted ranks (orange) of the protein sequences in a mock set versus their actual rank
(blue). The proteins under the red line were among the top 10. The check-marked bars indicate top 10
protein sequences which were also predicted by the best model as top 10.

Full-size DOI: 10.7717/peerjpchem.24/fig-7

Improvement of CEST Contrast Proteins
While this article focuses on the computational aspects of this work, details of the wet-lab
experiments and how these experiments are performed can be found in Bricco et al. (2022).
An essential aspect of the design goal of POET is to replace parts of DE in order to enhance
the process by finding fitter proteins in a shorter time with less cost. We measure the CEST
contrast levels during each epoch of our experiment. MTRasym

3 (Wu et al., 2016) is the
most common metric for evaluating CEST contrast protein agents and determines the
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4Radio-Frequency.

signal strength of the target proteins in an MRI environment and is calculated through the
following equation:

MTRasym(+τ )=
S−τ −S+τ

S0

in which S+τ and S−τ is the measured signal at spectral location τ with RF4 saturation at
two points of +τ and −τ respectively. S0 is the exact measurement without RF saturation
(Wu et al., 2016). We normalized MTR against K12, a peptide of 12 K (lysine) amino acids,
to have a fair comparison across all cycles of our experiments. This peptide was chosen due
to its high MRI contrast value and its similarity to the other reported results.

After the second cycle of our experiment, our predicted peptides, on average, had a higher
contrast value than K12. On cycle seven, POET predicted a protein with an approximately
400% increase in contrast to K12 (Results available in Bricco et al., 2022).

Prior efforts to increase CEST contrast focused on increasing the charge, since positively
charged amino acids, such as lysine, provide the exchangeable protons that produce
contrast, and it was believed that the best way to increase contrast would be to increase
the number of these exchangeable protons (Farrar et al., 2015). However, since POET’s
exploration is not limited to specific parts of the search space, we managed to find proteins
that do not follow this principle and yet have a high CEST contrast value. Details of this
experiment can be found in Bricco et al. (2022).

Figure 8 demonstrates the most frequently observed motifs among the best models of
the 50 repeats performed for epoch 8. 63 of the discovered motifs are common between at
least 10% of the models in epoch 8. Motifs with a single amino acid symbol are the most
trivial to find and therefore are the most common motifs among the models. In addition,
four motifs with a length of higher than six symbols are found. All of these motifs are listed
as the x-axis of Fig. 8.

DISCUSSION AND FUTURE DIRECTIONS
The main contribution of this article is POET, a tool based on Genetic Programming to
predict protein functions from the abstract and yet semantically rich representation of
amino acid sequences of proteins and peptides. Directed Evolution starts mutagenesis
from proteins with analogous properties to the desired one. Similar starting points make
it highly likely for this process to get stuck in a local optimum. Unlike Directed Evolution,
POET starts the prediction process from random sequences, enabling it to explore different
areas of the protein search space possibly jumping between optima to evolve fitter models.
Results indicate that it is possible to evolve fitter Chemical Exchange Saturation Transfer
contrast predicting models over epochs, with the best model of Epoch 1 having an RMSE
score of 10.189 over all available data, while the best model of Epoch 8 has an RMSE of
7.845 for the same dataset. Running a mock experiment to evaluate the best model of
Epoch 8 (Best model selected for predicting sequences of the next epoch), this model was
able to find five of the top 10 Chemical Exchange Saturation Transfer proteins. Comparing
the ranks predicted by the best model and the actual ranks of the proteins in the dataset
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Figure 8 Frequency of discovered motifs in the best models of the 50 repeats of epoch 8.Due to the
simplicity and the high number of data points only motifs are shown that are common between at least
10% of the models.

Full-size DOI: 10.7717/peerjpchem.24/fig-8

with respect to their CEST contrast showed a positive correlation with Pearson r value of
0.63.

Our findings demonstrate an improvement in the Chemical Exchange Saturation
Transfer levels of the predicted proteins with the best value from prior work being 19
(salmon protamine), and POET discovering 27 peptides which produce higher contrast
(see Table 2). During the experiments, a protein with four times higher CEST contrast than
K-12 was discovered. Results on Fig. 8 suggests that there are common motifs discovered
between the best-evolved models while some diversity persists. This diversity, along with
the randomness of POET has been beneficial in our experiments by predicting a diverse
range of protein sequences and guiding us to explore sections of the search space, which
was not possible before using conventional Directed Evolution methods.

Another contribution of this work is curating a rich dataset consisting of 159 proteins
and their respective Chemical Exchange Saturation Transfer contrast values (for 3.6
PPM) during the eight epochs of the experiment. As a side discovery, some of the
predicted proteins indicated that fitter proteins do not necessarily follow conventional
bio-engineering theories and by their relatively low concentration of positively charged
amino acids. One notable example is NSSNHSNNMPCQ (Bricco et al., 2022), producing
greater contrast than the existing reporter KKKKKKKKKKKK (Gilad et al., 2007), while
having a neutral charge. This dataset is made available for researchers in this manuscript.

The same algorithm with the same number of generations under-performs in evolving
accurate models as the dataset grows. The Protein Optimization Engineering Tool is
a modular system with the potential of improvement on many fronts. For example,
dynamic recombination rates and fitness evaluation by considering motif diversity in the
population can be an excellent approach to improving models’ evolution over generations.
Incorporating ideas of active learning to enhance the prediction and selection of the
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proteins to be tested in the wet labs could potentially improve the chances of finding fitter
proteins in fewer epochs. Adding more structural information and proven natural rules to
quickly explore more extensive parts of the search space is also a viable future direction.
Although the focus of this research was on evolving CEST contrast proteins, the capabilities
of POET is not limited to evolving sequence-function models of this type. Therefore, it will
be interesting to test POET with datasets of different protein functionalities. Furthermore,
each evolved POETmodel aims to fit a local optima. It would worthwhile to try an ensemble
method which uses a combination of POET models to more accurately predict the CEST
contrast values of given protein sequences.
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