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ABSTRACT

We present a method for the automatic determination of transition states (TSs) that is based on Grimme’s

RMSD-PP semiempirical tight binding reaction path method (J. Chem. Theory Comput. 2019, 15,

2847-2862), where the maximum energy structure along the path serves as an initial guess for DFT TS

searches. The method is tested on 100 elementary reactions and located a total of 89 TSs correctly. Of

the 11 remaining reactions, nine are shown not to be elementary reaction after all and for one of the two

true failures the problem is shown to be the semiempirical tight binding model itself. Furthermore, we

show that the RMSD-PP barrier is a good approximation for the corresponding DFT barrier for reactions

with DFT barrier heights up to about 30 kcal/mol. Thus, RMSD-PP barrier heights, which can be estimated

at the cost of a single energy minimisation, can be used to quickly identify reactions with low barriers,

although it will also produce some false positives.

INTRODUCTION

The computational determination of chemical reaction networks [1;2;3;4;5;6] requires that the estimation of

barrier heights and/or location of transition states (TSs) be automated. Many methods for automated bar-

rier height estimation and TS location have been proposed. [7;8;9;10;11;12;13;2] However, the computational

demand of these methods are significantly higher than for locating minima.

Recently, Grimme [14]. presented a method (RMSD-PP) for the rapid estimation of reaction paths

based on a semiempirical tight-binding model (GFN2-xTB [15;16]). The predicted path can be used in

a barrier estimate and the maximum energy structure as a TS guess in more expensive methods. Here,

the performance on both are tested. This method is attractive to use when screening large amounts of

reactions, as it is not much more expensive than a geometry optimization and the GFN2-xTB method has

been parameterised for the entire periodic table up to Z = 86. However, for it to be practically useful it

needs to work in an automated framework.

The paper is organized as follows. First, the automated procedure for locating transition states is

presented. Then, the method is applied to 100 elementary reactions suggested by Zimmerman [13;17] and

lastly we conclude on the results.

METHOD

The idea behind the RMSD-PP method is to add a Gaussian biasing potential ”pushing” the molecule

away from the reactant structure and a Gaussian biasing potential ”pulling” the molecule towards the

product structure. A geometry optimization should (provided that good parameters for sizes and widths of

the biasing potentials are used) take the reactant structure to the product structure along the minimum

energy path. The path is further refined by 2-4 optimization steps without any bias at every point on the
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path.

Figure 1 shows a flowchart of the automated procedure for locating transition states (TSs). The

reactant and product structures with same atomic ordering are required as input. The procedure starts

with an RMSD-PP path search run with respective kpull and kpush values of -0.02 and 0.01 Eh and an α of

0.6 1/a0 (parameter set 1, Table S1). In addition to this run, two additional runs are performed where the

kpull and kpush values are multiplied by 1.5 and 2.25. The number of optimization steps used to refine the

GFN2-xTB path is fixed to 3 in all runs. A run is deemed successful if the root mean square deviation

(RMSD) of the end structure compared to the product structure is less than 0.3 Bohr and the reaction path

with the smallest absolute values of kpull and kpush are selected. If the reaction does not complete, the

setup for the path search is changed: the last structure of the run is saved and used as product structure in

the next run while the product structure is used as reactant structure (trial 2, parameter set 1, Table S1).

The same procedure is then repeated for trials 3-4 and 5 (Table S1) until completion is achieved. If all five

attempts fail, then the entire procedure is repeated with an electronic temperature of 6000 K (increased

from 300 K). If the reaction again fails to complete then the method is deemed to fail for the reaction,

although we did not observe this for the reactions considered in this paper. We also test a slightly different

parameter set (parameter set 2, Table S1), where kpush is lowered to 0.008 Eh for the first try.

Once the reaction has completed and the path found, the maximum energy structure along the path is

extracted along with the two neighbouring structures. A linear interpolation (10 points from maximum

energy structure to both neighbours) is performed and the interpolated structures are subjected to single

point energy calculations using both Density Functional Theory (DFT) and GFN2-xTB. All DFT calcu-

lations are performed with the Gaussian 16 program [18]. The maximum GFN2-xTB energy along the

interpolated path is used to estimate the GFN2-xTB barrier (orange part of the flow chart, Figure 1). The

maximum energy structure based on DFT calculations is used as initial guess for the TS structure in a

DFT TS search [opt=(calcall, ts, noeigen)]. Whether the correct TS is found is evaluated based on an

intrinsic reaction coordinate (IRC) path search in both forward and reverse direction from the found TS.

From the endpoint structures of the IRC, the adjacency matrices are extracted. The adjacency matrix for

an N atom system is an N ×N matrix with 1 on the off-diagonal elements linking atoms that are bonded

and 0 if the atoms are not bonded. The structures are converted from coordinates to adjacency matrix

using xyz2mol. [19] The assignment of bond/no bond is done using the xyz2mol program based on a simple

extended Hückel theory (EHT) calculation and the Mulliken overlap population between each pair of

atoms as implemented in RDKit [20]. The adjacency matrices for the endpoints of the IRC are compared

with the adjacency matrices for the intended reactant and product structures to determine if a TS for the

intended reaction is found. If the adjacency matrices of the IRC endpoint structures do not match those

of the input reactant and product structures it may be due to the IRC not haven completed as the IRC

calculations often crash before converging to reactant/product structures. Thus, the endpoints of the IRC

are geometry optimized, and these structures checked by the same procedure. If either sets of structures

(based on adjacency matrices) match the input structures, the TS for the given reaction is concluded to

have been found and the search procedure terminated.

If the IRC did not result in a path connecting the input reactant and product, a constrained optimization

on the TS guess, obtained as the maximum energy structure of the interpolated structures, is performed.

The bond constraints are set up automatically by considering the difference in adjacency matrices of input

reactant and product structure, resulting in a set of bonds being formed/broken during the reaction. only

connectivity changes are considered, meaning that, e.g., going from a double bond to a single bond is not

considered bond breaking. The length of the set of bonds are fixed to the values in the guess structure

from the interpolation, and the remaining structure relaxed. The new TS guess is taken through the same

procedure with TS optimization, IRC and check. If the TS is still not found, the entire procedure is

repeated but using an electronic temperature of 6000 K in the RMSD-PP reaction path step.

Dataset

To test the TS localizer protocol, a preexisting data set from the literature is chosen to avoid bias in the

choice of reactions studied. The data set used by Zimmerman to test his double-ended GSM, consisting
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Figure 1. Flowchart describing the automated workflow implemented. Orange steps depend solely on

GFN2-xTB calculations, while purple steps rely on DFT calculations
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of 105 elementary reactions is used [17;13]. Only reactions of neutral molecules and reactions where bond

breaking/formation take place are included (i.e. excluding conformational changes). Thus, the test set

consists of 100 elementary reactions including both simple and complicated reactions with between 1 and

6 bond changes (Table S2). To be able to use the TSs located by Zimmerman, the same level of theory for

the DFT part of the procedure is used: UB3LYP/6-31G** [21;22;23;24;25].

All reactant and product structures were reoptimised using GFN2-xTB to verify that the structures

have corresponding minima on the GFN2-xTB potential energy surface. This is the case for all reactions

but reaction 16, as discussed further below. The DFT geometries for the reactant and product are used as

input for the procedure described above.

Approximate TS validation procedures

A popular approach in automated TS procedures is to either skip the IRC step and use alternative validation

procedures for the TS or first screen the TS with alternative validation procedures before doing the IRC in

an effort to save computational time [26;27;13]. Though the TS validation here is based on the IRC path

and whether it connects the reactant and product, some of these alternative approaches are also tested. In

particular, the TS vetting requirements suggested by Jacobson et al. [26] are tested. The three requirements

are: 1) There should be exactly 1 imaginary frequency of the Hessian, 2) at least one of the active bonds

(bonds being broken or formed during the reaction) should have an intermediate length, and 3) that the

eigenvector corresponding to the imaginary frequency should have motion along at least one of the active

bond stretching modes. We use the same cutoff values for when a bond length is considered intermediate

and when it is considered that the eigenvector has motion along a bond stretching mode as in the original

article, that is: A bond length ri j between atom i and j is considered intermediate if

1.2 ≤
ri j

rcov
i + rcov

j

≤ 1.7 (1)

where rcov
i is the covalent radius of atom i [20]. The eigenvector corresponding to the imaginary frequency,

vvvT S is considered to move along the stretching mode of bond i, vvvstretch
iii (unit vector), if the absolute value

of the scalar projection of vvvT S on vvvstretch
iii is larger than 0.33:

|vvvstretch
iii ··· vvvT S| ≥ 0.33 (2)

RESULTS AND DISCUSSION

Success rate
For each of the 100 reactions, the procedure is run three times with two different but similar parameter

strategies for the xTB path calculations (Table S1) for a total of 6 runs. The reason for running three times

per parameter set is that the RMSD-PP procedure includes a random ”initial distortion parameter” which

can lead to slightly different reactions paths for each run.

Figure 2 shows the distribution of success rates for each of the 6 runs. Run 1-3 are with the same

parameters (parameter set 1 in Table S1) and run 4-6 are with the same parameters (parameter set 2 in

Table S1). The parameter sets are almost identical, the only difference is that the first run in parameter

set 2 is initiated with a smaller push strength. The total number of successes is quite similar within the

6 runs (ranging between 81 and 83 TS located) and the majority of the TSs are located using the guess

structure from the RMSD-PP path directly. Combining all TSs located during the 6 runs, a total of 89 TSs

are found. For the first parameter set (run 1-3) 85 TSs are located and for the second parameter set (run

4-6) 88 of the TSs are located. It is possible, that exploring a larger part of the parameter space allows

localization of the last reactions.

For the reactions not located by the procedure (reactions 6, 10, 11, 16, 20, 35, 54, 68, 84, 90, and 96),

the TS structures proposed by Zimmerman was further analysed. However, they were first put through the

same IRC validation procedure (with and without reoptimization of the TS). Only two of the remaining

11 reactions (reactions 16 and 84) went to minima corresponding to the proposed reactant and product
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Figure 2. Distribution of the successful TSs localized for each of the 6 runs. The xTB TS guess

structure is first used directly (without optimization) in a UB3LYP/6-31G** TS optimization. If that fails

to find the TS, a constraint optimization is done and the TS optimization tried again. Finally, for the failed

searches, the entire procedure is run at a higher electronic temperature (HT) of 6000 K. Run 1-3 is done

with parameter set 1 and Run 4-6 done with parameter set 2 (SI).

structures, while the majority of the 9 reactions found an intermediate minimum structure along the way,

indicating that the reaction (at least within this level of theory) is not an elementary reaction. The 9

reactions are not used in the following analysis, where the data set is now reduced to 91 reactions (89 of

which the procedure managed to locate a TS for).

The two reactions, for which the TS search was unsuccessful, are shown in Figure 3. The product in

reaction 16 was the only structure that reacted when optimized with GFN2-xTB. After optimization the

product became NH3 + BH3 + NH2BH2 and the product is thus not stable on the GFN2-xTB potential

energy surface, which can affect the path optimization and thus the TS guess. During the DFT TS

optimization the TS guess structure instead goes to the TS of reaction 9 (Table S2), which has a ≈ 8

kcal/mol lower barrier than reaction 16. The other reaction not found, reaction 84, is a pretty simple

reaction and it is not clear why the TS of this reaction would be difficult to locate. Instead the TS of the

reaction in Figure 4 is found every time. Comparing the found TS with the true TS (Figure 5) shows that

the TSs are quite similar. The important difference seems to be the orientation of the methylene group in

the middle.

Comparison of xTB barrier estimates and DFT barriers

In this section we test whether the RMSD-PP reaction path can be used to distinguish reactions that have

high and low barriers at the DFT level. If so, the RMSD-PP method could be used in the high throughput

determination of reaction networks, where one is usually interested in relatively low-energy barriers. The

91 reactions for which a DFT TS is found, can be used to calculate the barrier of the reactions, which can

be compared to the very cheap barrier estimates from the GFN2-xTB path. The barrier is calculated as the

electronic energy of the TS (or maximum energy along the GFN2-xTB path) minus the electronic energy

of the reactant. The reactant structures used were the same in both DFT and GFN2-xTB calculations

(from [13]). This can affect the RMSD-PP barriers especially if either reactant or product structures

are not stable on the GFN2-xTB surface as this can affect the path. All reactant and product structures

were optimized with GFN2-xTB and only the product of reaction 16 changed bonding during optimization.

Figures 6(a), 6(c) and 6(e) show the correlation between the barrier estimated with GFN2-xTB and

that calculated by DFT for the first parameter set. For each point is indicated the pull strength (color)
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Figure 3. The two reactions not found by the procedure

Figure 4. The reaction of the TS located when searching for the TS for reaction 84

and the push strength (size). Reactions, where the search was unsuccessful are labelled with red edges.

Similarly, Figures 6(b), 6(d) and 6(f) show the GFN2-xTB barrier estimate vs. DFT barriers for the three

runs with parameter set 2. As one would expect, higher pull and push values are needed for higher barriers.

The mean absolute error (MAE) is between 14.9 and 19.2 kcal/mol for all six runs, and there is a wide

spread of values and several outliers. So, generally speaking, the xTB barrier from the RMSD-PP reaction

path is a poor estimate of DFT barrier heights. However, in many reaction network studies the goal is

to identify reactions that proceed at measurable rates at room temperature, which translates into barrier

heights of no more than 30 kcal/mol. The correlation between xTB and DFT is considerably better for

these reactions. Reactions where the xTB barrier is less than 40 kcal/mol, includes all seven reactions

with DFT barriers less than 30 kcal/mol, in addition to 14-20 false positives (14, 17, 20, 14, 17, and 15 for

runs 1-6) where the DFT barrier is higher than 30 kcal/mol. If one excludes points where the absolute

pull values are higher than 0.03 then the number of false positives drops to 11-14 (12, 11, 14, 11, 12 and

11 for runs 1-6).

TS validation procedure

Here we test the performance of the validation procedures described in the Methods section: 1) exactly 1

imaginary frequency of the Hessian, 2) at least one of the active bonds (bonds being broken or formed

during the reaction) has an intermediate length, and 3) the eigenvector corresponding to the imaginary

frequency has motion along at least one of the active bond stretching modes. The tests are applied to

both the correct (83) and incorrect (8) TSs located during run 1. For the incorrect TSs, the first TS found

(without constrained optimization) is used in the analysis. The outcome of the individual tests along with

the combination of all three tests is shown in Figure 8(a) for the found transition states of run 1 and in

Figure 8(b) for the failed transition states of run 1.

An effective validation procedure should discard as many wrong TSs as possible while not removing

true transition states. The requirement, that the found transition state should have exactly 1 imaginary

frequency is fulfilled for all 83 found TSs, but is also fulfilled for all but 1 (TS optimization failed) of the

wrong transition states. Though the requirement can be applied without fear of throwing away true TSs, it

is not very effective in filtering out wrong TSs. The requirement, that the TS structure should have at
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(a) (b)

Figure 5. Comparison of the TS located ((a)) searching for the TS of reaction 84 ((b)). (a) taken from

the first run, coordinates for (b) from SI of the work of Zimmerman [13]
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Figure 6. Barrier estimate from xTB compared to DFT (UB3LYP/6-31G**) barriers for the 6 runs

shown in Figure 2. k pull and k push values are given per atom. For each point is indicated the pull

strength (color) and the push strength (size). Reactions, where the search was unsuccessful are labelled

with red edges. Figures (a), (d), and (e) correspond to runs 1, 2, and 3, respectively.

least one of the active bonds at an intermediate distance is fulfilled for 77 out of 83 true transition states

and not fulfilled for three out of eight wrong transition states. Thus, applying this validation test to the
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Figure 7. Barrier estimate from DFT single points compared to DFT (UB3LYP/6-31G**) barriers for

the 6 runs shown in Figure 2. k pull and k push values are given per atom. For each point is indicated the

pull strength (color) and the push strength (size). Reactions, where the search was unsuccessful are

labelled with red edges. Figures (a), (d), and (e) correspond to runs 1, 2, and 3, respectively.
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Figure 8. Test of different TS validation methods for the (a) True TSs ; and (b) Wrong TSs of run 1.
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transition state structures would have resulted in six correct TSs being filtered out. The last validation test,

that the displacement vector of the imaginary frequency should be along at least one of the active bonds

given the cutoff value above, is not fulfilled for nine of the transition states confirmed to be true by an

IRC. Requiring all three validation tests to be fulfilled would have resulted in 13 of the 83 true transition

states to have been filtered out. Four out of eight of the wrong transition states would also have been

filtered out, but one needs to be very careful when applying these alternative validation tests, considering

whether the saved computational time is worth more than the wrongly rejected transition states.

SUMMARY

We present a method for the automatic determination of transition states (TSs) that is based on Grimme’s

RMSD-PP method [14] for the rapid estimation of reaction paths using the GFN-xTB semiempirical

tight binding models (Figure 1). The RMSD-PP method estimates a reaction path between reactants

and products by a geometry optimisation using an energy function augmented by a Gaussian biasing

potential that ”pushes” and ”pull” the structure away from the reactant and towards the product. Our

method starts with a series of RMSD-PP calculations with increasingly larger push and pull strengths until

reaction completion. The additional structures near the highest point on the reaction path are generated by

interpolation and used for DFT single points and the highest energy structure is then used as an initial

guess for a TS search. Upon convergence the TS is tested by an IRC calculation and if the TS is found to

be incorrect then the initial guess structure is reoptimised with key bond lengths constrained and used

as an initial guess for a new TS search. If that fails the entire procedure is repeated but with using an

electronic temperature of 6000K for the RMSD-PP calculations.

The method is tested on 100 elementary reactions used previously by Zimmerman and co-workers

(Table S2). [17;13] For each of the 100 reactions, the procedure is run three times with two different but

similar parameter strategies for the xTB path calculations (Table S1) for a total of 6 runs. Combining

all TSs located during the six runs, a total of 89 TSs are found. Only two of the remaining 11 reactions

(reactions 16 and 84) went to minima corresponding to the proposed reactant and product structures, while

the majority of the 9 reactions found an intermediate minimum structure along the way, indicating that the

reaction (at least within this level of theory) is not an elementary reaction. Thus our method failed for only

two reactions (Figure 3), where the product is not a stable structure on the xTB potential energy surface.

Furthermore, we show that the RMSD-PP barrier is a good approximation for the corresponding DFT

barrier for reactions with DFT barrier heights up to about 30 kcal/mol. Thus, RMSD-PP barrier heights,

which can be computed at the cost of a single energy minimisation, can be used to quickly identify

reactions with low barriers, although it will also produce some false positives.

Finally, we show that various tests of whether the correct TSs have been found, produce several false

positives and false negatives and should be used with care.
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SUPPORTING INFORMATION

The code and data resulting from this study can be found here https://github.com/jensengroup/RMSD PP TS

and https://sid.erda.dk/sharelink/EPvv68fOTp, respectively.

Parameter sets

Parameter set 1

Trial k pull (Eh) k push (Eh) α (1/a0) direction

1 -0.02 0.01 0.6 R−→P

2 -0.02 0.01 0.3 P−→R

3 -0.02 0.01 0.3 R−→P

4 -0.03 0.01 0.6 P−→R

5 -0.03 0.01 0.6 R−→P

Parameter set 2

Trial k pull (Eh) k push (Eh) α (1/a0) direction

1 -0.02 0.008 0.6 R−→P

2 -0.02 0.01 0.3 P−→R

3 -0.02 0.01 0.3 R−→P

4 -0.03 0.01 0.6 P−→R

5 -0.03 0.01 0.6 R−→P

Table S1. The two parameter sets tested. For each trial three runs are done with the k push and k pull,

1.5*k push and 1.5*k pull, and 2.25*k push and 2.25*k pull. The direction is indicated as reactant (R) to

product (P) or the other way around

Reactions

Reaction Comments

1

2

3

4

5

6 TS could not be con-

firmed to exist by IRC

7
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8

9

10 TS could not be con-

firmed to exist by IRC

11 TS could not be con-

firmed to exist by IRC

12

13

14

15

16 TS confirmed to exist but

was not found by the pro-

cedure

17

18

19

20 TS could not be con-

firmed to exist by IRC

21

22
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23

24

25

26

27

28

29

30

31

32

33

34

35 TS could not be con-

firmed to exist by IRC

36

37
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38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
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53

54 TS could not be con-

firmed to exist by IRC

55

56

57

58

59

60

61

62

63

64

65

66

67
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68 TS could not be con-

firmed to exist by IRC

69

70

71

72

73

74

75

76

77

78

79

80

81

82
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83

84 TS confirmed to exist but

was not found by the pro-

cedure

85

86

87

88

89

90 TS could not be con-

firmed to exist by IRC

91

92

93

96 TS could not be con-

firmed to exist by IRC

97

98

99
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100

101

102

Table S2. Table of the 100 studied reactions

# Type Reaction/Structure Comments

6 intended A minimum is found

at the indicated

structure. The TS

correspond to a

conformational

change

6 interme-

diate

10

intended TS correspond to

step in the reaction

but find minimum

before reaction

complete
10

Other

reaction

11

intended TS correspond to

another reaction

11

Other

reaction

20

intended TS combines true

reactant with

indicated

intermediate product

20

Other

reaction

35

intended TS combines true

product with the

indicated (unstable)

intermediate

35

Other

reaction

54

intended TS correspond to

another reaction

with same product
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54

Other

reaction

68

intended The reaction found

correspond to first

step in intended

reaction but find the

indicated unstable

intermediate along

the way

68

Other

reaction

90 intended
No re-optimization:

2 imaginary

frequencies IRC gets

’stuck’

Re-optimization: TS

correspond to

indicated reaction

(pink indicates that

bond is both formed

and broken

90

Other

reaction

96

intended No re-optimization:

2 imaginary

frequencies both

side of IRC goes to

reactant.

Re-optimization: TS

correspond to

another reaction
96

Other

reaction

Table S3. Table of the 9 reactions where a TS could not be confirmed
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# Type Reaction/Structure Comments

30

intended TS correspond to

different but similar

reaction. The H

from ammonia goes

to the carbonyl

oxygen atom instead30

Other

reaction

34

intended No re-optimization:

Both sides of IRC

go to product

Re-optimization: TS

corresponds to a

reaction34

Other

reaction

40

intended TS goes to reactant

along both directions

of the IRC

44

intended TS corresponds to a

different reaction

44

Other

reaction

70

intended No Re-optimization:

2 imaginary fre-

quencies (below 150

cm−1). IRC can

only be followed in

reactant direction.

Re-optimization: No

imaginary frequen-

cies left

80

intended The IRC stops al-

most immediately in

both directions while

still at the proposed

TS structure.

81

intended Reaction equivalent

to 80. No

re-optimization: 2

imaginary

frequencies, IRC

stops almost

immediately in

reactant direction.

Re-optimization:

Find reaction with

different reactant
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81

Other

reaction

88

intended TS corresponds to a

different reaction

88

Other

reaction

Table S4. 7 Reactions for which TSs were found by the RMSD-PP procedure but where the TSs given

in [1] went to different reactants/products during the IRC

Timings

Reaction Ntrials wall-time

75 1 54 s

55 4 3 min 17 s

Table S5. examples of wall-times for the RMSD-PP part of the procedure. The examples are for the first

parameter set (Table S1), run1, running on a single CPU. Ntrials is the number of trials needed before the

reaction completed
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