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ABSTRACT
The substitution of Ile to Val at residue 117 (I117V) of neuraminidase (NA) reduces
the susceptibility of the A/H5N1 influenza virus to oseltamivir (OTV). However, the
molecular mechanism by which the I117V mutation affects the intermolecular
interactions between NA and OTV has not been fully elucidated. In this study, we
performed molecular dynamics (MD) simulations to analyze the characteristic
conformational changes that contribute to the reduced binding affinity of NA to
OTV after the I117V mutation. The results of MD simulations revealed that after the
I117V mutation in NA, the changes in the secondary structure around the mutation
site had a noticeable effect on the residue interactions in the OTV-binding site.
In the case of the WT NA-OTV complex, the positively charged side chain of R118,
located in the β-sheet region, frequently interacted with the negatively charged side
chain of E119, which is an amino acid residue in the OTV-binding site. This can
reduce the electrostatic repulsion of E119 toward D151, which is also a negatively
charged residue in the OTV-binding site, so that both E119 and D151 simultaneously
form hydrogen bonds with OTV more frequently, which greatly contributes to the
binding affinity of NA to OTV. After the I117V mutation in NA, the side chain of
R118 interacted with the side chain of E119 less frequently, likely because of the
decreased tendency of R118 to form a β-sheet structure. As a result, the electrostatic
repulsion of E119 toward D151 is greater than that of the WT case, making it difficult
for both E119 and D151 to simultaneously form hydrogen bonds with OTV,
which in turn reduces the binding affinity of NA to OTV. Hence, after the I117V
mutation in NA, influenza viruses are less susceptible to OTV because of
conformational changes in residues of R118, E119, and D151 around the mutation
site and in the binding site.
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INTRODUCTION
Influenza A viruses infect a variety of avian and mammalian species, including humans
(Webster et al., 1992). Influenza A viruses are divided into subtypes based on antigenic
differences of two virus surface glycoproteins, hemagglutinin (HA) and neuraminidase
(NA) (Gamblin & Skehel, 2010). A total of 16 HA (H1–H16) and nine NA (N1–N9)
subtypes have been isolated from wild waterfowl so far (Fouchier et al., 2005). HAmediates
virus entry into the host cell by binding to a terminal sialic acid on the host cell surface. NA
is responsible for removing sialic acid to facilitate the release of progeny viruses from
infected cells. Several NA inhibitors, such as oseltamivir (OTV), zanamivir, laninamivir,
and peramivir, are currently available for the treatment of influenza virus infection
(McKimm-Breschkin, 2012). Among them, OTV is the most widely used anti-influenza
drug (Kim et al., 1997).

OTV-resistant H1N1 and H5N1 viruses have been isolated from humans as well as
avian or swine species (Monto et al., 2006; Rameix-Welti et al., 2006; McKimm-Breschkin
et al., 2007). This suggests that viruses could acquire reduced sensitivity to OTV not
only by drug-selective pressure but also by natural genetic variation. In the mid-2000s,
several H5N1 viruses with an Ile-to-Val substitution at position 117 of NA (I117V) were
isolated from some avian species (Hurt et al., 2007; McKimm-Breschkin et al., 2007;
Govorkova et al., 2009; Chen et al., 2010; Ilyushina et al., 2010; McKimm-Breschkin et al.,
2013; Takano et al., 2013; Marinova-Petkova et al., 2014; Creanga et al., 2017; Kode
et al., 2019). In vitro and in vivo experiments have shown that the I117V mutant NA
conferred a reduction in susceptibility to OTV as compared to the wild-type (WT) (Hurt
et al., 2007; McKimm-Breschkin et al., 2007; Chen et al., 2010; Ilyushina et al., 2010;
McKimm-Breschkin et al., 2013; Takano et al., 2013; Creanga et al., 2017; Kode et al., 2019).
Interestingly, residue 117 is not contained in the drug-binding site of NA, which consists of
eight functional residues (R118, D151, R152, R224, E276, R292, R371, and Y406; N2
numbering) and 11 framework residues (E119, R156, W178, S179, D198, I222, E227,
H274, E277, N294, and E425; N2 numbering) (Colman, Varghese & Laver, 1983; Colman,
Hoyne & Lawrence, 1993). The molecular mechanism underlying how the mutation of
residue 117, which is not part of the drug-binding site of NA, indirectly affects the
molecular interaction between NA and OTV has not been fully elucidated.

Several computational studies using molecular dynamics (MD) simulations have
reported on the molecular mechanism of reduced susceptibility to OTV in the I117V
mutant (Takano et al., 2013; Mhlongo & Soliman, 2015). Takano et al. (2013) evaluated
the effects of the I117V mutation in NA on OTV susceptibility in vitro, in vivo, and
in silico. Their experimental results showed that the I117V mutation caused a slight
reduction in the susceptibility of NA to OTV in vitro and dramatically in vivo. They
also analyzed a single 2.5-ns trajectory obtained from MD simulations to further
investigate the molecular mechanism by which the I117V mutation reduces the
susceptibility of NA to OTV. Their computational results showed that the I117V mutation
decreased the binding affinity for OTV because of the loss of hydrogen bonds between the
carboxyl group of OTV and the side chain of R118 of NA. Mhlongo & Soliman (2015)
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analyzed four distinctive 25-ns trajectories obtained from MD simulations to investigate
the molecular mechanism of the reduced susceptibility of the I117V mutant NA to OTV.
Their computational results showed that the I117V mutation distorts the orientation
of OTV in the drug-binding site of NA because of the loss of hydrogen bonds between the
amino group of OTV and the side chain of E119 of NA, resulting in reduced binding
affinity of NA to OTV. In these previous computational studies, the production trajectories
of the MD simulations were too short to reach reliable statistical results. In addition,
they focused on changes in the direct interactions between OTV and amino acid
residues in the drug-binding site of NA. However, it was not clear how the I117V mutation
of NA at a point outside its drug-binding site could cause changes in the intermolecular
interaction with OTV.

In this study, we performed four distinctive 100-ns MD simulations for the WT and
I117V mutant NA-OTV complexes in the A/H5N1 influenza virus. Based on the multiple
production trajectories obtained from MD simulations, we analyzed the characteristic
conformational changes around the I117V mutation site of NA, which greatly affected
the intermolecular interactions with OTV. The results showed that after the I117V
mutation in NA, the binding affinity between NA and OTV was reduced due to the
conformational change of R118 adjacent to the mutation site, which affected the
interactions of E119 and D151 with OTV. Thus, the present study successfully clarified the
molecular mechanism by which the I117V mutation reduces the susceptibility of NA to
OTV.

METHODS
Initial structures
The coordinate of WT avian influenza virus A/H5N1 NA in complex with OTV was
obtained from the Protein Data Bank (PDB code: 2HU4) (Russell et al., 2006).
The complex structure of the I117V mutant NA and OTV was generated by replacing
isoleucine (Ile) 117 in the WT complex with valine (Val). H5N1 NA contains one calcium
ion, which is necessary for structural stability (Smith et al., 2006), but no calcium ions
were found in the crystal structure registered as 2HU4. The coordinate of the calcium ion
in NA was obtained from the structure of A/H5N1 NA registered as 3CL0 (Collins
et al., 2008). The protonation state of histidine (His) in NA at pH 7 was determined
using the PDB2PQR server (Dolinsky et al., 2004). The other ionized residues, such as
arginine (Arg), lysine (Lys), aspartic acid (Asp), and glutamic acid (Glu), were treated as
charged entities. The missing hydrogen atoms in NA and OTV were added using the LEaP
program in the Amber 20 package (Case et al., 2020). For each disulfide bond in NA, a
covalent bond was created between the proximate cysteine residues using the LEaP
program. The FF14SB variant of the AMBER force field was used to describe NA
(Maier et al., 2015). The parameters of the generalized AMBER force field (GAFF)
were applied to OTV (Wang et al., 2004). The partial atomic charges in OTV were
determined on the basis of ab initio quantum chemistry calculations at the HF/6-31G(d)
level with the Gaussian 16 program package (Frisch et al., 2016), following the restrained
electrostatic potential fitting procedure (Bayly et al., 1993). The complexes of NA and
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OTV were dissolved in a truncated octahedral box filled with water molecules, where the
box size was set so that there was a distance of at least 10 Å between the complexes and
the boundary of the box. The TIP3P model was used to represent water molecules
(Jorgensen et al., 1983). The total charge of the systems was neutralized by the addition
of sodium counter ions. Periodic boundary conditions were adopted.

MD simulations
MD simulations were performed using the PMEMD module in the Amber 20 package
(Case et al., 2020). The geometry of each system was optimized (energy minimized)
using the steepest descent algorithm for 500 steps, followed by the conjugate gradient
algorithm for 4,500 steps. After geometry optimization, each system was heated until the
temperature (T) reached 300 K over a period of 200 ps in the NVT ensemble, while
applying a harmonic restraint of 2 kcal mol−1 Å−2 on the complexes of NA and OTV,
except for the hydrogen atoms. The temperature was regulated using the weak-coupling
algorithm (Berendsen, Postma & Funsteren, 1984). After heating, 10 ns of MD simulations
were performed to equilibrate the system in the NpT ensemble at T = 300 K and a
pressure (p) of 1.0 atm. The pressure was maintained using a Berendsen barostat.
After equilibration, additional 10-ns MD simulations were performed in theNpT ensemble
at T = 300 K and p = 1.0 atm. During MD simulations, all covalent bond lengths were
constrained using the SHAKE algorithm (Ryckaert, Ciccotti & Berendsen, 1977). The time
step of MD simulations was set to 2 fs. A cutoff for the non-bonded intermolecular
interactions was set to 8 Å. Long-range electrostatic interactions were treated using the
particle-mesh Ewald method (Darden, York & Pedersen, 1993). Finally, four copied
MD simulations were performed for 100 ns starting with different coordinates and
velocities in the NpT ensemble at T = 300 K and p = 1.0 atm, where the initial coordinates
were randomly selected from the additional 10-ns trajectories after equilibration and
the initial velocities were randomly reassigned. The production phase to be analyzed was
the last 80 ns of MD simulations, which was determined based on the root mean square
displacement (RMSD) of the backbone atoms in the proteins with respect to the initial
structure along the simulation time. The time series of RMSD and radius of gyration for
the backbone atoms in the WT and I117V mutant NA are shown in Figs. S1 and S2.
The changes in RMSD were almost constant after 20 ns, indicating that the MD
simulations properly converged in the region of 20–100 ns.

Binding free energy calculations
Binding free energies were determined for 400 frames extracted from the four distinctive
production phases of the MD simulations, based on the Molecular Mechanics Poisson
Boltzmann Surface Area (MM-PBSA) continuum solvation method (Kollman et al., 2000).
The MM-PBSA calculations were performed using the MMPBSA.py program in the
Amber 20 package (Miller et al., 2012; Case et al., 2020). The adaptive Poisson Boltzmann
(PB) solver was used to estimate the electrostatic contribution to the solvation free energy
(Baker et al., 2001). The linear PB equation was solved using a maximum of 1,000
iterations. The surface area for the nonpolar solvation energy term was determined using
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the Linear Combination of Pairwise Overlap (LCPO) algorithm (Weiser, Shenkin & Still,
1999). In calculations using continuum methods, the dielectric properties of the protein
interior and solvent are represented in terms of the dielectric constants. In this study, the
dielectric constant of the protein interior was set to four, as a relatively large dielectric
constant is desirable for NA, considering that its binding site contains many charged
residues (Hou et al., 2011). The dielectric constant of the solvent phase was set to 80.
The ionic strength was set at 150 mM. The ratio between the longest dimension of the
rectangular finite-difference grid and that of the solute was set to four.

Entropies due to the vibrational degrees of freedom were calculated for 100
configurations by normal mode analysis using the NAB program in the Amber 20 package
(Case et al., 2020). The geometry of each configuration was optimized (energy minimized)
with a generalized Born solvent model, using a maximum of 10,000 steps with a target
root-mean-square gradient of 10−3 kcal mol−1 Å −1.

RESULTS
Binding structures and energies
Figure 1 shows the snapshot images obtained from the MD simulations for the WT and
I117V mutant NA-OTV complexes, which show the OTV binding site and the region
adjacent to residue 117. As shown in Fig. 1, OTV bound to the WT or I117V mutant NA
by forming hydrogen bonds with two negatively charged residues, E119 and D151, and
three positively charged residues, R152, R292, and R371. Residue R118 has a positively
charged side chain similar to R292 and R371 in the binding site, but no hydrogen
bond formation with OTV was observed. This is supported by the co-crystal structure of
WT A/H5N1 NA with OTV (PDB code: 2HU4) (Russell et al., 2006) showing that R118 is
not in a position to form hydrogen bonds with OTV.

Table 1 summarizes the computed binding free energies (ΔG) of OTV for the WT and
I117V mutant NA obtained from the MM-PBSA calculations, along with the enthalpy
(ΔH) and entropy (TΔS). The binding free energies of OTV were computed to be
−14.60 and −11.88 kcal mol−1 for the WT and I117V mutant NA, respectively. The 2.72
kcal mol−1 increase in the binding free energy of OTV due to the I117V mutation
could slightly reduce the susceptibility of this inhibitor to NA. This is supported by the fact
that the I117V mutant NA has a 3- to approximately 50-fold decrease in the relative
susceptibility to OTV compared with the WT NA in H5N1 viruses (Hurt et al., 2007;
McKimm-Breschkin et al., 2007; Chen et al., 2010; Ilyushina et al., 2010; McKimm-
Breschkin et al., 2013; Takano et al., 2013; Creanga et al., 2017; Kode et al., 2019).
According to the WHO’s antiviral working group criteria, influenza A viruses with
<10-fold change in the half maximal inhibitory concentration (IC50) value were
characterized as exhibiting normal inhibition, while those with 10- to 100-fold and
>100-fold changes exhibited reduced and highly reduced inhibition, respectively (World
Health Organization, 2012). If experiments are done under the same conditions, the
relative binding free energy of ΔΔG = ΔG(1) – ΔG(2) can be approximated using ΔΔG ≅ RT
ln (IC50

(1)/IC50
(2)), where R is the ideal gas constant and T is the temperature.

The experimentally observed 3- to 50-fold change in the IC50 value after I117V mutation
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corresponds to a binding free energy difference of 0.7−2.3 kcal mol−1. The current results
are qualitatively consistent with the experimental studies, indicating that the MD
simulations, which form the basis for subsequent analyses, are reliable.

In this study, we adopted the single-trajectory approach in the MM-PBSA calculation,
because it assumes that no significant conformational changes occur upon ligand binding.
The single-trajectory MM-PBSA approach has been widely used in previous studies,
to determine binding free energy differences because of its good balance between
computational cost and reliability (Wang et al., 2019). In some cases the single-trajectory

Figure 1 Snapshot images of the neuraminidase-oseltamivir complexes. (A) Wild-type (WT) and (B)
I117V mutant NA-OTV complexes. The upper panels show the overall structure of the complex in the
cartoon representation, where the helix and sheet parts are colored in red and blue, respectively.
The lower panels show the drug-binding site and the region adjacent to residue 117, where the positively
charged residues (R118, R152, R156, R292, and R371) in the OTV binding site are represented in blue,
and the negatively charged residues (E119 and D151) are represented in red.

Full-size DOI: 10.7717/peerj-pchem.19/fig-1

Table 1 Calculated binding free energies (in kcal mol−1) for oseltamivir to the wild-type (WT) and
I117V mutant influenza neuraminidase obtained from the MM-PBSA calculations.

Δ H TΔS ΔG ΔΔG

WT −33.78 ± 0.08 −19.18 ± 1.15 −14.60 ± 1.23

I117V −31.06 ± 0.08 −19.18 ± 1.20 −11.88 ± 1.28 2.72
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approach used in this study is less reliable for determining binding free energies than the
multiple-trajectory approach that accounts for conformational changes upon drug
binding. However, we emphasize that the binding free energy difference of 2.72 kcal mol−1

between the WT and I117V mutant NA determined in the present study is in good
agreement with the experimentally determined value of 0.7–2.3 kcal mol−1, which reveals
that our MD simulations are sufficiently reliable for analyzing changes in various
intra-protein interactions, such as hydrogen bonding, and secondary structures, which is
the focus of this study.

As shown in Fig. 1, residue 117 did not interact directly with OTV in either WT or
I117V mutant NA. Thus, the decrease in binding affinity between OTV and NA due to the
I117V mutation could be the result of indirect effects due to changes in the interaction
network of amino acid residues inside the protein. As shown in Table 1, the change in the
entropic component (TΔS) upon I117V mutation is almost zero, which indicates that the
difference in the binding free energies (ΔΔG) is mostly enthalpy-driven rather than
entropy-driven. Based on this observation, further analyses that focus on the factors
responsible for changes in the direct interactions between OTV and NA are expected to
be helpful. To elucidate the molecular mechanism by which the I117V mutation of NA at a
point outside its drug-binding site could reduce the susceptibility to OTV, we performed
the following detailed analysis based on the results of MD simulations.

Hydrogen bond analysis
Figure 2 shows the hydrogen bond occupancies of OTV for the WT and I117V mutant
NAs during the MD simulations. The standard errors in hydrogen bond occupancies are
small (less than 1%); the 95% confidence intervals for hydrogen bond occupancies are
shown as error bars in Fig. 2. Hydrogen bonds were assigned using PYTRAJ (Nguyen et al.,
2016), a Python front-end package of the CPPTRAJ program (Roe & Cheatham, 2013).
As shown in Fig. 2, OTV bound to NA by forming hydrogen bonds with five charged
amino acid residues, E119, D151, R152, R292, and R371. In hydrogen bonding with OTV,
the side chains of E119 and D151 acted as hydrogen acceptors, while the side chains of

Figure 2 Hydrogen bond occupancies of oseltamivir for the wild-type (WT) and I117V mutant
neuraminidases. In hydrogen bonding with OTV, the side chains of E119 and D151 acted as hydro-
gen acceptors, while the side chains of R152, R292, and R371 acted as hydrogen donors. Error bars
represent 95% confidence intervals. Full-size DOI: 10.7717/peerj-pchem.19/fig-2
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R152, R292, and R371 acted as hydrogen donors. The occupancies of the hydrogen
bonds formed by R292 and R371 with OTV were almost 100% in both the WT and I117V
mutant NA-OTV complexes, indicating that the interactions were extremely stable.
The hydrogen bond formed between OTV and R152 was found to be relatively unstable,
with an occupancy of approximately 60% in both WT and I117V mutant cases. Notable
changes caused by the I117V mutation in NA were observed in the hydrogen bonds
formed by E119 and D151 with OTV. Because of the I117V mutation in NA, the hydrogen
bond occupancy of the E119-OTV pair increased by approximately 10%, whereas the
hydrogen bond occupancy of the D151-OTV pair decreased by approximately 30%. D151
formed hydrogen bonds with the adjacent positively charged R156 amino acid residue
when not bound to OTV. Thus, the instability of the hydrogen bond with D151 after the
I117V mutation might be the major reason for the reduced binding affinity of NA to OTV.

Secondary structure analysis
Figures 3A and 3B show the secondary structure occupancies in the region containing the
100th to 150th residues of NA for the WT and I117V mutant NA-OTV complexes,
respectively. Figure 3C shows the changes in secondary structure occupancy after the
I117V mutation. The secondary structure occupancies for all the residues in the NA are

Figure 3 Secondary structure occupancies in the region containing the 100th to 150th residues for
the neuraminidase-oseltamivir complexes. (A) The wild-type (WT) and (B) I117V mutant NA-OTV
complexes. (C) Change in the secondary structure occupancies due to the I117V mutation. The sec-
ondary structures were classified into three simplified categories: helix, sheet, and coil. The helix and
sheet components are represented by red and blue bars, respectively, while the rest correspond to the coil.
Error bars represent 95% confidence intervals. Full-size DOI: 10.7717/peerj-pchem.19/fig-3
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shown in Fig. S3. The standard errors for secondary structure occupancies are small (less
than 1%); the 95% confidence intervals for secondary structure occupancies are shown as
error bars in Figs. 3A, 3B and 3C. The secondary structures were classified into three
simplified categories (helix, sheet, and coil) using the PYTRAJ package (Nguyen et al.,
2016) based on the DSSP program (Kabsch & Sander, 1983). The occupancies of secondary
structures were calculated based on the assignment results for 3,200 three-dimensional
structures extracted from four distinctive 80-ns trajectories in the production phase of
MD simulations. In Fig. 3, the helix and sheet components are represented by red and blue
bars, respectively, while the rest correspond to the coil.

As shown in Fig. 1, NA has an overall β-sheet-rich structure with partial helices.
In the WT NA, as shown in Fig. 3A, the helix moieties were found in the region from the
105th to 111th residues and from the 143rd to 149th residues of NA. The 117th residue of
interest in this study was located in the β-sheet region formed by residues between the
115th and 124th residues. After the I117V mutation, the secondary structure of the NA
was significantly altered.

As shown in Fig. 3C, the occupancy of the helix component was significantly reduced in
the region between residues the 147th and 149th residues with the I117V mutation.
The secondary structure near the mutation site was also changed due to the I117V
mutation, indicating that the β-sheet occupancy of R118 was reduced by approximately
12%. This may be due to a change in the orientation of R118 caused by the mutation
of the bulkier Ile to the smaller Val at the 117th residue, which reduces the hydrogen-
bonding interaction with residue L134 located in the adjacent antiparallel β-sheet moiety.
Such conformational changes of R118 at a point inside the drug-binding site of NA
would lead to a decrease in the binding affinity of the I117V mutant for OTV, due to the
indirect effect of the Ile-to-Val mutation at residue 117.

Residue-residue and residue-drug interactions
Figure 4 shows the correlations between the distances of the R118-E119 pair (RR118-E119)
and the D151-OTV pair (RD151-OTV) in the WT and I117V mutant NA-OTV complexes
as scatter plots and probability densities. The value of RR118-E119 was determined by
measuring the inter-atomic distance between the carbon atom in the guanidino group of
R118 and the carbon atom in the carboxyl group of E119. The value of RD151-OTV was
determined by measuring the inter-atomic distance between the carbon atom in the
carboxyl group of D151 and the nitrogen atom in the amino group of OTV. Figure 5
shows the conformational fluctuations of the OTV binding site and adjacent I117V
mutation site in the WT and I117V mutant NA-OTV complexes by superimposing 100
snapshot images obtained from the MD simulations.

In the case of the WT NA-OTV complex, as shown in Fig. 4, the distribution of
RD151-OTV was generally localized in a monomodal manner around 3.6 Å, indicating that
D151 tends to interact with OTV by forming hydrogen bonds. On the other hand, the
distribution of RR118-E119 was bimodal, with one strongly localized around 4.2 Å and
the other weakly distributed around 6.0 Å, indicating that the side chains of R118 and E119
tended to interact closely, but were sometimes too far apart to interact. These characteristic
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Figure 4 Correlations between residue-residue and residue-drug interactions. Scatter plots and
probability densities for the distance of the R118-E119 pair (RR118-E119) versus the distance of the D151-
OTV pair (RD151-OTV) in the wild-type (WT) and I117V mutant NA-OTV complexes.

Full-size DOI: 10.7717/peerj-pchem.19/fig-4

Figure 5 Superimposed snapshot images for the neuraminidase-oseltamivir complexes. (A) Wild-
type (WT) and (B) I117V mutant NA-OTV complexes. OTV is represented in green, and residue 117 is
indicated in orange. The positively charged residues (R118, R152, R156, R292, and R371) in the OTV
binding site are represented in blue, and the negatively charged residues (E119 and D151) are represented
in red. Full-size DOI: 10.7717/peerj-pchem.19/fig-5
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conformational fluctuations of R118, E119, and D151 can also be seen in the snapshot
images of the three-dimensional structure shown in Fig. 5A.

In the case of the I117V mutant NA-OTV complex, as shown in Fig. 4, the distribution
of RD151-OTV was bimodal, such that in addition to the peak observed around 3.6 Å, a peak
also appeared around 6.2 Å, unlike in the WT case. This indicates that, after the I117V
mutation, the frequency of hydrogen bond formation between D151 and OTV was
reduced, which is also supported by the results shown in Fig. 2. The relatively large peak
around 6.2 Å also suggests that the 150 loop of NA was frequently opened after the
I117V mutation, similar to what has been observed in the NA mutants of many
drug-resistant strains (Han, Liu & Mu, 2012; Kar & Knecht, 2012; Woods et al., 2012;
Schaduangrat et al., 2016; Yadav, Igarashi & Yamamoto, 2021). The distribution of
RR118-E119 was multimodal, with peaks near 4.2 Å and 6.0 Å as in the WT case, and an
additional weak peak appearing near 7.4 Å. Here, compared to the WT case, the
probability density of the main component at around 4.2 Å decreased, while that of the
components at around 6.0 Å and 7.4 Å increased. This shows that after the I117V
mutation, the side chains of R118 and E119 tended to separate frequently, thus not
interacting with each other, compared to the WT case.

DISCUSSION
WT NA-OTV complex
In the WT NA-OTV complex, the residue-residue interaction between R118 and E119
may play a key role in enhancing the residue-drug interaction between D151 and OTV to
increase the binding affinity of the WT NA to OTV. As shown in Figs. 1A and 5A, the
negatively charged E119 interacts with the positively charged amino group of OTV,
together with the negatively charged D151. Here, E119 and D151 tend to approach
each other when interacting with OTV simultaneously, but the closer they are, the stronger
the electrostatic repulsion between the negatively charged side chains. However, as shown
in Fig. 2, the hydrogen bond occupancy of the E119-OTV and D151-OTV pairs was
approximately 80% for both, indicating that E119 and D151 can form relatively stable
hydrogen bonds with OTV. As shown in Fig. 3A, R118 is in the β-sheet region, indicating
that its side chain can be rigidly oriented. Owing to the strong directivity of R118, derived
from its secondary structure formation, its positively charged side chain can frequently
interact in parallel with the negatively charged side chain of the adjacent E119. When
R118 and E119 interact, the positive and negative charges of their side chains neutralize
each other, thereby suppressing the electrostatic repulsion between E119 and D151.
Thus, both E119 and D151 can simultaneously form hydrogen-bonding interactions with
OTV, which contributes to the enhancement of the binding affinity of NA to OTV.

I117V mutant NA-OTV complex
In the I117V mutant NA-OTV complex, the binding affinity of NA to OTV may be
reduced by the weakening of the residue-drug interaction between D151 and OTV,
accompanied by a decrease in the opportunity for residue-residue interaction between
R118 and E119. As shown in Fig. 3C, the occupancy of R118 forming the β-sheet structure

Yadav et al. (2021), PeerJ Physical Chemistry, DOI 10.7717/peerj-pchem.19 11/19

http://dx.doi.org/10.7717/peerj-pchem.19
https://peerj.com/physical-chemistry/


decreased after the I117V mutation, indicating that the directionality of its side chain
was weakened. The weakening of the directionality of its positively charged side chain
reduces the opportunity for interaction with the negatively charged side chain of the
adjacent E119. The reduced interactions between the side chains of R118 and E119 are
shown in Fig. 4. As mentioned earlier, in the WT NA-OTV complex, the interaction
between R118 and E119 can contribute to reducing the electrostatic repulsion between
E119 and D151. However, in the I117V mutant NA-OTV complex, the electrostatic
repulsion between E119 and D151 can be enhanced, since R118 has less opportunity for
interaction with E119. This inhibits both E119 and D151 from simultaneously forming
hydrogen-bonding interactions with the same positively charged amino group of
OTV, resulting in a decrease in the binding affinity between NA and OTV. Thus, the
change in the interactions of these residues after the I117V mutation slightly reduces the
binding affinity of NA to OTV, resulting in a reduction in OTV drug susceptibility to
influenza viruses.

As mentioned in the Introduction, several computational studies that use MD
simulations have reported on the molecular mechanism associated with the lower
susceptibility of the I117V mutant to OTV (Takano et al., 2013; Mhlongo & Soliman,
2015). Takano et al. (2013) analyzed a single 2.5-ns MD trajectory to show that the loss of
hydrogen bonding between the R118 side chain in NA and the OTV carboxyl group
after I117V mutation is responsible for the reduced susceptibility of NA to OTV.
A previous study by Takano et al. (2013) showed that hydrogen bonds are formed between
the R118 residue of WT NA and OTV; however this was not observed in the previous
study by Mhlongo & Soliman (2015) or in the current study. We speculate that this
discrepancy is due to the trajectory used for analysis in the previous study by Takano et al.
(2013), which was too short to adequately sample the conformational space of the
system. Mhlongo & Soliman (2015) analyzed four distinctive 25-ns MD trajectories and
suggested that the I117V mutation affects residue-residue interactions in NA that cause
the drug-binding site to change its conformation, thereby altering residue-drug
interactions between NA and OTV; however, the details were not clear. In the current
study, we elucidated correlations between the residue-residue interaction of the R118-E119
pair and the residue-drug interaction of the D151-OTV pair in NA-OTV complexes
by analyzing four distinctive 80-ns trajectories obtained fromMD simulations, as shown in
Fig. 4. As a result, we clarified the detailed molecular mechanism by which the I117V
mutation in NA alters the inter-residue interactions between R118, E119, and D151, and
destabilizes the residue-drug interaction between D151 and OTV, thereby reducing the
susceptibility of NA to OTV.

We speculate that the I117V mutation not only affects the susceptibility of NA to
OTV, but also viral fitness. With regard to viral fitness, we expect to extend the present
study in the future to clarify the effects of the I117V mutation on the binding affinity
of the natural sialic acid substrate to NA. However, according to Adams et al. (2019), viral
fitness not only depends on the binding affinity between the substrate and the enzyme, but
also on the catalytic efficiency of the enzyme. Hence, clarifying the catalytic reaction
mechanism of NA using expensive computational methods, such as the QM/MM method
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(Sousa et al., 2017), is required to study the effect of NA mutations on viral fitness. Since
analyzing the catalytic reaction of NA is far beyond the scope of this study, we simply
mention it here as a future subject.

Designing a potential drug design against I117V mutant strains
As summarized in Table 1, the I117V mutation in NA reduces the binding free energy
of NA to OTV by 2.72 kcal mol−1, which corresponds to an approximate 100-fold decrease
in the relative susceptibility of the I117V mutant NA to OTV compared to that of WT
NA. The IC50 value of OTV has been experimentally observed to change by a factor of
3–50 upon I117V mutation in NA (Hurt et al., 2007;McKimm-Breschkin et al., 2007; Chen
et al., 2010; Ilyushina et al., 2010; McKimm-Breschkin et al., 2013; Takano et al., 2013;
Creanga et al., 2017; Kode et al., 2019). Compared with substitutions that are selected
under drug pressure and increase IC50 by more than 600-fold, such as H274Y (Hurt et al.,
2012), the I117V mutation does not dramatically affect susceptibility to OTV. Therefore,
OTV treatment may be effective against the I117V mutant strain of the influenza virus.
However, the I117V mutation may affect OTV resistance in synergism with other
mutations. For example, Hurt et al. (2012) found that the introduction of the dual
I117V + H274Y mutation in NA significantly decreased susceptibility to OTV
(a 1,896-fold increase in IC50) compared to that resulting from the H274Y mutation
alone (a 650-fold increase in IC50). Therefore, based on the new knowledge gained in this
study, we propose guidelines for drug design that avoid the loss of drug sensitivity
associated with the I117V mutation in preparation for the possible emergence of potent
drug-resistant strains.

Based on our study, we suggest that an inhibitor with a longer positively charged group
is better than one with a shorter positively charged group, such as the amino group in
OTV, to avoid resistance from the I117V mutation that affects interactions between the
inhibitor and the E119 and D151 NA binding site residues. A longer positively charged
group in the inhibitor helps to reduce electrostatic repulsion between the negatively
charged E119 and D151 side chains. For example, OTV has a short positively charged
amino group that interacts with residues E119 and D151, while zanamivir has a long
positively charged guanidino group. In fact, the I117V mutation in NA resulted in a
significant 50-fold change in the IC50 value for OTV but only a 1.6-fold change in the IC50

value for zanamivir, which indicates that zanamivir is effective against the I117V mutant
strain (McKimm-Breschkin et al., 2013). In this study, we used molecular simulations to
understand the molecular mechanism of OTV resistance associated with the I117V
mutation in NA in detail, which led to the establishment of new molecular design
guidelines that effectively solve the drug resistance problem.

CONCLUSIONS
In this study, we theoretically investigated the molecular mechanism of reduced OTV drug
susceptibility in the A/H5N1 influenza virus harboring the NA I117V mutation using MD
simulations.
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In the WT NA-OTV complex, the interaction between R118 and E119 can play an
important role in increasing the binding affinity of NA to OTV. In this case, the
positively charged side chain of R118, located in the β-sheet region, can frequently interact
with the negatively charged side chain of E119, preventing the electrostatic repulsion
between E119 and D151. This enables both the negatively charged side chains of E119 and
D151 to simultaneously form hydrogen bonding interactions with the positively charged
amino group of OTV, thereby contributing significantly to the binding affinity between
NA and OTV.

In the I117V mutant NA-OTV complex, the binding affinity of NA to OTV can be
reduced by decreasing the opportunity for interaction between R118 and E119. In this case,
the mutation reduces the tendency of R118 to form the β-sheet structure, leading to
less frequent interaction between its positively charged side chain and the negatively
charged side chain of E119. This increases the electrostatic repulsion between E119 and
D151, making it difficult for both to simultaneously form hydrogen bonds with OTV,
which in turn reduces the binding affinity between NA and OTV. Thus, after the I117V
mutation in NA, influenza viruses are less susceptible to OTV because of changes in the
residue interactions between R118, E119, and D151.

The present study has successfully clarified the molecular mechanism by which the
I117Vmutation in NA reduces the OTV drug susceptibility of the A/H5N1 influenza virus.
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