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ABSTRACT
We explain why search algorithms can findmolecules with particular properties in an
enormous chemical space (ca 1060 molecules) by considering only a tiny subset
(typically 103−6 molecules). Using a very simple example, we show that the number of
potential paths that the search algorithms can follow to the target is equally vast.
Thus, the probability of randomly finding a molecule that is on one of these paths is
quite high and from here a search algorithm can follow the path to the target
molecule. A path is defined as a series of molecules that have some non-zero
quantifiable similarity (score) with the target molecule and that are increasingly
similar to the target molecule. The minimum path length from any point in chemical
space to the target corresponds is on the order of 100 steps, where a step is the
change of and atom- or bond-type. Thus, a perfect search algorithm should be able to
locate a particular molecule in chemical space by screening on the order of 100s of
molecules, provided the score changes incrementally. We show that the actual
number for a genetic search algorithm is between 100 and several millions, and
depending on the target property and its dependence on molecular changes, the
molecular representation, and the number of solutions to the search problem.

Subjects Theoretical and Computational Chemistry
Keywords Genetic algorithm, Chemical space exploration

INTRODUCTION
Chemical space is the number of possible small organic molecules, which has been
estimated to be on the order of 1060 molecules. Many techniques have been developed to
search this chemical space for molecules with desirable properties (Elton et al., 2019;
Schwalbe-Koda & Gómez-Bombarelli, 2020), including genetic algorithms (Brown et al.,
2004; Virshup et al., 2013), variational autoencoders (Gómez-Bombarelli et al., 2018;
Winter et al., 2019), recurrent neural networks (Segler et al., 2018; Brown et al., 2019;
Sumita et al., 2018), and generative adversarial networks (Guimaraes et al., 2017; Sanchez-
Lengeling et al., 2017; Prykhodko et al., 2019). Rather than screening a user defined library,
these methods automatically select a subset of chemical space for screening, usually in
an iterative fashion. The size of the subsets typically range between 10,000 and several
million, that is a tiny fraction of chemical space yet usually produce good candidates.

1060 �! 103�6 �! 1 (1)

In this article we discuss how this is possible using genetic algorithms (GAs) as
the search algorithm. We use GAs as they are relatively simple and thus easy to
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interpret, but our general conclusions should also be valid for machine learning-based
methods.

The article is organized as follows. First we discuss a related non-chemistry search
problem that is conceptually easier to understand but is of roughly similar difficulty:
finding a specific sequence of characters. Then we discuss the chemical equivalent, which is
finding a specific molecule among the 1060 possible. Finally, we discuss an example of the
more usual molecular discovery problem where there are many solutions.

COMPUTATIONAL METHODOLOGY
The graph-based GA code used in this study is that described by Jensen (2019) except that,
inspired by Brown et al. (2019), elitist selection is used (the next generation is made by
combining the highest scoring molecules from the current and previous generation).
The GAs use roulette wheel selection to choose parents for mating. The string-based GA
code is the same as the graph-based GA code, except for the crossover and mutation
operations. For string-based GA the crossover is performed by picking a random cut point
between two characters for each parent string and then combining the left and right
sub-string from the first and second parent, respectively. In the case of the Shakespeare
example described below the same cut point was used for both parents and the fragments
are combined so that the children are the same length as the parents. In the case of SMILES
and DeepSMILES the local syntax is not considered when choosing the cut-point, for
example a cut within [C@H] is allowed. In the case of SELFIES, each unit is enclosed with
square brackets, so only cuts between a closing and opening square bracket is allowed.
If the crossover does not lead to a valid molecule according to RDKit the process is
repeated up to 50 times, after which a new pair of parents are chosen. After crossover the
child is mutated at a specified rate (the mutation rate), that is if the mutation rate is 50%
then there is a 50% chance that one character in the string is replaced by a randomly
chosen character. The allowed characters are those found among 250,000 molecules found
in the ZINC data base used in previous studies (Yang et al., 2017; Gómez-Bombarelli et al.,
2018; Jensen, 2019) (see Supplemental Information for more information). If the mutation
does not lead to a valid molecule according to RDKit the process is repeated up to
50 times, after which the original molecule is returned. In all cases the molecules are
Kekulized, meaning that aromaticity is not removed, before mating and mutation
operations are applied to increase the chances of making a string that corresponds to a
molecule. The string-based molecular representations are not re-canonicalized after
mating and mutation operations are applied.

The Tanimoto score used for rediscovery is computed using RDKit (Landrum, 2020)
based on ECFP4 circular fingerprints, following Brown et al. (2019). The first excitation
energy and associated oscillator strength is computed using the semiempirical sTDA-xTB
(Grimme & Bannwarth, 2016) method based on an MMFF94 (Halgren, 1996a, 1996b,
1996c, 1996d; Halgren & Nachbar, 1996) optimized geometry. The geometry is chosen by
generating and energy-minimizing twenty random conformations using RDKit and
choosing the geometry with the lowest energy.
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RESULTS AND DISCUSSION
A simple example from Shakespeare
We start by considering a very simple search problem (Shiffman, 2012) for which the
various factors contributing to successful searches can be demonstrated analytically (see
Supplemental Information). The sentence “to be or not to be that is the question” has
39 lower case characters including spaces. It is one of 2739 = 6.7 × 1055 39-character
sequences, which is roughly the same size as chemical space. Despite this vast search space a
simple genetic algorithm (GA) can easily identify the target: using an initial population of
100 randomly generated phrases and a mutation rate of 20% the target phrase is identified
after no more than∼300 generations (median∼200), that is the solution is consistently found
by evaluating only ca 10,000 to 30,000 sequences out of 6.7 × 1055 possible (Fig. 1).

This remarkable feat can be explained as follows: 1-(26/27)39 or 77% of the 6.7 × 1055

possible sequences have at least one correctly placed character compared to the target
sequence (Eq. S1). This means that for an initial mating pool of 100 random sequences,
an average of 77 sequences will have a score of at least 1. An average 38 ± 1 of the 39
positions are correctly represented in at least one gene (Eqs. S4 and S5). Since the score
is additive, it is very likely that a crossover will result in a child with a higher score.
Indeed simulations show that the tends score increases by 1 with every generation until the
score reaches about 20, that is until about half the letters are correctly placed. This makes
sense because, on average, each parent contributes half the genetic information and the
correctly placed letters are evenly distributed in the initial population. After half the letters
and spaces are placed correctly, the score increases more slowly and it can take many
generations to place the last character since that tends to occur solely through random
mutations in the current GA implementation.

So rather than picturing 6.7 × 1055 random sequences that one must sift through, one
should picture an enormous number of interconnected paths that connects low-scoring
sequences to the target sequence (Fig. 2). Since 77% of the sequences have a score of at least
1, one is very likely to encounter such a path by chance and one can then follow the path to
the target sequence using a search algorithm such as a GA. However, such paths only
exist if the score increases in a relatively smooth fashion as one gets closer to the target.
Figure S1 shows plots similar to Fig. 1, but where there the score only increases if the
number of correctly placed characters increases by 2. After about half of the characters are
placed correctly, it becomes less likely that a mating operation or mutation increases
the score and none of 10 simulations manages to find the correct sequence in 1,000
generations. If the score only increases if the number of correctly placed characters
increases by 5, then the GA fails to increase the score beyond 15 (Fig. S1). A chemical
example of non-continuous scores is discussed below.

Rediscovery
String-based approaches
The closest chemical equivalent to the Shakespeare example described in the previous
section is locating a predefined molecule in chemical space, that is rediscovery.
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Brown et al. (2019) have demonstrated this for three drug molecules: celecoxib,
troglitazone, and tiotixene (Fig. 3). Here similarity to the target is measured by the
Tanimoto similarity, which is computed by decomposing each molecule into overlapping
fragments up to a certain size and then counting how many fragments the two molecules
have in common and dividing by the combined total number of fragments. Thus,
the Tanimoto score ranges from 0 (no similarity) to 1 (very similar or identical).

Since molecules can be represented as strings (e.g. SMILES strings) we start by using
our string-based GA used in the previous example with some minor modifications as
described in the Methods section. Otherwise we follow the same procedure as Brown et al.
(2019).

The results of 40 SMILES-based GA searches for each of the three molecules are shown
in Fig. 4. A total of 45%, 0% and 7% of the searches succeed for celecoxib, troglitazone,
and tiotixene, respectively, which all are significantly lower than the 100% success rate for
the Shakespeare example. Why do so many of the searches fail? The SMILES strings
range in length from 56 to 61 characters and the search uses 25 different characters so the
search spaces are larger than in the Shakespeare example. However, the GA used in that
example has no problem finding longer sentences (Fig. S2). The other main difference
between the SMILES-based rediscovery and the Shakespeare example is the score. In order
to compute the Tanimoto score the SMILES string is first converted to a molecular
graph, and this conversion fails for a larger portion of the SMILES strings generated using
the mating and mutation operations. The failure is primarily due to incorrect SMILES
syntax, such as unmatched parentheses or integers denoting ring-closures. Thus, the
rediscovery search can only follow paths through sequence space leading to the target
molecules that are composed of valid SMILES strings, which is a small subset of all possible

Figure 1 The Shakespeare example. Plot of the top score found in the population for each generation
for 10 different GA searches. The population size is 100, so up to 10,000 different sequences are
evaluated in 100 generations. Full-size DOI: 10.7717/peerj-pchem.11/fig-1

Henault et al. (2020), PeerJ Physical Chemistry, DOI 10.7717/peerj-pchem.11 4/15

http://dx.doi.org/10.7717/peerj-pchem.11/supp-1
http://dx.doi.org/10.7717/peerj-pchem.11/fig-1
http://dx.doi.org/10.7717/peerj-pchem.11
https://peerj.com/physical-chemistry/


paths (Fig. 2). This makes the rediscovery task intrinsically harder than the Shakespeare
example, where the score can be evaluated for nonsensical strings.

Table S1 show the (non-canonical) SMILES strings for the successful SMILES-based GA
searches. In the case of troglitazone there were no successful searches, but 15 of the
searches resulted in a maximum score of 0:79, which is the second highest score observed,
so these string are counted as successful for the current discussion. Many of the SMILES
strings show similar patterns. For celecoxib, all but two SMILES strings start with
“NS(=O)(=O)C1=..” and end with “..C=C1”. For troglitazone all but two SMILES strings
start with “CC1=..” and end with “..C1O”, or vice versa, and similarly for tiotixene.
The most likely explanation is that each respective search starts from the same or similar
SMILES strings in the initial population. Indeed inspection of the SMILES strings in
the initial population reveal strings with similar patterns (Fig. 5). In the case of celecoxib
there are 13 different molecules with the same phenyl-X-benzenesulfonamide architecture,
which helps explain why celecoxib is rediscovered more frequently than tiotixene,

Figure 2 Pictorial representation of paths (lines) through chemical space leading to target(s), that
is molecules with the desired property. A path connects molecules with non-zero scores and the
scores increase incrementally as one gets to the target. In (A) only one molecule has the desired
property, while in (B) several molecules have the desired property.

Full-size DOI: 10.7717/peerj-pchem.11/fig-2
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Figure 3 The three target molecules for rediscovery: (A) celecoxib, (B) troglitazone, and
(C) tiotixene. Full-size DOI: 10.7717/peerj-pchem.11/fig-3

Figure 4 Rediscovery. Plot of the top score found in the population for each generation for 40 different GA searches for each target molecule
(celecoxib (A–D), troglitazone (E–H), and tiotixene (I–L), (Fig. 3) and molecular representation (graph (A, E, I), SMILES (B, F, J),
DeepSMILES (C, G, K), and SELFIES (D, H, L)). The score is the Tanimoto similarity to the target molecule computed using ECFP4 circular
fingerprints. The population size is 100, so up to 100,000 different molecules are evaluated in 1,000 generations. The mutation rate is 50%. For each
plot we show the success rate and the median number of generations for successful runs. Full-size DOI: 10.7717/peerj-pchem.11/fig-4
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where the SMILES pattern shown in Fig. 5 is the only example in the initial population.
In the case of troglitazone, the search has to place a more complicated syntax
(COC2=CC=C(CC3SC(=O)NC3=O)C=C2), compared to celecoxib and tiotixene, at the
correct position in the string. While this can be done at the 5 position (Fig. 5), it is more
difficult at the 2 position (which would result in troglitazone) due to the SMILES syntax
of the chromane moiety that is most common in the initial population (Fig. S3).
This observation could help explain why none of the SMILES-based troglitazone
rediscovery searches are successful.

In the case of troglitazone, the success rate can be improved significantly by
using DeepSMILES (O’Boyle & Dalke, 2018) (Fig. 4), another string-based molecular
representation that doesn’t involved matched parenthesis and integers denoting
ring-closures. However, using DeepSMILES does not increase the success rate for celecoxib

Figure 5 Examples of SMILES strings obtained by successful SMILES-based GA searches for
(A) celecoxib, (B) troglitazone, and (C) tiotixene. In the case of troglitazone none of the searches
were successful, so SMILES with a Tanimoto similarity of 0.79 are shown.

Full-size DOI: 10.7717/peerj-pchem.11/fig-5
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or tiotixene. Finally, using SELFIES (Krenn et al., 2019) does not increase the success
rate for any of the three molecules. It is very likely that the performance of the string-based
GA searches can be improved significantly by using more sophisticated algorithms
(Bjerrum, 2017; Nigam et al., 2019; Yoshikawa et al., 2018). The main point for the
purposed of thus study is that the molecular representation is one of the factors that can
complicate the exploration of chemical space.

Graph-based approach
The success rate for rediscovery can be improved significantly by performing the mating
and mutation operations directly on the molecule (formally a graph with nodes and edges
corresponding to atoms and bonds, respectively) rather than a string representation
(Fig. 4). The success rate for tiotixene (38%) is noticeably lower than those for celecoxib
(82%) and troglitazone (100%). The reason is that two of the fragments found in tiotixene
are not found in the initial population, while the corresponding numbers for celecoxib
and troglitazone are zero and one, respectively. The missing fragment for troglitazone
relates to the connection between the chromane and benzene group (Fig. S4A). Inspection
of the initial population for the troglitazone GA searches shows that it contains several
molecules with chromane and anisole groups, which can be combined relatively
straightforwardly by a mating operation. The missing fragments for tiotixene relates to the
thioxanthene moiety (Fig. S4B). Inspection of the initial population for the tiotixene
GA searches shows that the closest match is a single molecule containing a phenothiazine
moiety. Constructing the thioxanthene moiety from the molecules in the initial population
thus presents a significant challenge and accounts for the lower success rate for
tiotixene rediscovery.

At first impression our results indicate that our graph-based GA is able to find a
specific molecule in chemical space by evaluating only a very small subset of between
≤35,400 molecules (troglitazone) and ≤1,000,000 molecules (tiotixene). Troglitazone is
rediscovered with a 100% certainty in 354 generations or less, where 100 molecules is
evaluated for each generation. Tiotixene is rediscovered successfully in 38% of the
GA searches, meaning that a minimum of 10 GA searches have to be performed to
rediscover tiotixene with a 99% certainty, where each search requires up to 100,000
molecules to be evaluated. However, the initial mating pool was constructed following
Brown et al. (2019), that is the 100 top-scoring molecules in a 1.6 million molecule
ChEMBL subset, where molecules with an ECFP4 Tanimoto similarity of >0.323 are
removed. So constructing the initial population itself requires 1.6 million molecules to be
evaluated and this “cost” must be added.

If instead the initial population is constructed as before but from 10,000 molecules
chosen from the 1.6 million ChEMBL subset, the success rates are 93%, 70% and 25%,
respectively, meaning that at least 2, 4 and 17 GA searches are needed for rediscovery
to succeed with >99% certainty (Fig. 6). Thus, between 210,000 and 1,710,000 molecules
need to be evaluated to find one particular molecule in chemical space using our GA.
All the fragments in celecoxib and troglitazone are in the respective initial population,
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while two fragments are missing for tiotixene (Fig. S4C). This indicates the substructures
that make up the three molecules are relatively common in the ChEMBL data set.

In summary, at least in the case of drug-like molecules it is possible to locate specific
molecules in chemical space by evaluating a relatively small subset (105−6). Similarly to the
Shakespeare example, the reason is that many of the molecules in chemical space have
some structural motifs in common with the target molecule. Search algorithms like
GAs can then combine these structural motifs to create molecules that are increasingly
similar to the target molecules. The order in which these fragments are combined
correspond to different (interconnected) paths in chemical space that all lead to the
target molecules (Fig. 2). There are a vast number of such paths, so it is highly likely to
randomly encounter at least one such path, which can then be followed to the target.
In this particular case, the search is frustrated by the use of the Tanimoto similarity as the
scoring function, since it is only a semi-continuous function (cf. Fig. S1) of the molecular
structure in the sense that all atoms and bonds in a fragment must be placed correctly
before the fragment is counted as found.

Absorbance
Rediscovery is mainly interesting because there is only one solution (or very few solutions)
and thus serves to test the limits of chemical space search algorithms. Most target
properties will have several solutions in chemical space and may thus be easier to find.
To illustrate this, we search for molecules that absorb light at 200, 400, and 600 nm with an
oscillator strength (ω) of ≥0.3. The score is given by

Score ¼ e�
1
2

���t
s

� �2
þminðv; 0:3Þ=0:3 (2)

where λ is the computed absorption wavelength of the molecule, λt is the target
wavelength, and σ is 50 nm. The GA searches are terminated if the top score in the
population is within 0.01 of the maximum possible score of 2.0. The absorption
wavelength and oscillator strength is computed using the xTB-sTDA method (Grimme &
Bannwarth, 2016) based on a low-energy molecular structure computed using the

Figure 6 Same as for Fig. 4 ((A) celecoxib, (B) troglitazone, and (C) tiotixene) but using only the graph based approach and an initial
population based on pre-screening 10,000 molecules rather than 1.6 million. Full-size DOI: 10.7717/peerj-pchem.11/fig-6
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MMFF94 force field as implemented in RDKit. The low-energy structure is computed
by generating and energy-minimising 20 random conformations using RDKit and
choosing the conformer with the lowest MMFF94 energy. The molecules for the initial
population are chosen randomly from the first 1,000 molecules in 250,000-molecule
subset of the ZINC data base that we have used previously. Jensen (2019) Molecules that
absorbed within 100 nm of the target wavelength were excluded from the initial
population. The goal of these simulations is to illustrate the use of GAs with a scoring
function that has a complex dependence on the molecular structure and a target property
with multiple solutions, not to find stable, synthetically accessible molecules for
experimental testing.

The results for 40 50-generation GA searches with a population size of 20 are shown in
Fig. 7. The success rates are 100% and 97% for 400 and 600 nm, while only 30% for
200 nm. For 400 and 600 nm, the median number of generations needed to find to
find a molecule with the target property is 6 and 20 generations, respectively, which
corresponds to screening only 120 and 400 different molecules. While the success rate is
comparatively low for 200 nm (requiring up to 13,000 molecule evaluations) it is still
impressive given the small population size, initially constructed from randomly chosen
molecules (i.e. no pre-screening like for rediscovery). Inspection of the molecules
(Fig. 8; Figs. S5–S7) show that, as expected, they are all different. Thus, there are many
molecules in chemical space that satisfy the search criterion with, presumably, many
different paths leading to each target, as shown for rediscovery, which increases the
chances of success (Fig. 2).

For 200 nm, all but two GA searches achieved a score of >1.85, which corresponds to
wavelength with 28.5 nm of the target value (assuming the oscillator strength is >0.3).
So the majority of the searches get reasonably close to the target, but fail to reach the
success criterion of 1.99, which corresponds to a wavelength within 7 nm of the target
value. The most likely explanation is that it requires a larger change in excitation energy to
shift low wavelength excitations. For example, a shift from 207 to 200 nm requires a change

Figure 7 Plot of the top score found in the population for each generation for 40 different GA searches for molecules that absorb at (A) 200,
(B) 400, and (C) 600 nm, all using a graph-based molecular representation. The population size is 20, so up to 1000 different molecules are
evaluated in 50 generations. The mutation rate is 5%. For each plot we show the success rate and the median number of generations for successful
runs. Full-size DOI: 10.7717/peerj-pchem.11/fig-7
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in excitation energy of 0.21 eV, compared to 0.05 eV (ca 1 kcal/mol) for a shift from
407 to 400 nm. Thus, absorption wavelengths around 400 nm are easier to fine-tune using
relatively modest molecular changes, compared to 200 nm. Conversely, in the case of
600 nm, almost any change to the structure can easily change the excitation wavelength by
7 nm, so it becomes more difficult to hit the target wavelength exactly compared to
400 nm. This underscores the importance of smooth, incremental scoring functions for
search efficiency (Fig. S1).

CONCLUSIONS
This paper explains how search algorithms can find particular molecules in an enormous
chemical space (1060 molecules) by considering only a tiny subset (typically 103−6

molecules). We use a simple, non-chemistry related search problem that is easy to interpret
quantitatively. We show that a genetic algorithm (GA) can find one particular 39-character
sequence by considering at most 30,000 out of 6.7 × 1055 possible sequences (Fig. 1).
The reason is that 77% of the 6.7 × 1055 possible sequences have at least one correctly
placed character (with a score of 1), so it is easy to find such sequences by random chance.
Search algorithms like GAs then combine these sequences to make higher-scoring
sequences, in an iterative fashion, until the target sequence is obtained. If we view closely
related sequences with correctly placed characters as being “connected” then we can
envisage the search space as being filled with an enormous number of interconnected paths

Figure 8 Some of the molecules ((A)–(I)) found by the GA searches for molecules that absorb at a
certain wavelength. Below each molecules is the computed absorption wavelength (in nm) and oscil-
lator strength. We recognise that some of these molecules may not be stable (e.g. cyclopentadiene groups
tend to dimerise) or represent the most stable tautomer. We merely use absorbance as a score that has a
complex dependence on the molecular structure. Full-size DOI: 10.7717/peerj-pchem.11/fig-8
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that connect sequences with few correctly placed characters to the target sequence (Fig. 2).
It is easy to find a distant point on one of these paths and relatively easy to follow the path
to the target using search methods such as GAs, provided the score changes incrementally
as the sequence is changed (Fig. S1). As step along the path represents an edit of the
sequence so the length of a given path from a given point to the target is the so-called edit
distance, where the change in a single character corresponds to an edit distance of one.
This means that the shortest possible path from a sequence with only one correctly
placed character to the target is only 38. So while the sequence space is vast, the shortest
distance between any pair of points involves at most 39 changes.

The closest chemical equivalent to the simple string search example is locating a
predefined molecule in chemical space, that is rediscovery. Rediscovery, using text strings
(SMILES, DeepSMILES and SELFIES) to represent the molecules, is shown to be
significantly more challenging even though the mechanics of the GA search (i.e. the mating
and mutation operations) are very similar. Most string-based searches fail to find the
target after 100,000 molecule evaluations starting from initial populations made by
pre-screening over 1.6 million molecules (Fig. 4). The primary difference between the
simple phrase search and rediscovery is that in the latter case the score can only be
evaluated for strings that correspond to valid molecules, while in the former case all strings
can be scored. Since most string-based mating a mutation operations lead to strings with
invalid syntax and zero scores for the rediscovery search, there are many fewer paths
leading to the target (Fig. 2) compared to the simple string search.

In one of the the three rediscovery targets (troglitazone) the success rate can be
improved by using DeepSMILES, a string-based molecular representation with simpler
syntax compared to SMILES. It is also quite likely that the success can be improved further
by more sophisticated mating a mutation operations designed specifically for particular
syntax associated with each molecular representation. The success rate can be improved
by performing mating and mutation operations directly in the molecular graph (i.e. the
atom and bonds, Figs. 4 and 6), where a particular molecule can be rediscovered with >99%
certainty by evaluating between 210,000 and 1.7 million (105−6) molecules—a very
small fraction of chemical space. In analogy with the simple phrase example, the reason is
that the chemical “alphabet” of organic chemistry is relatively small ca ten different atoms
and three different bonds. So it is quite likely that a randomly chosen molecule has
something in common (e.g. a C–C bond or a pyridine ring) with the target molecule
and thus lies on a path that a search algorithm can follow to the target (Fig. 2).
For example, more than 99.9% of the 1.6 million molecules in the ChEMBL data set, used
to construct the initial populations, have a non-zero Tanimoto similarity with the three
rediscovery targets (Fig. 3).

Most drug-like molecules have at most 50 atoms and bonds, so the number of
changes needed to inter-convert two very different molecules (the so called graph edit
distance) is generally less than 100. So, while chemical space is vast, the ideal search
algorithm can traverse it very quickly—as long as the desired property changes
incrementally.
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While rediscovering one molecule in chemical space can require the screening of 105−6

molecules, finding a molecule with a particular property, such as absorbance at a particular
wavelength, can often be accomplished more efficiently since there tends to be many
different molecules with the desired property (Figs. 2B, 7 and 8). For example, finding
molecules that absorb at 200 ± 7, 400 ± 7 and 600 ± 7 nm requires the screening of up to
13,000, 120 and 400 different molecules.

This study focuses on GAs as they are relatively simple and thus easy to interpret,
but our general conclusions should also be valid for other generative models aimed at
searching for molecules with specific properties. Such generative models typically combine
a machine-learned molecular representation with a standard search algorithm such as
swarm optimization (Winter et al., 2019), hill climb (Brown et al., 2019), or Monte Carlo
tree search (Sumita et al., 2018). Like most search algorithms, these algorithms are
designed to find and incrementally follow paths through search space towards the desired
goal (Fig. 2), similarly to GAs.
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