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ABSTRACT

The ability to identify and reject bitter molecules may determine evolutionary fitness.
These molecules might be in potentially toxic or contaminated food. Surprisingly, the
ability to identify but tolerate or even enjoy bitter foods and medicines may be beneficial.
For example, the tolerance of bitterness as a spice or as a medicine may lead to better
nutritional, immunological and health outcomes. More recently the ability of intensely
bitter compounds to induce innate immune responses to counter infection has inspired
the screening of new drugs and the repurposing of safe, known drugs to new uses.
These avenues of study may also help to address long-standing questions regarding
unexpected side-effects and placebo/nocebo effects. Therefore, to distinguish all these
effects ranging from desire to aversion, there is a need to quantitatively determine
the concentration thresholds and to position these bitter substances on a unified taste
threshold spectrum. Such an understanding may help elucidate the concentration-
based molecular drivers for the chemoreceptive response to bitter substances. This
article reports the development of a gradient boosting machine (GBM) that enables a
direct interrogation of molecular structure with no intermediary chemical properties.
Using molecularly engineered simulations, it is shown that potassium acesulfame has
a hidden bitterness motif that is centered on the chemoreceptive spectrum uniting
bitterness and sweetness molecular motifs. The resultant shifted perception from a
touchstone bitterness sensation to a bitter after-taste is attributable to this cached
molecular motif.

Subjects Theoretical and Computational Chemistry, Organic Chemistry (other), Organic
Compounds

Keywords Model, Bitterness, Quinine, Gradient boosting machines, hT2R, Taste, Receptors,
Ergolines, TAS2R, Placebo

INTRODUCTION

Gustation is a critical sense for our daily living. The ability to taste specific compounds is
intimately linked to our dietary choices, safety and health.

Human dietary choices have also evolved according to cues drawn from bitter tastes. The
adoption of bitter spices into cuisine is also noteworthy since there is a range of spices that
bears a distinct bitterness. Some examples include mustard and chervil. It is also notable
that traditional vegetables such as the African Spider Plant and the Malabar Spinach
are cherished for their bitterness just as much as they are for their robust nutritional
value (Kimiywe et al., 2007). There is now a substantial collection of research showing
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that the systemic responses to glucose differ between meals containing bitter foods from
those without bitter foods. These reports suggest that satiety and the non-diabetic glycemic
response can be induced in diabetic respondents when bitter compounds are ingested. These
findings appear to support the premise that human feeding response and endocrinology
are co-evolved (Kim, Egan & Jang, 2014).

“Bitters” have also been used as a flavoring agent for alcoholic beverages globally
as means of fortification; in some instances, these bitter cocktails are selected for their
medicinal effect e.g., in the historic use of quinine for the preparation of tonics in the
tropics. The medicinal and gustatory effects have therefore been conflated in recent times
becoming part of the barman’s lore (Barnett, 2012).

In spite of the unsupported conflation of gustatory and medicinal effects, there is reason
to believe that the bitterness receptors (hTAS2R family) may have some links to immunity
at a molecular level. It is known that there are extra-oral taste receptors especially in
the respiratory system (Lee ¢ Cohen, 2014) and in the intestinal mucosa (Clark, Liggett ¢
Munger, 2012). Within the respiratory system, ciliated airway epithelia express h-TAS2R
receptors. These receptors are known to respond to the presence of bacterial quorum sensing
molecules by initiating a Ca2+-dependent signaling pathway that increases mucociliary
clearance and production of antimicrobial products including peptides and Reactive
Nitrogen Species (Lee ¢ Cohen, 2014). Gut epithelial tissues are known to contain Tuft
cells which have taste-chemosensory capacities enabling the promotion of type-2 immunity
in the event of ingress by foreign bodies (Howitt et al., 2016).

The ability to distinguish fresh from spoilt food depends on our ability to associate
freshness with gustatory cues. This relationship is partly innate and partly learnt (Zeinstra
et al., 2009). The genetic origins of taste have been confirmed within the human species
and more broadly across the animal kingdom. This constitutes the innate bitterness sense.
However, the ability to sense a bitter substance is only the beginning as the appropriate
learnt response may vary from simple reduction in the amount consumed (e.g., the use of
a spice) or the complete avoidance (e.g., aversion). The most intense bitter foods elicit an
aversive response which may culminate in an emetic response. Both aversion and emesis
are primary immune responses protecting the body from far worse consequences from
imbibing poisons (Palm, Rosenstein ¢» Medzhitov, 2012).

Not surprisingly, bitter tastes are now demonstrated to have been evolutionarily
sectioned according to biogeography. The taste receptor frequency appears to be
latitudinally ordered according to the global biogeography. The ability of a species to
gustatorily identify poisonous from non-poisonous plants is itself a measure of fitness
which is linked to survival (Chandrashekar et al., 2006). However, even within a confined
latitudinal window, the diversity in the ability to sense the full spectrum of bitterness is
now understood to be driven by the zygosity and the epigenetic profile of the taster giving
rise to the neologism of a “supertaster” (Beckett et al., 2014).

These studies have shown the undervalued importance of bitterness beyond taste but
have also raised questions on the precise molecular theory driving bitterness thresholds
and responses. Similarly, testing and design principles for bitter compounds require
refinement against the often-noisy clinical data. In this regard, the focus of this article is the
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construction of model forms that may permit the identification of the relevant molecular
space and the structural heuristics for further investigation.

MATERIALS & METHODS

Metadata collection

Data was sourced from previous studies by Meyerhof et al. (2010) of molecular receptive
thresholds drawn from the calcium-signaling responses of hTAS2R transfected cells. Cells
were designed to express the hTAS2R epitopes on the cell surface, exposed to the bitter
compounds, calcium-sensitive signaling dye and an inhibitor for anion transport (cellular
vitality tests were co-evaluated alongside the hTAS2R-mediated calcium signaling). The
hTAS2R receptors were coupled to intracellular calcium signaling by the chimeric G-protein
subunit, G 16gust44 (Ueda et al., 2003). Adequate controls were provided by means of
empty transfection vectors (Meyerhof et al., 2010).

Relative Quinine Index (RQI)

The RQI is calculated by dividing the detection concentration of a given compound
and dividing it by the detection concentration of quinine. The RQI helps to organically
communicate how bitter a compound is because quinine is a familiar compound commonly
used to make tonic water (a consumer product). Therefore, a molecule that is more bitter
than quinine will have a an RQI less than one (the converse is true).

Sample Size & Data Description

There were in total 82 bitter compounds. These compounds were pre-determined to be
bitter based on psychophysical tests (Meyerhof et al., 2010). The RQI ranges from 0.00013
to 99.9 representing almost six orders of change in magnitude.

Generation of molecular structures
Structures were generated using ChemSpider.

Variable transformation

Molecular structures were checked for consistency before they were used to generate
descriptors using R ChemolInformatic packages: Repi (Cao ef al., 2015), ChemmineR (Cao
et al., 2008) and ChemmineOB (Horan ¢ Girke, 2013). Components include: molecular
fingerprints (graph, FP4, MACCS)', electron structure, spatial and topological descriptors.
See Table 1 for the descriptor set.

Chemical scaffold determination

The chemical scaffolds were identified using Scaffold Hunter (Werzel et al., 2009). Briefly,
chemical identifiers, Names, SMILES and RQI were imported into an HSQLDB database.
Thereafter, scaffold clouds and tree maps were generated to represent the inner structural
relationships between members of the chemical library. Scaffolds were obtained by using
a deterministic structural reduction process that prunes terminal branches revealing
inner shared structures referred to as scaffolds. Scaffolds were clustered via the sequential
agglomerative hierarchical non-overlapping clustering (SAHN) algorithm (Anderberg,
2014; Schiifer et al., 2017).
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Table 1 A representative summary of features that contribute significant information to the model. Values are obtained after removal of low or
zero-variance columns from the original input space.

Descriptor class Function Columnar Rationale
contribution
Electro-topological extractDrugEstateComplete 8% Charge distribution affects binding efficiency and
Structural extractDrugMACCSCompleteextractDrugOBFP4 60% stability
Geometric extractDrugGraph 32% Molecular shape may affect ligand docking

Description of the SAHN algorithm

The algorithm has four main steps: first, the chemical structures are fingerprinted using bit
arrays that capture both existing and missing chemical features. The chemical fingerprints
extended with descriptors are then used to calculate a similarity matrix. Pairs of similar
molecules are used to create nodes in a sequential fashion that ultimately captures all the
members of the dataset in a single mathematical construct (this is the linkage routine).
Finally, visual representations of the data are presented using dimensional reduction
methods allowing users to have compact slices of the data conveying the structural chemical
motifs in a semantically compelling snapshot (Anderberg, 2014; Schiifer et al., 2017).

Model development

The computational technique had three steps. The first step was to transform the molecular
SMILES into structures and generate the descriptors for structure, electronic state and
topology. The second was to generate a high-variance reduced form of the molecular
structures capturing the input space. This step involved removing the low and zero-variance
vectors in the input space. Low and zero variance vectors are removed because they are
uninformative and therefore do not contribute to the determinacy of the system. The third
step involved using a gradient boosting machine (GBM) to regress the bitterness thresholds
against the input space. A GBM was chosen because it generates initially weak learners
and subsequent stronger learners will only improve on weak learners in areas of chemical
space where residuals are large. When applied to this bit array representation of molecular
descriptors, they will be run on an eight-fold (8 x) cross-validated train-test sample split.
The training sets are validated by comparing the resulting trained model predictions
against the experimental data in the test set. The chosen model will have the lowest overall
cross-validated error. The hyperparameters used were: 199 trees, maximum tree depth of
7 levels; minimum tree depth of 2 rows and a learning rate of 0.2 (detailed information
included in the code attachments). The choices are driven by the rate of convergence of the
algorithm; in turn convergence is driven by the attainment of a sustained minimum in the
residuals of the model (see Fig. 1). Additionally, the learning rate served to minimize the test
set residuals which means that the overall model performance is within specified metrics.
While this means that the convergence is slowed, the other chosen parameters balance
this decreased velocity with an aggressively parameterized chain of increasingly complex
learners. Model selection was based on a set of 4 values: Coefficient of Determination
(R.SQ.), model error, convergence and sustained metrics during validation. The full
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Figure 1 Training Mean Absolute Error plotted against the Training Process Time in seconds. The
graph shows a rapid convergence to a low error. X-validated model metrics: R* (99.3%); RMSE (2.34);
Mean Response (15.39).

Full-size &l DOLI: 10.7717/peerjochem.2/fig-1

dataset and the outlined code have been provided and can be run on R version 3.5.0 or
higher.

RESULTS

Model generation

The model convergence was demonstrably quick having constructed the input space using
molecular fingerprints and descriptors as shown in Fig. 1. Model convergence is directly
linked to the choice of hyperparameters which accelerate the reduction in residuals to

a sustained minimum. The residuals’ magnitudes are captured on the y-axis while the
algorithm’s process time is captured on the x-axis in seconds. The attainment of the
minimum is shown in the asymptote of the residual-duration curve.

Molecular patterns have previously been observed amongst bitter molecules when
contrasted against an intuitive diametrical opposite (sweet molecules). This observation
was proven true when molecular changes to moieties on the sweet molecule gave bitter
molecules (Belitz et al., 1983). Therefore, the molecular structure was used to provide
structural information divisible into three areas: geometric/connective, electro-topological
and structural representations. A summary of the descriptor choice is provided in Table 1.

The RQI was then regressed against the input space generating a cross-validated model
with the following metrics: Coefficient of Determination (R?) (97%), Root Mean Square
Error (RMSE) (2.34) for a Mean Response (15.39). The model accuracy is shown in Fig. 2
by plotting the predicted vs. the empirical bitterness index. The points are straddled across
the identity line (y=x) showing the model tries to match the empirical reality and the
errors (deviations away from the identity line) are random. Overall, the mathematical
construct confirmed the existence of a robust deterministic relationship between the input
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Figure 2 All-in model showing the agreement between predicted bitterness index and the empirical
value with all values in RQI for both the training (A) and the test set (B). Model fidelity is maintained in
both the training (A) and the test set (B). X-validated model metrics: R* (99.3%); RMSE (2.34); Mean Re-
sponse (15.39).

Full-size Gl DOI: 10.7717/peerjochem.2/fig-2

space and the RQI. This is consistent with previous observations of the strong relationship
between molecular structure, molecular formula and geometry (Belitz et al., 1983) because
both the model and observational treatments map from the same foundational chemical
features onto measures of bitterness with observations being descriptive while the model is
a compact mathematical representation of the same insights.

DISCUSSION. CAN WE DEVELOP HEURISTICS FROM THE
STRUCTURAL INFORMATION?

The observations made in Table 1 are striking given that they offer an abstraction of the
drivers of bitterness with a moiety-based adjustment to contrast between configurations
on specific molecular structure with shared motifs. Given that the model could sufficiently
predict these changes, it can be inferred that the full dataset should lead us to similar
conclusions. From Fig. 3, the amine-containing groups contribute greatly to the scaffold
cloud to the tune of 8X relative to the sulfinyl groups. This is consistent with previous
observations for alkylamines, amides and azacycloalkanes (Belifz ef al., 1983). The
representational model predicts that molecules with pyridyl and amine substructures
will have significant bitterness quotients. The centrality of amine-containing bitterants
appears to demonstrate a path of modification towards molecular clusters with increasing
aversive gustatory qualities as shown in Fig. 4. Clustering approaches are especially vivid
where hierarchical and progressive modification are concerned. Not surprisingly, these
modifications allude to the origins of bitter substances being the arms-race between plant
and animal kingdoms and the search for optimality between fitness targets of protection and
dispersal. These observations raise the hope that further research into the bitterness-driven
screening libraries and the extensional indications for known and well-tested drugs can be
expected to be fecund.
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Figure 3 A visualized structural contribution to the data set. A cloud visualization indicates that the
parametric coefficients that drive bitterness are greater for amine groups than they are for the sulfinyl
groups with a greater than 8 x preponderance.

Full-size al DOI: 10.7717/peerjochem.2/fig-3

WHY MIGHT POTASSIUM ACESULFAME (ACEK) HAVE A
BITTER AFTER-TASTE?

The model was used to explore what changes drive the bitterness threshold of known
compounds. AceK has a bitter aftertaste but the existence of some bitterness signaling
(high panelist variance) throughout the taste experience indicates that the molecule
possesses inherent bitterness (Ku/in et al., 2004). Using the model, the hypothesis could be
tested by changing moieties that are likely to be transformation sites. The new molecular
structures are then used as inputs into the GBM whose output is the predicted RQI which
represents a bitterness threshold relative to quinine (the chosen bitterness standard).
On Table 2, AceK has a respectable bitterness threshold. The RQI does not change
meaningfully across similar molecules with a -CNSO- motif; they all have high RQI (i.e.,
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Figure 4 A structure-based tree map showing an increasing tendency for amine containing centers to
the right and to the bottom. These representations emphasize the significance of the -NCS- motif much
like the GBM model and the scaffold cloud.

Full-size Gal DOTI: 10.7717/peerjochem.2/fig-4

they are less bitter than quinine). In contrast, maintaining an -NCS- (thiocyanate) motif
alone lowers the bitterness threshold even to below that of quinine as exemplified by the
PTC (phenylthiocarbamide) standard (Meyerhof et al., 2010). This finding may indicate
that molecular structure is critical to bitterness sensing and that motifs can be altered by
introduction of additional polar atoms to the identified molecular ‘trigger motif’ to increase
the RQI. Additionally, from a “molecular structure” perspective there are gradations of
taste uniting bitter and sweet on the same scale. Where such gradations meet, as in the AceK
case, the hidden bitterness motif is likely altered resulting in a shifting of perceptions to
after-tastes rather than a touchstone bitterness sensation. This model-driven conclusion is
supported by the observation that the heteromeric sweetness receptor h-TASIR2-hTAS1R3
and bitterness receptors hTAS2R43 and hTAS2R44 are all activated by AceK at higher
concentrations for the sweetness receptors implying bitterness would be recognizable at
lower concentrations typical of a post-evacuation state within the inundated gustatory bulb
i.e., as an after-taste (Kuhn et al., 2004). These in vitro observations confirm the ability for
the AceK ‘master’ molecular key to unlock both sweet and bitter sensations in that order
(Kuhn et al., 2004).

EXAMINING MYCOTIC COMPOUNDS: EVIDENCE OF
EVOLUTIONARY COOPERATIVITY

It is observable that homologous compounds demonstrate an evolutionary pressure exerted
by saprophytes and autotrophs against herbivorous and omnivorous heterotrophs. A fine
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Table2 A table showing the estimated and empirical RQI of AceK and molecular similars. In column 1, the molecule possesses an -NCS- motif
and a low RQL. In contrast the molecules in columns 2 & 3 possess a -CNSO- motif and high RQI values. Empirical values are provided as detection
ranges from the mean and standard errors of the hTAS2R family receptors.

ESTIMATED BITTERNESS
Name phenylthiourea AceK 1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide
Smiles C1CCC(CC1)NC(=8)N CC1=CC(=NS(=0)(=0)01)[0-].[K+] C1CCC2C(C1)C(=0)NS2(=0)=0
o [e]
Q
s I
NH2 0 ?°
Reason/Change -NCS- Motif -CNSO- Motif -CNSO- Motif
Predicted RQI 0.01 26.00 8.00
Empirical RQI 0.001-0.01 20-42.5 2.5-7.5

example is the link between phenylketonuria and ochratoxin A; the former being linked
to fetal protection against the latter (Woolf, 1986). Therefore, bitter ochratoxin A is linked
to changes in the human genome driven by its toxicity (Woolf, 1986). Additionally, for the
same cognate molecular set, the detection threshold (RQI) for the poisonous strychnine
variant molecule (LD50 at 5 mg; RQI at 0.01) is lower than that of its edible and sometimes
therapeutic counterpart brucine (LD50 at 1,000 mg; RQI at 1) (Meyerhof et al., 2010). These
representative LD50-RQI relationships are nonlinear. Much interest in this observation
has been driven by the desire to find more powerful and durable antifungals, antibiotics
and antivirals. Therefore, the case study here looks to compare cognate molecular sets
to identify which among them are likely to fall in the edible-therapeutic group. More
specifically, ergolines are of interest given that their somatic and psychiatric effects can
span the spectrum of beneficence to toxicity.

We examined the class of ergoline mycotic chemistries known to have pharmaceutical
value in humans. These chemistries are known to have vascular (Martin ¢» Dumoulin,
1953) and nervous system effects (Coward et al., 1990). They are valued for treating a range
of conditions including post-partum bleeding (Martin ¢ Dumoulin, 1953) and migraines
(Lance, Anthony ¢ Somerville, 1970). The molecular structures of three ergolines were
entered as inputs, converted to chemical fingerprints and descriptors and subsequently
predicted by the GBM to have quantified predicted RQIs (column 3, Table 3). Looking
at Table 3, the demarcation between the compounds on the toxicity measures (LD50)
broadly matched with the RQI as predicted by the model. Low RQI thresholds correspond
with low LD50 thresholds supporting the going hypothesis that evolutionary directions for
human bitterness receptors appear to follow the surrounding environmental pressures. This
motivates the derivation of a ratio being the LD50-to-RQI (toxicity-bitterness) ratio. This
Toxicity-Bitterness Ratio approximates 1,500 (ergometrine), 150 (methylergometrine)
and 15 (methysergide). This shows an intervallic spread between each evolutionary
terminus uniting human and mycotic adaptations. There is a non-linear decrease in
the toxicity-bitterness ratio which is attributable to the non-linearity of psychophysical
(RQI-Concentration) (Meyerhof et al., 2010) and toxicity (LD50-Concentration) (O Brien,
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Table 3 Tabulation of the Ergoline class showing the sharp demarcation between the compounds on
the toxicity measures (LD50) matched with the RQI as predicted by the structural model. Low RQI
thresholds correspond with low LD50 thresholds confirming the going hypothesis that evolutionary direc-
tions for human bitterness receptors follow the surrounding environmental pressures.

Structure Name Predicted RQI LD50.human (ug/kg)
Ergometrine 10 15000

AN
Methylergometrine 4.45 667

o
e
i
- g
o P -
o
o,
-
y
}N g
wr Ao .
I

Chooprateep ¢» Homlkham, 2009) curves for compounds including ergolines which are

Methysergide 1.85 28

phenomenologically modeled using non-linear regressive methods.

CONCLUSIONS

In conclusion, a molecular-theoretic approach to predicting bitterness thresholds for
the human T2R receptor has been developed demonstrating exquisite model quality
diagnostics. The outcomes may be usable in the testing and design of bitter compounds
targeted at taste-chemosensory receptors. Model assessments have also allowed us to
identify the importance of electro-topological, structural and geometric properties of
the molecular space. Further, the model was usable in developing verifiable structural
heuristics for bitterness, explaining aftertaste sensations chemometrically and separating
toxic from non-toxic therapeutic molecular cognates. It is proposed that future work may
focus on the mechanistic drivers of receptor-driven immune responses addressed to the
greater challenge of identification of scaffolds for immunotherapeutic small molecules and
next-generation adjuvants.
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