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New photocatalysts based on TiO, were synthesized and characterized. The synthesis

involved the controlled hydrolysis of titanium tetraisopropoxide using water containing
different proportions of acetone. X-ray diffraction analyses combined with Raman
spectroscopy revealed crystalline oxides characterized by the coexistence of the anatase
and brookite phases. The Rietveld refinement of diffractograms showed that the presence
of acetone in the synthesis process influenced the composition of these crystalline phases,
with the proportion of brookite growing from 13 to 22% with the addition of this solvent in
the synthesis process. The BET isotherms revealed that these materials are mesoporous
with surface area approximately 12% higher than that of the oxide prepared from
hydrolysis using pure water. The photocatalytic potential of these oxides was evaluated by
means degradation tests using the dyes Ponceau 4R and Reactive Red 120 as oxidizable
substrates. The values achieved using the most efficient photocatalyst among the
synthesized oxides were, respectively, 83% and 79% for mineralization, and 100% for
discoloration of these dyes. This same oxide loaded with 0.5% of platinum and suspended
in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours

of reaction, a specific hydrogen production rate of 138.5 mmol h*g™ zalue 60% higher
than that achieved using TiO, P25 under similar conditions.
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Abstract

New photocatalysts based on TiO, were synthesized and characterized. The synthesis involved
the controlled hydrolysis of titanium tetraisopropoxide using water containing different
proportions of acetone. X-ray diffraction analyses combined with Raman spectroscopy revealed
crystalline oxides characterized by the coexistence of the anatase and brookite phases. The
Rietveld refinement of diffractograms showed that the presence of acetone in the synthesis
process influenced the composition of these crystalline phases, with the proportion of brookite
growing from 13 to 22% with the addition of this solvent in the synthesis process. The BET
isotherms revealed that these materials are mesoporous with surface area approximately 12%
higher than that of the oxide prepared from hydrolysis using pure water. The photocatalytic
potential of these oxides was evaluated by means degradation tests using the dyes Ponceau 4R
and Reactive Red 120 as oxidizable substrates. The values achieved using the most efficient
photocatalyst among the synthesized oxides were, respectively, 83% and 79% for mineralization,
and 100% for discoloration of these dyes. This same oxide loaded with 0.5% of platinum and
suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five
hours of reaction, a specific hydrogen production rate of 138.5 mmol h'! g-!, value 60% higher
than that achieved using TiO, P25 under similar conditions.

Introduction
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Energy and environment are essential and challenging themes for humanity. The growing
demand for energy combined with environmental contamination, particularly water
contamination, has driven the search for sustainable resources and alternative processes aimed at
minimizing negative impacts related to these issues (Cunha et al., 2018; Tractz et al., 2019).

Heterogeneous photocatalysis has proving to be a good alternative. Studies have shown
its effectiveness in environmental remediation of contaminated waters (Machado et al., 2008;
Franga et al., 2016; Hurtado, Sader & Delgado, 2019), as well as in hydrogen production (H;), an
important energy vector (Bahnemann & Schneider, 2013; Rusinque, Escobedo & Lasa, 2020;
Galvao et al., 2019).

Much of the efforts spent on expanding the use of heterogeneous photocatalysis were
based on the development of new semiconductor materials with increased photocatalytic activity.
Among the possible photocatalysts, TiO, stands out due to its abundance, insolubility in water,
low toxicity, good chemical stability in a wide pH range, and photostability (Kandiel et al.,
2010). Despite thic desirable characteristics, TiO, may present low surface area, depending on the
size and shape of crystallites, fast recombination rate of the photogenerated charge carriers
(electron/hole) and absorption of radiation in ultraviolet (Bahadori et al., 2020). However, such
limitations may be circumvented through structural modifications or by the introduction of
dopants (Machado, Alves & Machado, 2019; Santos et al., 2015a; Martin-Somer et al., 2020).

TiO, presents itself according to three distinct crystalline phases: brookite, with
orthorombic structure, anatase and rutile, both with tetragonal structure, widely used in
heterogeneous photocatalysis (Fujishima, Zhang & Tryk, 2008). Experimental and theoretical
studies suggest that a high percentage of anatase phase and small fraction of brookite guarantees
greater photocatalytic activity to TiO,, compared to pure anatase, due the existence of structural
defects that end up delaying the displacement of electrons and holes, minimizing the
recombination between load carriers, making more reactive the surface of the photocatalyst
(Jiang et al., 2014; Di Paola, Berllardita & Palmisano, 2013).Error! Reference source not
found.

Efforts have been spent on improving methods that allow the control and reproducibility
of the synthesis of this kind of material, which allows the obtaining of particles with mixed
crystalline phase, with high photocatalytic yield (Luevano-Hipolito et al., 2014; Mohammadi,
Harvery & Boodhoo, 2014; Myilsamy, Murugesan & Mahalakshmi, 2015). In this sense, an
approach that has proved feasible is the use of solvent combinations in the manipulation of the
material mesostructure. Kumar and collaborators showed that sol-gel synthesis in a system
involving the combination of different solvents strongly interferes with precursor hydrolysis,
improving the structural properties of oxides (Kumar et al., 1999).

In the present study, we performed the modified sol-gel synthesis of TiO,-based
photocatalysts aiming to improve their photocatalytic activities. The precursor (titanium
tetraisopropoxide) hydrolysis rate was controlled by the use of different proportions of acetone
as co-solvent, reducing the availability of water in the process. With this, greater control of the
formation and growth of critical nuclei was possible, avoiding the formation of very crowded
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particles. The synthesized oxides were characterized by X-ray diffraction (XRD), Raman
spectroscopy, diffuse reflectance, specific surface area measurements (BET) and transmission
electron microscopy (TEM). The photocatalytic activity of these compounds was evaluated in
promoting the photodegradation of two azo dyes, used as oxidizable substrates: Ponceau 4R
(P4R) and Reactive Red 120 (RR120). The best and least efficient photocatalyst, along with the
TiO2 P25, were confronted in terms of hydrogen production capacity. The reuse potential of the
best photocatalyst was also evaluated.

Materials & Methods

Experimental

All reagents used (titanium tetraisopropoxide, 97%; isopropanol, 99.5%; ponceau 4R
(P4R), 75%; reactive red 120 (RR120) - purity not informed by the supplier; Methanol, 99.8%;
hexahydrated hexachloroplatinic acid, 37.5%; hydrochloric acid, 37% and sodium hydroxide,
98%) were of analytical grade, provided by Sigma-Aldrich. Acetone 99.5%, was provided by
Synth. All solutions were prepared with ultrapure water obtained from an Elix 5 Milli-Q® water
purification system.

Preparation of photocatalysts

The oxides were obtained by the sol-gel method, involving the solubilization of titanium
tetraisopropoxide in isopropanol at 3°C under ultrasonic stirring for 20 minutes, followed by its
hydrolysis by the addition of water/acetone mixture by drip and precipitation under ultrasonic
stirring.

The water/acetone mixtures were prepared with deionized water and different proportions
of acetone (0%, 25%, 50% and 75% v/v). The resulting amorphous solids were washed with
distilled water, centrifuged and sintered using a conventional oven at 400 °C for 5 hours.

The standard photocatalyst, synthesized in aqueous medium, was called W1. The other
oxides, synthesized by hydrolysis using different water/acetone mixtures (25%, 50%, 75% v/v of
acetone), were named W1-25, W1-50, W1-75, respectively.

Characterization of the photocatalysts

The photocatalysts were characterized by different methodologies. By X-ray diffraction
(XRD) using a XDR600 (Shimadzu) powder diffractometer operating at 40 kV and 120 mA,
using Cu Ka radiation. The diffractograms were scanned in the range between 10 and 80° under
a rate of 0.5° min™'. Finally, they were refined by the method of Rietveld using the software
“FullProf “(Roisnel & Rodriguez-Carvajal, 2011). As criteria of mounting, the S factors were
maintained between 1.22 and 1.31 (Table S1, Supplementary Information).

The Raman spectra were acquired at room temperature using a Bruker RFS 100/S
spectrometer coupled to a 1064 nm laser operating at 100 mW. Each Raman spectrum, with
spectral resolution of 4 cm™!, is the result of the accumulation of 128 scans.
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The diffuse reflectance spectra were obtained using a double beam UV-1650 (Shimadzu)
spectrophotometer, estimating the band energy by Kubelka-Munk treatment (Patterson, Shelden
& Stockton, 1997) Error! Reference source not found. [, thege measures, barium sulfate was used as
reference.

The N, adsorption-dessorption isotherms were obtained using an ASAP 2020
(Micrometrics) analyser. The adsorption data were analysed by the method proposed by
Brunauer, Emmett and Teller (BET) for the surface area and the method of Barrett-Joyner-
Halenda (BJH) for pore volume.

Transmission electron microscopy (MET) images were obtained using a JEM-2100 (Jeol)
microscope. In the preparation of the samples, suspensions containing the powders dispersed in
acetone were used with the aid of a cutting-edge ultrasound. These suspensions were deposited
on copper grids and air dried. From the images, obtained with the aid of the image editing
software “ImageJ”, it was possible to calculate the particle size randomly selecting
approximately 100 particles per image.

Photocatalytic assays

4 L of an aqueous solution containing 100 mg L-! of the photocatalyst were used in the
photodegradation assay, in combination with a concentration equivalent to 12.0 ppm of dissolved
organic carbon of the dye - corresponding to 31.3 mg L-! of P4R or 43.5 mg L' of RR120 — used
as oxidizable substrates. Detailed experimental assembly for the photodegradation assays was
described in a previous study (Oliveira et al., 2012).

A commercial high-pressure mercury lamp (HPLN) of 400 W (Philips, 2015) without the
protective bulb was employed as radiation source. Under this condition, its estimated photonic
flux in the UVA was of 3.3 x 10 Einstein/s, with an irradiance of 9 W/m? (Machado et al.,
2008). During discoloration and dye mineralization monitoring, aliquots were collected every 20
minutes, in a total reaction interval of 140 minutes. The dyes discoloration was monitored
without pH correction, by varying the absorbance of the solutions with the reaction time.
Monitoring was done in the maximum absorbance wavelength in the visible of each dye - 507
nm for P4R and 512 nm for RR120 - using a UV-1201 (Shimadzu) spectrophotometer.
Mineralization was monitored from dissolved organic carbon (DOC) measurements, using a
TOC-VCPH/CPN (Shimadzu) analyser, aiming to identify the most efficient photocatalyst. For
this, the experiments were restricted to the monitoring of P4R photodegradation. This
photocatalyst was also submitted to photodegradation tests using Remazol Red (RR120),
comparing the performance presented by the commercial catalyst Evonik Degussa TiO, with the
presented by the most efficient photocatalyst.

The reuse of the most efficient photocatalyst also was evaluated using P4R as oxidizable
substrate. For this, after each reaction the photocatalyst was separated from the supernatant by
decanting, washed with distilled water, centrifuged and dried at 70°C for 24 hours, and then
reused under the same described conditions using a new load of the same dye.

Peer] Mat. Sci. reviewing PDF | (MATSCI-2020:08:51687:0:2:NEW 7 Aug 2020)


nicholasm
Highlight


153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

183
184

185
186
187
188
189
190
191

Subsequently, hydrogen production assays were done using the most effective
synthesized photocatalyst, as well as the commercial catalyst Evonik Degussa TiO, and the W1
oxide. In these experiments, the concentration of catalyst was similar to that used in the assays of
dye degradation, being this oxide loaded by photoreduction with 0.5% m/m of Pt, furnished by a
solution of hexachloroplatinic acid. So, the Pt-loaded photocatalyst was then suspended in 750
ml of a water/methanol mixture containing 20% v/v of methanol, this last being used as
sacrificial reagent. These assays occurred under continuous stirring. The pH of the reaction
medium was adjusted in 6.2 using solutions 0.1 mol L-! of HCI or NaOH. Finally, the potential
of reuse of the photocatalyst used in such assays was evaluated in at least three photocatalytic
cycles. In the reuse assays, only the pH adjustment of the reaction medium was performed at the
beginning of each new cycle. The first cycle was equivalent to the first hydrogen production test,
carried out for five hours. Thus, the total reaction time was 15 hours.

For all photocatalytic assays the results are the averages of at least three individual
experiments.

For operator protection and better use of radiation produced by the lamp, the reactor was
positioned in a box internally covered with aluminum film, Fig 1.

Fig.1 — Image of the assembly used in hydrogen production assays: a) external view, b) internal
view.

The reactor, made of borosilicate glass, has a cooling jacket connected to a thermostat bath
on its outside which keeps the temperature of the reaction medium stabilized at 20°C throughout
the reaction. Before each experiment, the reactor was purged with N, for 20 minutes to eliminate
dissolved gases, especially oxygen. The same HPLN lamp reported above was used as radiation
source. For analysis of the gases produced during the reaction, aliquots of 1 mL of these gases
were collected at intervals of 30 minutes of reaction, in a total period of 5 hours. These samples
were analyzed at 230°C in a Shimadzu GC-17A gas-phase chromatograph equipped with thermal
conductivity detector (TCD) and a Carboxen™ 1010 Plot capillary column. Argon, with flow of
40 ml min’!, was employed as carrier gas.

Results and Discussion
Characterizations

By analyzing the X-ray diffraction (XRD) data, Fig 2, it is possible to 12/ r that all oxides
have well-defined diffraction peaks suggesting high crystallinity for these materials most likely
due to the heat treatment used in the synthesis process. In addition, according to reports found in
the literature and the crystallographic files JCPDS 21-1272 (anatase) and 29-1360 (brookite), all
oxides exhibit major peaks characteristic of the anatase phase, and secondary peaks related to the
brookite phase (Di Paola, Bellardita & Palmisano, 2013; Neto et al., 2017; Patrocinio et al.,
2015; Hu, Tsai & Huang, 2003).
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Figure 2 - X-Ray diffratogram of the studied oxides.

The average size of crystallites could not be calculated using the Debye-Scherrer method,
since the presence of a second phase in the crystalline network creates considerable uncertainty
in estimating this property (Kibombo et al., 2011). On the other hand, the mean size and mean
deformation of crystallite were calculated from the data obtained from the Rietveld refinement,
as presented in Table 1. The diffractograms, accompanied by the respective calculated
diffraction profiles, experimentally obtained profiles, and residual curves and Bragg diffractions
adjusted by Rietveld method can be seen in Fig S1, in the Supplementary Information.

Table 1 - Percentage of crystalline phase, crystallite size and medium deformation, obtained by
Rietveld refinement for synthesized oxides.

Rietveld refinement data demonstrates that the percentage of brookite phase increases
from 13% to 22% with the addition of acetone as co-solvent in the hydrolysis of titanium
tetraisopropoxide. Despite this, the increase in the proportion of acetone from 25% to 75% did
not result in an equivalent increase in the percentage of brookite phase, suggesting that the use of
acetone only interfered in hydrolysis, affecting the organization of critical nuclei in the
oligomeric network of titanium, in order to preorder the crystallization of the mentioned phase.
On the other hand, the average crystallite size of the anatase phase was about 30% lower for W1-
75, compared to the other oxides, including the W1, where there was no addition of acetone
during its synthesis. This suggests that the excess of acetone should promote a significant
reduction in the average crystallite size of the anatase phase, favoring the increase in the average
crystallite size of brookite. Thus, the mean deformation of the crystallite follows the same trend,
i.e., if the secondary phase becomes larger it will present larger deformations, when compared
with the primary phase.

As in the X-ray diffractograms, the Raman spectra also evidence the mixed composition
of two crystalline phases, Fig 3. In all oxides, five main bands attributed to the anatase phase are
observed respectively at 145 cm! (E,), 198 cm! (E,), 399 cm! (By), 519 cm! (By,) and 640 cm
' (E,) (Sahoo et al., 2009). Between 200 and 500 cm™! four bands of lower intensity are observed:
at 247 cm! (A}y), 323 cm! (By,), 368 cm! (By,) and 456 cm! (B,,), attributed to the phase
brookite. In addition to these bands, this phase features a band of greater intensity around 150
cm!' which may be superimposed with the band identified at 145 cm!, attributed to anatase, thus
influencing the width of the E, Raman mode (D1 Paola, Bellardita & Palmisano, 2013; Iliev,
Hadjiev & Litvinchuk, 2013).

Figure 3 - Raman spectra of the synthesized photocatalysts. Insert: peaks at 247 cm-!, 323 cm’!,
368 cm!, 456 cm! attributed to brookite.
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From the expanded spectrum, Fig 4, it was possible to observe a small enlargement of the
band centered at 145 cm! in the Raman spectrum of the photocatalyst W1-75. This effect should
be related to the smaller particle size since the lifetime of the vibrational mode tends to be
shorter as particle size decreases, which ends up resulting in band enlargement (Liu et al., 2012;
Zhu et al., 2012).

Figure 4 - Expanded Raman spectra in the region between 120 and 180 cm™! for the synthesized
photocatalysts.

From the diffuse reflectance spectra, Fig 5 - Insert, expressed in terms of the Kubelka-
Munk’s function, Fig 5, and by applying the direct method, it was possible to estimate the band
gap energies (Eg) of the photocatalysts (Liu & Li., 2012). The estimated Eg were as follows:
3.23 eV for W1, 3.24 eV for W1-25, 3.22 eV for W1-50, and 3.23 eV for W1-75, indicating that
the estimated band gap energies have not undergone major changes, which agree with the data
reported in the literature for pure TiO, (Martin-Somer et al., 2002; Neto et al., 2017; Resende et
al., 2017). Most likely, this stems from the synthesis conditions adopted in this work, where none
dopant material was added. It is known that the E, displacement to lower energies occurs
preferably in synthesis that promote the doping of oxides with metal cations (Santos et al.,
2015a), non-metallic anions (Liu et al., 2014), co-doping (Kuvarega, Krause & Momba,
2015),Error! Reference source not found. oy gelf-doping (Chen et al., 2011).

Figure 5 - Diffuse reflectance spectra expressed in terms of Kubelka-Munk's function. Insert: %
Reflectance vs. wavelength (nm) spectra for the synthesized photocatalysts.

As for N, adsorption and desorption of these oxides, Fig 6, the analysis of the adsorption-
desorption isotherms suggests that they are type IV (IUPAC., 1985), characteristic of
mesoporous materials with an average pore diameter between 2 and 50 nm, Table 2. Hysteresis
profiles are very close to those of type H2, associated with more complex mesoporous structures,
in which the distribution of pore sizes and their shape are not well defined (Guan-Sajonz et al.,
1997). It is also evident that the photocatalysts W1-50 and W1-75, synthesized by hydrolysis
using the highest percentages of acetone, present slightly more steeper isotherms compared to the
oxides W1 and W1-25, also exhibiting greater heterogeneity in pore distribution compared to
these same oxides.

Figure 6 — N, adsorption-desorption isotherms obtained for the studied photocatalysts.
Table 2 - Morphological parameters related to synthesized photocatalysts.

Table 2 presents the morphological parameters related to the synthesized oxides. In
general, oxides obtained from hydrolysis using water/acetone mixtures did not undergo
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significant morphological changes, since for W1 the oxide porosity is practically the same
presented by W1-50 and W1-75. On the other hand, the surface area of these two oxides is
between 10 and 12% larger than that of W1. This may favor the adsorption of organic matter on
their surfaces, which can consequently favor the photocatalytic efficiency. In addition, it was
observed an inverse correlation between the surface area and the average particle size, except for
the W1-25 that presented wide variation on its particle size.

The TEM images, Fig 7, suggest a dense aspect to the particles, which have irregular
spherical shape and a strong tendency to aggregation, giving rise to clusters of TiO,. This should
be related to the high level of hydrolysis provided by the synthesis method (Jiang, Herricks &
Xia, 2003). However, agglomeration appears to have been minimized by the addition of acetone
as co-solvent in hydrolysis, evidencing that its use decreased the hydrolysis rate of the precursor.
This, consequently, should favor particle dispersion. On the other hand, the particle sizes
estimated from these images do not suggest a role of acetone on this property, as can be seen by
the values estimated for the particle size: (14+1) nm, (17£3) nm, (10+1) nm and (13£1) nm,
respectively for W1, W1-25, W1-50 and W1-75. The histograms can be viewed in Figure S2, in
the Supplementary Information.

Figure 7 — Images obtained by MET for synthesized oxides a) W1, b) W1-25, ¢) W1-50, d) W1-
75.

Photocatalytic activity: Degradation/mineralization of organic compounds

The Table 3 presents the photocatalytic performance of the synthesized oxides and of the
commercial oxide TiO,-P25, in the degradation of the two azo dyes used as oxidizable substrates
in this study. For comparative purposes, the dyes were also submitted to direct photolysis, in order
to evidence the role of the photocatalysts in the photodegradation.

Table 3 - Photocatalytic performance of synthesized oxides and TiO2-P25 compared with direct
photolysis, in the degradation of the dyes Ponceau 4R (P4R) and Remazol Red 120 (RR120).

The discoloration (kg;s) and mineralization (kuyin) rate constants were estimated from the
application of the kinetic model of Languimir-Hinschelwood (Hoffmann et al., 1995; Machado et
al., 2012), considering that the kinetic regimen in these photocatalytic processes follows a
pseudo-first order kinetics (Machado et al., 2003; Machado et al 2012; Santos et al., 2015a;
Franga et al., 2016). Graphs containing the kinetic data corresponding to these values are
presented in the Suplementary Information (Figs S3, S4 and S5).
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The expected low efficiency both in degradation and discoloration via direct photolysis,
compared to the results achieved by the photocatalysts can be related to the energy of the
incident photons, provided by the radiation source (Machado et al., 2008), and to the very low
rate of formation of radical species, produced by homolytic scission of labile bonds present in
these dyes (Kumar et al., 1999).

In the experiments involving the participation of the photocatalysts, the degradation
occurred more efficiently due the participation of reactive oxygen species, among them the
hydroxyl radicals (HO") and superoxide radical-ions (O,"), generated mainly by water
decomposition. Such species, due their low selectivity (Machado et al., 2012), together with
secondary radical species produced during the photocatalytic process, tend to promote the
oxidation of organic substrates present in the reactional medium (Oancea & Meltzer, 2014;
Santos at al 2015b). The dissolved oxygen, present in the aqueous medium, as example, when
reduced by the semiconductor, contributes with the formation of O,~ and perhydroxyl radicals,
which, although less oxidizing than HO- (Machado et al., 2012), are very important in promoting
the degradation of organic substrates.

The values of the apparent rates of discoloration and mineralization, observed in the
reactions mediated by the photocatalysts evaluated in the present study, Fig S3 — Supplementary
Information, suggest that these reactions occur in two stages, following apparent pseudo-first
order kinetics. Initially, the reaction occurs at a rate lower than in the second stage, when the
apparent rate constant, in some cases, is three times higher. This should be related to the
fragmentation and partial mineralization of the oxidizable substrate in the initial stage of the
reaction. This tends to facilitate the mineralization of formed derivatives, especially considering
the proportionally higher availability of oxygen and water, used in the formation of radicals
responsible for the oxidation of organic matter (Franga et al., 2016).

The mineralization of P4R mediated by the oxides W1-25, W1-50 and W1-75 increased
respectively 5.7%, 18.6% and 24.3% more than the result obtained using W1, when 70%
mineralization was achieved. It is noteworthy that the hydrolysis process which gave rise to this
oxide, occurred exclusively in the presence of water. It should be noted that the mineralization
achieved using TiO, P25 as photocatalyst was only 8% higher than that obtained when W1-75
was employed.

Although W1-75 presented the best performance among the synthesized oxides, the result
observed was only 4.8% higher than that achieved using W1-50. Considering the proportion of
acetone used in the synthesis of W1-75 and its limited photocatalytic performance, W1-50 was
then considered as the most effective catalyst for mineralizing P4R, being therefore applied in
the following stages of the present study.

The good photocatalytic activity presented by these oxides is mainly due to the mixed
composition of the phases and high crystallinity obtained after heat treatment, confirmed by the
XRD and Raman spectra. The presence of an additional phase tends to introduce defects that
tend to favor the photocatalytic activity of a photocatalyst (Kandiel et al., 2010). Brookite, for
having conduction band approximately 0.14 eV more negative than anatase, ends up favoring the
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interfacial electron transfer by imposing an energy barrier for the return of the excited electrons
to the valence band of anatase, which tends to favor the coexistence of charge carriers (Kandiel
et al., 2010; Di Paola, Bellardita & Palmisano, 2013; Patrocinio et al., 2015).

Reuse assays were performed using the recycled W1-50 in the photocatalytic degradation
of the dye P4R. The recycled W1-50 was separated by decantation after the first photocatalytic
test. It was then washed with distilled water, centrifuged and dried at 70°C for 24 hours. After
this procedure, the recycled oxide was used to promote the degradation of P4R present in a new
solution. The discoloration level remained at 100% while the mineralization performance
decreased about 30%. This loss of performance should be related to photocatalyst poisoning
caused by species adsorbed on the catalyst at the end of each photocatalytic cycle, compromising
the availability of active sites (Nakhjavani et al., 2015). It is important to consider that the
recycled catalyst was not submitted to any prior purification procedure aiming the removal of
contaminants incorporated by adsorption the previous cycles. The discoloration and
mineralization profiles, as well as the kinetics of discoloration and mineralization in this reuse
assay, are available in the Supplementary Information, Fig S4.

Table 3 also presents the performance of the oxides W1, W1-50 and TiO, P25 in the
mineralization and discoloration of the dye RR120. In this case, although RR120 has a more
complex chemical structure than P4R, presenting two azo groups and two triazine groups, the
performance achieved by W1-50 was comparable to that presented when using TiO, P25
differing only by the kinetic constants of mineralization (k). The residual total organic carbon
(TOC) observed after degradation of both P4R and RR120 (Figs S3 and S5, Supplementary
Information), should be related to the presence of short-chain carboxylic acids, recalcitrant to
photocatalytic degradation (Franga et al., 2016). Studies have shown that the triazine groups
present in the chemical structure of RR120, when photocatalytically oxidized, give rise to
cyanuric acid, very resistant to degradation (Hu & Wang, 1999; Wang, 2000; Camarillo &
Ricon, 2011).

Photocatalytic hydrogen production

The profiles of hydrogen production as function of the reaction time, Fig 8, show a
superior performance of W1 and W1-50 compared to TiO,-P25.

Figure 8 — Photocatalytic hydrogen production vs reaction time.

The process mediated by W1-50 produced approximately 56 mmols of gaseous H,, while
in the same period TiO, P25 produced 43% less. On the other hand, W1 produced approximately
3% less hydrogen than W1-50. In addition, it is explicit that the production of H, using the
oxides presented in this study increased until the end of the assay, suggesting that the
photocatalytic process was still in its propagation stage. H, production using TiO, P25 presented
a different profile, suggesting typical accommodation of processes in stages near termination. It
is known that TiO, P25 is the result of the crystalline composition between anatase and rutile.
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The advantage of the photocatalysts presented in this work should be in the combination of
anatase and brookite that tends to increase the photocatalytic efficiency of the semiconductor.
Liu and coworkers (Liu et al., 2014), for example, demonstrated that the recombination of the
photoinduced charge carriers is minimized when the semiconductor oxide have a structure based
on this kind of phase composition. This behavior occurs due to the most negative cathode
potential of the conduction band of the brookite phase, more negative than the proton reduction
potential and the cathode potential of the conduction band of anatase, thus favoring its
conversion to H, (Kandiel et al., 2010; Patrocinio et al., 2015; Tay et al., 2013). Besides, this
phenomenon facilitates the interfacial transfer of electrons while an energy barrier is established,
which hinders their return, thereby prolonging the coexistence of the charge carriers. With this,
both the oxidative (metanol oxidation) and the reductive process (H, production) end up being
favored.

In terms of specific hydrogen production rate (SHPR), the production mediated by W1-50
(138.5 mmol h'! g'1) was 60 % higher than the achieved using TiO, P25 (86.4 mmol h-! g'1).
Even the SHPR of W1 (126.5 mmol h'! g-') was higher than that of the commercial
photocatalyst. It is observed, therefore, that the variant of the sol-gel synthesis proposed in this
study resulted in pure photocatalysts, such as the W1-50, which present SHPR much higher than
that of TiO, P25, as well as of photocatalysts recently reported in the literature. Selcuk and
coworkers (Selcuk, Boroglu & Boz, 2012), in a study involving a catalyst resulting from TiO,
codopage with platinum and nitrogen, reported, under the best operating conditions, a TEPH of
13 umol h-'g!, a value significantly lower than the achieved using W1-50. This study involved
the use of a 400 W mercury lamp as a source of radiation and a solution containing 10%
methanol. In another study, Lin and Shih, (Lin & Shih, 2016) using a TiO, doped with copper
and nitrogen, obtained a TEPH equal to 27.4 mmol h-! g-!, a value approximately 5 times lower
than the achieved using the W1-50 in the present study. These authors also used a 400 W
mercury lamp as a source of radiation. In this case, the catalyst was suspended in a solution
containing 20% methanol.

In addition, the reuse of the W1-50 was evaluated for the collection of information related
to its photostability. These tests consisted in evaluating the reproducibility of the catalytic action
of this oxide by performing three consecutive photocatalytic cycles of five hours each using the
same initial conditions applied to the system, with the exception of the pH of the medium,
adjusted at the beginning of each additional cycle. These results are presented in Fig 9.

Figure 9 — Amount of H; produced by W1-50 in three photocatalytic cycles.

Although there is an increase in H, production in the other cycles, compared to the first
cycle, during the photocatalytic cycles W1-50 presented a similar profile of H, production in the
three cycles, Fig 9. In the second cycle, the SHPR increased by about 10% (154.7 mmol h-g!)
compared to the first cycle, whereas in the third cycle this increase was of 9%. The good
photostability, reproducibility and significant yield in H, production during these experiments
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may be related to the absence of contaminants in the catalyst in the different cycles. Certain
oxides based on TiO,, obtained from associations, anchoring and doping with other substances,
show losses in the capability of H, production as the photocatalytic cycles succeed. The reason
for this has been pointed out as being due the photodesorption of compounds associated or
anchored or by photoreduction of metals on TiO, surface, thus contaminating the reaction sites
(Zhang et al., 2013; Yuan et al., 2015).

Conclusions

In the present study, we show the use of acetone as a cosolvent in the hydrolysis of
titanium tetraisopropoxide interfered favorably in the organization of critical nuclei in the
oligomeric network of Titanium, in order to preorder phase crystallization brookite, thereby
expanding the photocatalytic activity of the synthesized oxides. The results obtained by DRX
analysis, together with the subsequent Rietveld refinement, demonstrated that the synthesized
oxides are crystalline, with the percentage of brookite phase ranging from 13% to 22%, from W1
to W1-50. The changes in the surface area is influenced by the presence of acetone during the
hydrolysis process, verified by the increase of 12% for W1-50 compared to that of W1. On the
other hand, the estimated band gap energies have not undergone significant changes in view of
the synthesis conditions.

During the photodegradation assays, the W1-50 was defined as the most effective
photocatalyst based on P4R degradation, when 83% mineralization and 100% discoloration were
achieved. In reuse assays using the same catalyst and new charges of the same dye, it was
possible to achieve the same level of discolouration. However, the mineralization was impaired
by the lack of previous treatment of the catalyst between the cycles of reuse, reaching only 58%
of mineralization. On the other hand, in the degradation of the dye RR120 the performance of
W1-50 was comparable to that obtained using TiO, P25, with 100% discoloration and 79%
mineralization.

Regarding the photocatalytic production of hydrogen using W1-50 as a catalyst, 56
mmols of gaseous hydrogen were produced in 5 hours of reaction, which corresponds to a
specific hydrogen production rate (SHPR) of 138.5 mmol h'! g-!, a value 60% higher than that
achieved when TiO, P25 was employed. In addition, the reuse assays demonstrated the very
good photostability and effectiveness of W1-50, which also ensured an increase of 10% in SHPR
in the succession of cycles.

Thus, the changes introduced in the structure of TiO, by the use of water-acetone
mixtures during the hydrolysis of titanium tetrahydropropoxide resulted in materials with

improved photocatalytic performance both in the degradation/mineralization of organic dyes and
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in the photocatalytic production of hydrogen. The reason for this good performance may be
related to hydrolysis retardation, favoring the obtaining of more ordered and mesoporous oxides,
with expressive surface area. It is important to emphasize that the synthesis process favored the
increase in the composition of crystalline phases, stimulating the increase in the proportion of
brookite, which tends to favor the delay in the recombination of the photoinduced charge carriers
(electron/hole), expanding the photocatalytic performance and especially regarding the

production of gaseous hydrogen.
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Figure 1

Assembly used in hydrogen production assays

Image of the assembly used in hydrogen production assays: a) external view, b) internal

view.
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Figure 2

X-Ray diffratogram of the studied oxides.

X-Ray diffratogram of the studied oxides.
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Figure 3

Raman spectra of the synthesized photocatalysts.

Raman spectra of the synthesized photocatalysts. Insert: peaks at 247 cm-1, 323 cm-1, 368
cm-1, 456 cm-1 attributed to brookite.
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Figure 4

Expanded Raman spectra in the region between 120 and 180 cm-1 of the synthesized
photocatalysts.

Expanded Raman spectra in the region between 120 and 180 cm-1 of the synthesized

photocatalysts.
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Figure 5
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Diffuse reflectance spectra expressed in terms of Kubelka-Munk's function.

Diffuse reflectance spectra expressed in terms of Kubelka-Munk's function. Insert:

%Reflectance vs wavelength (nm) spectra for the synthesized photocatalysts.
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Figure 6

N, adsorption-desorption isotherms obtained for the studied photocatalysts.

N, adsorption-desorption isotherms obtained for the studied photocatalysts.

160 -
140

2120 ~

3

Adsorbed Volume (cm™ g SPT)
=
|

80 -
60 -
40 -

20

i ! |
0.0 0.2 0.4 0.6 0.8 1.0
Relative Pressure (P/P )

Peer] Mat. Sci. reviewing PDF | (MATSCI-2020:08:51687:0:2:NEW 7 Aug 2020)



Chemistry Journals Manuscript to be reviewed

Analytical, Inorganic, Organic, Physical, Materials Science

Figure 7

TEM of the synthesized oxides

Images obtained by TEM for synthesized oxides: a) W1, b) W1-25, ¢) W1-50, d) W1-75.
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Figure 8

Photocatalytic hydrogen production vs Reaction time.

Photocatalytic hydrogen production vs Reaction time.
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Figure 9

Amount of H, produced by W1-50 in three photocatalytic cycles.

Amount of H, produced by W1-50 in three photocatalytic cycles.
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Table 1l(on next page)

Percentage of crystalline phase, crystallite size and medium deformation, obtained by
Rietveld refinement for synthesized oxides.

Table 1. Percentage of crystalline phase, crystallite size and medium deformation, obtained

by Rietveld refinement for synthesized oxides.

Peer] Mat. Sci. reviewing PDF | (MATSCI-2020:08:51687:0:2:NEW 7 Aug 2020)



Chemistry Journals

Analytical, Inorganic, Organic, Physical, Materials Science

Manuscript to be reviewed

1 Table 1. Percentage of crystalline phase, crystallite size and medium deformation, obtained by

2 Rietveld refinement for synthesized oxides.

Oxide Crystalline phase ~ Crystallite medium Crystallite medium
(%) size (nm) deformation (%)

Wi Anatase 87 61 4.0
Brookite 13 16 8.0

W1-25 Anatase 78 64 6.0
Brookite 22 10 6.0

W1-50 Anatase 78 63 6.0
Brookite 22 14 10

W1-75 Anatase 78 44 5.0
Brookite 22 22 11
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Table 2(on next page)
Morphological parameters related to synthesized photocatalysts.

Table 2. Morphological parameters related to synthesized photocatalysts.
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Table 1. Morphological parameters related to synthesized photocatalysts.

Photocatalyst ~ Surface area  Porosity Mean pore Average particle
(m?/g) (%) diameter (nm) size
(nm)

W1 84 +2 21 8 14+1
W1-25 80+2 17 7 1743
W1-50 94 +£2 21 7 10+1
W1-75 92+2 20 7 13+1
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Table 3(on next page)

Photocatalytic performance of the synthesized oxides and TiO,-P25 compared with

direct photolysis, in the degradation of the dyes Ponceau 4R (P4R) and Remazol Red
120 (RR120).

Table 3. Photocatalytic performance of the synthesized oxides and TiO,-P25 compared with

direct photolysis, in the degradation of the dyes Ponceau 4R (P4R) and Remazol Red 120
(RR120).
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1 Table 1. Photocatalytic performance of synthesized oxides and TiO2-P25 compared with direct
2 photolysis, in the degradation of the dyes Ponceau 4R (P4R) and Remazol Red 120 (RR120).

Dye/Reaction Direct Wi W1-25 W1-50  WI1-75 P25
photolysis
P4R
Mineralization 13+1 70£3 7443 8343 87+3 94+3
(7o)

Kmin(x10° min-') 0.8 50 ;12 55 ;14 6.0 ;21 80 ;23 10 ;33

Discoloration 30+1 100 100 100 100 100
(%)

Kaise(x103 min!) 2,0 25 43 31 73 30 73 31 97 51

RR120
Mineralization 1742 7842 7942 81+1
(7o)
Kmin(x10° min-!) 1.4 9.0 13 85 14 55 20
Discoloration 21+1 100 100 100
(o)
Kgisc(x10° min!) 1.5 40 44 52
3
4
5

Peer] Mat. Sci. reviewing PDF | (MATSCI-2020:08:51687:0:2:NEW 7 Aug 2020)


nicholasm
Highlight




