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ABSTRACT

Background. Literatures revealed that 1,4-pentadien-3-one and triazine derivatives
exhibited a wide variety of biological activities. In order to develop highly bioactive
molecules, in this study, a series of novel 1,4-pentadien-3-one derivatives containing
triazine moieties were synthesized and their antibacterial and antiviral activities were
investigated.

Methods. A series of novel 1,4-pentadien-3-one derivatives containing triazine moieties
were synthesized and characterized in detail via 'H NMR, *C NMR and HRMS
spectra. The antibacterial activities against Xanthomonas axonopodispv. citri (Xac),
Xanthomonas oryzaepv. oryzae (Xoo) and Ralstonia solanacearum (R.s) were evaluated
at 100 and 50 pg/mL using a turbidimeter and N. tabacun L. leaves under the same
age as that of test subjects. The curative, protective and inactivation activities against
tobacco mosaic virus (TMV) at a concentration of 500 pug/mL were evaluated via the
half-leaf blight spot method.

Results. The bioassay results showed that some of the target compounds exhibited
fine antibacterial activities against Xac and R.s. Particularly, half maximal effective
concentration (ECsg) values of some target compounds against R.s are visibly better
than that of the positive control bismerthiazol (BT). Notably, compound 4a showed
excellent inactivation activity against TMV with a ECs, value of 12.5 png/mL, which
was superior to that of ningnanmycin (NNM,13.5 pg/mL). Besides, molecular docking
studies for 4a with tobacco mosaic virus coat protein (TMV-CP) showed that the
compound was embedded well in the pocket between the two subunits of TMV-
CP. These findings indicate that 1,4-pentadien-3-one derivatives containing triazine
moieties may be potential antiviral and antibacterial agents.

Subjects Green Chemistry, Natural Products, Organic Chemistry (other), Organic Compounds,
Synthetic Organic Chemistry
Keywords 1, 4-pentadien-3-one, Triazine, Antiviral, Antibacterial, Molecular docking studies

INTRODUCTION

Plant pathogens have become one class of the most serious agricultural problems in the
world. They cause threat not only to agricultural products but also to human health (Li ef al.,
20115 Lorenzo et al., 2017). Plant pathogens diseases, such as citrus canker, rice bacterial
leaf blight and tobacco bacterial wilt, were caused by Xanthomonas axonopodispv. citri
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Figure 1 Chemical structures of bioactive molecules bearing 1,4-pentadien-3-one fragment. Z/1a1g
et al. (2018) reported that 1,4-Pentadien-3-onederivatives containing benzotriazin-4 (3H)-one (A),
Samaan et al. (2014) reported that 1,4-Pentadien-3-onederivatives containing imidazole (B), Wang et al.
(2015) reported that 1,4-Pentadien-3-onederivatives containing thiazole (C), Chen et al. (2015) reported
that 1,4-Pentadien- 3-onederivatives containing chromone (D), and tested its biological activities,
showing that the introduction of benzotriazin-4(3H)-one, imidazole, thiazole and chromone groups can
enhance its biological activities.

Full-size &l DOI: 10.7717/peerjochem.3/fig-1

(Xac), Xanthomonas oryzaepv. oryzae (Xoo) and Ralstonia solanacearum (R.s), respectively.
They are difficult to control in agricultural production (Zou, Li & Chen, 20115 Li et al.,
2017). In addition, tobacco mosaic virus (TMV) can infect more than 885 plant species,
causing nearly $100 million in damage worldwide (Su ef al., 2016; Bos, 2000). Therefore,
the discovery and development of new antiviral and antibacterial agents with novel action
modes are important.

1,4-Pentadien-3-one derivatives, derived from plant metabolic products curcumin,
were found to have various biological activities such as antiviral (Zhang et al., 2018),
antibacterial (Long ef al., 2015), anticancer (Luo et al., 2014), anti-inflammatory (Liu et al.,
2014), anti-oxidative (Masuda et al., 2001), and anti-HIV activities (Sharma et al., 2019).
Over the past few years, the synthesis and study of pharmacological activity of 1,4-
pentadien-3-one derivatives attracted the attention of many chemists (Wang et al., 2017;
Zhou et al., 2018). Further study on the structural optimization of 1,4-pentadien-3-one
found that introducing benzotriazin-4(3H )-one (Zhang et al., 2018), imidazole (Samaan
et al., 2014), thiazole (Wang et al., 2015), or chromone (Chen et al., 2015) moieties (Figs.
1A-1D), could greatly enhance biological activities. Notably, Chen et al. (2019) verified the
anti-TMV mechanism of 1,4-pentadien-3-one derivatives (Fig. 2), and found 5-position
of 1,4-pentadien-3-one nucleus had played a key role in antiviral activities.

In addition, triazine scaffold has been associated with diversified pharmacological
activities (Irannejad et al., 2010), such as antioxidant (Khoshneviszadeh et al., 2016),
antithrombotic (Tamboli et al., 2015) antiplatelet (Konno et al., 1993), anticancer (Fu
et al., 2017), thromboxane synthetase inhibition (Monge et al., 2010), antimalarial (Ban
et al., 2010), a-glucosidase inhibition (Wang et al., 2016), antiviral and antibacterial
activities (Tang et al., 2019). Recently, it was found that the heterocyclic nitrogen of the
triazine derivatives had tremendous applications in the development of novel agricultural
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Figure 2 The anti-TMV mechanism of 1,4-pentadien-3-one derivatives. Clen ef al. (2019) verified the
anti-TMV mechanism of 1,4-pentadien-3-one derivatives.
Full-size Gal DOT: 10.7717/peerjochem.3/fig-2

bactericides and virucides (Zhang et al., 2018). Sangshetti ¢ Shinde (2010) reported that
the inhibitory effects of triazine and their derivatives against three fungals ((Candida
albicans (MIC-25), Aspergillus niger (MIC-12.5) and Cryptococcus neoformans (MIC-25))
are similar to miconazole (Fig. 3). Therefore, triazine group was introduced onto the
5-position of 1,4-pentadien-3-one structure to build a new set of molecules and their
biological activities were tested (Fig. 4).

MATERIALS & METHODS

Instruments and chemicals

Melting points were determined using an XT-4 digital melting-point apparatus (Beijing
Tech. Instrument Co., Beijing, China) and readings were uncorrected. I'HNMR, *C NMR
and '°F NMR spectra were recorded on a 400 MHz spectrometer (Swiss Bruker, Fillanden,
Switzerland) with DMSO and CDClj as the solvent and tetramethylsilane as the internal
standard. The course of the reaction was monitored by thin-layer-chromatography analysis
on silica gel GF;54 (Qingdao Haiyang Chemical Company, Ltd., Qingdao, China), and spots
were visualized with ultraviolet (UV) light. High-resolution mass spectrometry (HRMS)
was conducted by using a Thermo Scientific Q Exactive (Thermo Scientific, Missouri,
USA). The molecular docking was performed by using DS-CDocker implemented in
Discovery Studio (version 4.5). All reagents and solvents were purchased from Chinese
Chemical Reagent Company and were of analytical grade reagents. The synthetic route
tol,4-pentadien-3-one derivatives containing triazine moiety was shown in Fig. 5.
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Figure 3 1,2,4-triazine fragment against three fungals (Candida albicans, Aspergillus niger and Cryp-
tococcus neoformans). Sangshetti & Shinde (2010) reported the potent inhibitory effect of triazine and
their derivatives against three fungals ((Candida albicans (MIC-25), Aspergillus niger (MIC-12.5) and
Cryptococcus neoformans (MIC-25)) similar to miconazole.

Full-size Gl DOI: 10.7717/peerjochem.3/fig-3
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Figure 4 Design strategy of title compounds. Based on the good biological activity of the triazine frag-
ment, the triazine group was introduced into the 5-position of 1,4-pentadien-3-one nucleus to build a new
molecular structure, the potency of which was tested in terms of biological activities.

Full-size Gl DOI: 10.7717/peerjochem.3/fig-4

General procedure for the synthesis of intermediates

A synthetic route to 1,4-pentadien-3-one derivatives containing a triazine moiety was
designed and shown in Fig. 5. According to previously reported methods (Chen et al., 2019;
Tang et al., 2019; Gan et al., 2017), intermediates 1 and 2 could be obtained. Using benzyl,
biacetyl and thio-semicarbazide as the initial materials in acetic acid and water was stirred
at 100—110 °C for 6-8 h to obtain the intermediate 3 (Tang et al., 2019).

General procedure for the synthesis of target compounds 4a-4r
Reaction mixture was added to a solution of intermediate 2 (12 mmol), intermediate 3
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Figure 5 Synthesis route for the target compounds. (A) Compound 1, (B) Compound 2, (C) Com-
pound 3, (D) Compound 4.
Full-size Gal DOI: 10.7717/peerjochem.3/fig-5

(10 mmol) and K,CO; (30 mmol) in dimethylformamide and stirred at room
temperature for

6-8 h. After the reaction was completed (monitored by TLC), the mixture was extracted
with ethyl acetate (30 mL x 3). The solvent was removed under reduced pressure. Residue
was purified by silica-gel column chromatography using petroleum ether/ethyl acetate (3:1
v/v) to obtain target compounds 4a—4r. The IH NMR, 13C NMR, °F NMR and HMRS
spectra of the target compounds 4a—4r are also provided in the Supplemental Information.

Bioactivity assay

Antibacterial activity in vitro

The antibacterial activities of the title compounds against Xanthomonas axonopodispv.
citri (Xac), Xanthomonas oryzaepv. oryzae (Xoo) and Ralstonia solanacearum (R.s) were
evaluated at 100 pg/mL using a turbidimeter (7ang et al., 2019; Zhang et al., 2018). This
test method is provided in the Supplemental Information.

Antiviral activities in vivo

Using N. tabacun L.leaves under the same age as that of test subjects, the curative, protective
and inactivation activities against TMV (in vivo) at a concentration of 500 jg/mL were
evaluated by the half-leaf blight spot method (Chern et al., 2019).This test method is
provided in the Supplemental Information.

Molecular docking
The molecular docking was performed by using DS-CDocker implemented in Discovery
Studio (version 4.5). This test method is provided in the Supplemental Information.
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Table 1 Inhibition effect of the some title compounds against Xoo, R.s and Xac.*
Compd. Inhibition (%)
Xoo R.s Xac

100 pg/mL 50 L g/mL 100 pug/mL 50 pug/mL 100 pg/mL 50 pLg/mL
4a 19.7 £ 4.3 189+£35 58.2+24 58.2+3.7 437 £2.2 37.6 24
4b 48.5+5.2 33.5+3.0 53.9+6.5 44.6 £ 1.8 56.5+ 1.1 414+1.3
4c 209 £6.5 10.6 £1.8 15.7 £9.9 - 423 £2.1 448+ 1.8
4d 13.2+6.3 12.7+£29 38.0+3.3 37.0+4.3 38.2+3.7 33,5+ 3.6
4e 546+ 1.8 45.0 £2.9 37.6 £4.3 28.0£2.1 30.8 £ 1.0 372+ 1.5
4f 123+ 1.2 39+75 285+75 23.0 3.2 474 +£2.2 35.1 2.7
4g 438 £2.7 43.8+£2.3 28.5+3.1 226+£2.6 359+ 13.7 29.1£39
4h 139+ 45 30.7 £ 6.6 28.2 2.6 - 41.7+44 43.3+£0.8
4 55.6 +0.9 544+2.38 18.0 £2.9 28.6+1.3 61.6 +8.8 434+£22
4j 48.6 £ 1.1 389+24 53.5+29 45.0 £ 5.5 64.8 £2.9 43.0£9.3
4k 10.5 £ 4.7 59+37 61.9+27 49.2£25 91.8 +£2.3 85.6 £4.7
4] 14.1+£23 21.2+438 453+ 44 28.6 £2.5 95.4+9.0 68.1+79
4m 43.6 £3.0 28.51+4.2 182+ 1.8 17.0 £ 3.7 412439 32.5+5.1
4n 60.5 £ 0.9 443 %75 44.6 £8.7 32.0+8.7 354+1.3 323+25
40 41.8+74 25.1 +3.0 435+ 44 37.1+34 41.0+ 44 320+ 7.6
4p 56.5+3.9 27.6 £3.9 21.3+6.2 12.7 £ 9.6 41.1£15 284+27
4q 24.0 £9.9 202+24 189+ 1.8 164 + 1.8 74.6 = 1.8 50.0 2.2
4r 15.1 £4.8 11.0£9.0 244+7.6 11.3£8.0 51.8 £ 4.4 148+24
BT? 56.1 £7.3 493+54 52.1+34 442 +3.9 70.5+ 1.5 33.6 £ 1.7

Notes.

*Average of three replicates.

A commercial agricultural antibacterial agent Bismerthiazol was used for comparison of antibacterial activities.

BT, Bismerthiazol.

RESULTS

Antibacterial activities in vitro

The antibacterial activities of target compounds have been evaluated by the turbidimeter test
(Zhang et al., 2018; Tang et al., 2019). Results in Table 1 indicated that some of synthesized
compounds exhibited appreciable antibacterial activities against Xoo, R.s and Xac at

the concentrates of 100 pg/mL. Among these derivatives, 4n and 4p exhibited excellent

bactericidal effect against Xoo, with inhibition rates of 60.5% and 56.5%, respectively,

which were superior to bismerthiazol (BT, 56.1%). In addition, as demonstrated in

Table 1, the designed compounds displayed certain bactericidal effect toward R.s. Studies
on the inhibition effect of title compounds suggested that 4a, 4b, 4j and 4k exhibited
excellent inhibition effect against R.s with the inhibition rates of 58.2, 53.9, 53.5 and 61.9%,
respectively, which were better than that of BT (52.1%). We also noticed that compounds
4k (91.8%) and 41 (95.4%) exposed better antibacterial activity toward Xac than that of
BT (70.5%).
To further understand the antibacterial activity of the title compounds, the EC5, values

of some title compounds were calculated and summarized in Table 2. Notably, compounds
4a, 4b, 4j and 4k exhibited good inhibition effects against R.s, with half maximal effective
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Table 2 ECsy values of some title compounds against Xoo, Xac and R.s.

Tested Compd. Regression equation r? ECs
bacterias (g/mL)
Xoo 4e y =0.4750x +4.0608 0.9526 94.9
BT" y =1.5696x +1.8988 0.9551 94.6
4j y=0.9367x+43.3659 0.9509 55.5
Xac 4k y=0.6755x+3.5689 0.9181 129.1
BT® y=0.3926x 4 4.1415 0.9072 153.7
4a y=1.0922x+4.2593 0.9619 4.76
4b y=0.4261x+45.1569 0.9107 0.4
Rs 4 y =0.6032x +4.8698 0.9116 1.6
4k y=0.7208x 4 4.8188 0.9303 1.8
BT" y =1.0223x+3.2674 0.9095 49.5
Notes.

*Average of three replicates.
A commercial agricultural antibacterial agent Bismerthiazol was used for comparison of antibacterial activities.
BT, Bismerthiazol.

concentration (ECsg) values of ranging from 0.43—4.76 png/mL, which were better than
that of BT (ECs5¢ = 49.5 pg/mL). Meanwhile, compounds 4j and 4k showed remarkable
antibacterial activities against Xac with the ECs( values of 55.53 and 129.1 pg/mL, which
were better than that of BT (ECsp = 153.7 png/mL).

Antiviral activities against TMV in vivo

The antiviral activities of the title compounds 4a—4r against tobacco mosaic virus (TMV)
were evaluated by the half leaf method (Chen er al., 2019) and the results were summarized
in Table 3 and Fig. 6. It was found that some of the title compounds exhibited good
antiviral activity against TMV in vivo. Compounds 4f, 4k and 4l showed remarkable
curative activity against TMV, with values of 53.8, 66.3 and 59.9%, respectively. Which
were better than that of ningnanmycin (NNM, 45.7%). Meanwhile, compound 4 h (61.4%)
exhibited excellent protection activity, also superior to NNM (53.4%). Overall, most of the
compounds indicated general inactivation activity against TMV at 500 pg/mL.

Based on the previous bioassays, the ECsy values of some title compounds were tested
and are listed in Table 4. Compound 4a exhibited excellent inactivation activity against
TMV, with the ECs, values of 12.5 wg/mL, which was better than that of NNM (ECsy =
13.5 pg/mL). Moreover, compounds 4k and 4l exhibited the preferably curative activity
against TMV, with ECs( values of 11.5 and 12.1 pg/mL, respectively, which were superior
to that of NNM (ECsy = 82.2 pg/mL).

Molecular docking studies

Molecular docking studies (Figs. 7 and 8) for 4a with tobacco mosaic virus coat protein
(TMV-CP) (PDB code:1EI7). Molecular docking results revealed that compound 4a was
the most preferred compound based on the analysis followed by 4d and so on (Table
3). Compound 4a binding orientation clearly is described by Figs. 7 and 8, it forms one
hydrogen bond with PHEA:12 with highest docking score (2.49 A) among the designed
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Table 3 Antiviral activities of the target compounds against TMV in vivo at 500 jLg/mL.* The antiviral
activities of the title compounds 4a-4r against tobacco mosaic virus (TMV) at 500 pLg/mL are shown.

Compd. Curative Protective Inactivation
activity (%) activity (%) activity (%)
4a 30.1 £0.21 16.1 £0.32 66.2 = 0.02
4b 44.4 £ 0.05 54.5 + 0.03 48.2 +0.02
4c 40.1 £ 0.05 35.5+£0.12 57.1 £0.02
4d 29.3 +0.07 53.9 +0.02 63.6 = 0.03
4e 44.1 +0.03 14.9 + 0.15 39.4 £ 0.07
af 53.8 £ 0.07 39.5 +£0.02 50.1 + 0.02
4g 44.5 + 0.03 44.4 £ 0.11 44.9 + 0.07
4h 47.6 £0.07 61.4 +0.04 53.5 + 0.05
4i 27.3 +£0.04 33.540.11 24.3 £0.07
4j 43.1 £0.02 26.7 £ 0.03 24.1 £0.11
4k 66.3 +0.01 24.1+0.28 27.7 £0.01
4] 59.9 £ 0.07 18.4 £ 0.02 31.9 £ 0.09
4m 48.8 £+ 0.06 28.6 = 0.17 22.3 +£0.09
4n 37.4 £0.05 27.5+£0.19 27.1 £0.07
40 39.5 +0.02 22.4 4+ 0.08 57.7 £ 0.01
4p 46.6 + 0.08 41.2 £ 0.08 28.2 £0.09
4q 38.5 +0.01 31.6 £ 0.01 33.5 +0.02
4r 42.4 4+ 0.02 34.1 £0.11 33.5+£0.02
NNM? 45.7 £2.61 53.4 +2.42 77.3 £ 1.60
Notes.

2 Average of three replicates.

A commercial agricultural antiviral agent ningnanmycin was used for comparison of antiviral activities.

NNM, ningnanmycin.

molecules and the glide energy was also less compared to others showing few hydrophobic

interactions with specific residues like as TYRA:139, VALA:75, LYSB:268 etc.

DISCUSSION

Structure-activity relationships of antibacterial activities

The antibacterial results in Tables 1 and 2 also indicated that the different groups on R

had significant effects on the antibacterial activities of the title compounds. Obviously, the

presence of a C¢H4Cl group can effectively enhance the antibacterial activity against Xac.
For example, the compounds 4k and 41, which contain R = 4-Cl- C¢H4 and R = 2-Cl-
CeHy groups respectively, exhibited ECsy values of 55.53 and 129.1 pg/mL, which were
better than that of BT (ECsy = 153.7 wg/mL). Meanwhile, when R was substituted with
thiophene-2-yl and 4-Cl- C¢Hy4 groups, the corresponding compounds 4a, 4b, 4j and 4k

exhibit remarkable antibacterial activities against R.s, with the ECs( values of ranging from

0.43-4.76 ng/mL, which were better than that of BT (EC5p = 49.5 ug/mL).
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Curative Protection

Inactivation

Ningnanmycin 4k 4h 4a

Figure 6 Tobacco leaf morphology effects of the NNM and 4k, 4h and 4a against TMV in vivo. (A) The
curative activity of the ningnanmycin (NNM). The left side of the leaf (al) was smeared with compound
NNM, and the right side of the leaf (ar) was not treated with compound NNM. (B) The protective activ-
ity of the ningnanmycin. The left side of the leaf (bl) was smeared with compound NNM, and the right
side of the leaf (br) was not treated with compound NNM. (C) The inactivation activity of the ningnan-
mycin. The left side of the leaf (cl) indicated that smeared with compound NNM, and the right side of
the leaf (cr) indicated that not treated with compound NNM. (D) The curative activity of the compound
4k. The left side of the leaf (dl) was smeared with compound 4k, and the right side of the leaf (dr) was not
treated with compound 4k. (E) The protective activity of the compound 4h. The left side of the leaf (el)
was smeared with compound 4h, and the right side of the leaf (er) was not treated with compound 4h. (F)
The inactivation activity of the compound 4a. The left side of the leaf (fl) was smeared with compound 4a,
and the right side of the leaf (fr) was not treated with compound 4a.

Full-size @ DOTI: 10.7717/peerjochem.3/fig-6

Table 4 ECs, values of the 4a, 4d, 4h,4k and 41 against TMV in vivo.” The ECs, values some of the title
compounds against TMV in vivo are shown.

Compd. against TMV regression equation r? ECs
4a Inactivation activity y=0.6712x+4.2637 0.9234 12.5
4d Inactivation activity y =0.8253x +3.7000 0.9279 37.6
4h Protection activity y =0.4739x +4.2865 0.9833 32.1
4k Curative activity y =0.4261x +4.5479 0.9382 11.5
4] Curative activity y =0.6542x +4.2925 0.9191 12.1

Curative activity y=0.4415x44.1563 0.9720 81.4
NNM" Protection activity y =0.4732x +4.0939 0.9097 82.2

Inactivation activity y =0.8498x 4-4.0381 0.9702 13.5

Notes.

2 Average of three replicates.
A commercial agricultural antiviral agent ningnanmycin was used for comparison of antiviral activities.
NNM, ningnanmycin

Structure-activity relationships of antiviral activities
The antiviral bioassay results indicated that the title compounds showed excellent antiviral
activity against TMV. The preliminary SAR results were dropped based on the anti-TMV
activity (as shown in Tables 3 and 4). The results indicated that when R was the 4-NO,-

CeHa (4f), 4-Cl- C¢Hy (4k) or 2-Cl- CeHy (41) group, the corresponding title compounds
exhibited good curative activities. Furthermore, when the R was 4-OMe- C¢Hy4 group, the
protective activity of corresponding compound 4h was better than that of NNM (ECsy =
82.2 pg/mL), with an ECsg values of 32.1 pg/mL.
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Figure 7 Three dimensional diagrams of compound 4a docked with TMV-CP.
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CONCLUSIONS

In short, a series of 1,4-pentadien-3-one derivatives containing triazine scaffolds were
synthesized. The obtained bioassay results revealed that some of the title compounds
exhibited excellent antibacterial or antiviral activities that were better than the commercial
agents. In particular, compound 4a showed prominent inactivation activity against TMV.
Furthermore, compound 4a had strong binding capability with TMV-CP. These results
proved that the 1,4-pentadien-3-one derivatives containing triazine scaffolds possessed
antiviral and antibacterial activities.
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