title: PeerJ description: Articles published in PeerJ link: https://peerj.com/articles/index.rss3?journal=peerj&page=853 creator: info@peerj.com PeerJ errorsTo: info@peerj.com PeerJ language: en title: The regulating effects and mechanism of biochar and maifanite on copper and cadmium in a polluted soil-Lolium perenne L. system link: https://peerj.com/articles/11921 last-modified: 2021-08-09 description: Arable land polluted by copper (Cu) and cadmium (Cd) is a widespread problem. The use of biochar and/or clay mineral as a soil amendment can effectively solidify heavy metals in the soil. We applied biochar (BC), iron modified biochar (Fe-BC), maifanite (MF, a kind of clay minerals), a combination of BC with MF (BC:MF), and Fe-BC with MF (Fe-BC:MF) at a 2 wt % dose as soil amendments to study their ability to prevent Cu and Cd from accumulating in ryegrass (Lolium perenne L.). We found that after 90 days of cultivation, the Cd and Cu content both significantly decreased in ryegrass shoots from 2.06 and 209.3 mg kg−1 (control) to 1.44–2.01 and 51.50–70.92 mg kg−1, respectively, across treatments (p < 0.05). Similarly, the bioconcentration factor (BCF) for Cd/Cu was significantly smaller (P < 0.05) in all amendments versus control soil. This trend differed among the shoot, BCF, and transportation factor (TF). Combining BC:MF or Fe-BC:MF did not significantly improve the Cd/Cu stabilization in the soil compared to the corresponding single amendment (p > 0.05). Our adsorption balance experiment showed that BC, Fe-BC, and MF physically and chemically adsorbed Cd and Cu by complexation with functional groups (mesoporous nanomaterials) whose porosity measurements ranged from 0.68 to 78.57 m2 g−1. Furthermore, the amorphous crystalline iron oxide binding Cd and Cu was the key to immobilizing these metals in the soil. The amendments applied in our study show promise for enhancing immobilization of Cu and Cd in contaminated paddy soils. creator: Yuan Ding creator: Weiya Wang creator: Shiying Ao uri: https://doi.org/10.7717/peerj.11921 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Ding et al. title: Therapeutic effects of astragaloside IV and Astragalus spinosus saponins against bisphenol A-induced neurotoxicity and DNA damage in rats link: https://peerj.com/articles/11930 last-modified: 2021-08-09 description: BackgroundBisphenol A (BPA) is an endocrine disruptor to which humans are often subjected during daily life. This study aimed to investigate the ameliorative effect of astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus (A. spinosus) against DNA damage and neurotoxic effects induced by BPA in prefrontal cortex (PFC), hippocampal and striatal brain regions of developing male rats.Materials and MethodsJuvenile PND20 (pre-weaning; age of 20 days) male Sprague Dawley rats were randomly and equally divided into four groups: control, BPA, BPA+ASIV and BPA+A. spinosus saponins groups. Bisphenol A (125 mg/kg/day) was administrated orally to male rats from day 20 (BPA group) and along with ASIV (80 mg/kg/day) (BPA+ASIV group) or A. spinosus saponin (100 mg/kg/day) (BPA+ A. spinosus saponins group) from day 50 to adult age day 117.ResultsIncreased level of nitric oxide (NO) and decreased level of glutamate (Glu), glutamine (Gln), glutaminase (GA) and glutamine synthetase (GS) were observed in the brain regions of BPA treated rats compared with the control. On the other hand, co-administration of ASIV or A. spinosus saponin with BPA considerably improved levels of these neurochemicals. The current study also revealed restoration of the level of brain derived neurotrophic factor (BDNF) and N-methyl-D-aspartate receptors (NR2A and NR2B) gene expression in BPA+ ASIV and BPA+A. spinosus saponins groups. The co-treatment of BPA group with ASIV or A. spinosus saponin significantly reduced the values of comet parameters as well as the intensity of estrogen receptors (ERs) immunoreactive cells and improved the histological alterations induced by BPA in different brain regions.ConclusionIt could be concluded that ASIV or A. spinosus saponins has a promising role in modulating the neurotoxicity and DNA damage elicited by BPA. creator: Amina E. Essawy creator: Heba-Tallah Abd Elrahim Abd Elkader creator: Omaima A. Khamiss creator: Saber Mohamed Eweda creator: Heba Mohamed Abdou uri: https://doi.org/10.7717/peerj.11930 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Essawy et al. title: Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR link: https://peerj.com/articles/11951 last-modified: 2021-08-09 description: Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth muscle cell contraction in the vascular system. Inhibition of ROCK1 has been shown to be a promising therapy for patients with cardiovascular disease. In this study, we have conducted molecular modeling techniques such as docking, molecular dynamics (MD), and 3-Dimensional structure-activity relationship (3D-QSAR) on a series of N-ethyl-4-(pyridin-4-yl)benzamide-based compounds. Docking and MD showed critical interactions and binding affinities between ROCK1 and its inhibitors. To establish the structure-activity relationship (SAR) of the compounds, 3D-QSAR techniques such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were used. The CoMFA (q2 = 0.774, r2 = 0.965, ONC = 6, and ${r}_{pred}^{2}$rpred2 = 0.703) and CoMSIA (q2 = 0.676, r2 = 0.949, ONC = 6, and ${r}_{pred}^{2}$rpred2 = 0.548) both models have shown reasonable external predictive activity, and contour maps revealed favorable and unfavorable substitutions for chemical group modifications. Based on the contour maps, we have designed forty new compounds, among which, seven compounds exhibited higher predictive activity (pIC50). Further, we conducted the MD study, ADME/Tox, and SA score prediction using the seven newly designed compounds. The combination of docking, MD, and 3D-QSAR studies helps to understand the coherence modification of existing molecules. Our study may provide valuable insight into the development of more potent ROCK1 inhibitors. creator: Suparna Ghosh creator: Seketoulie Keretsu creator: Seung Joo Cho uri: https://doi.org/10.7717/peerj.11951 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Ghosh et al. title: Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress link: https://peerj.com/articles/11963 last-modified: 2021-08-09 description: BackgroundSaline-alkali soil is mainly distributed in the northern and coastal areas of China. The Songnen Plain, located in the northeast of China, is a region with a relatively high concentration of saline-alkali soil and is also one of the more at-risk areas in the country. Every year, the increasing spread of saline-alkali soil areas has a serious impact on the growth of agricultural crops. The maize crop is sensitive to saline-alkali stress, which seriously affects its growth and development. Our previous study determined that Klebsiella variicola performs a variety of biological functions, as well as improves the rhizosphere microenvironment and promotes the growth and development of maize seedlings in saline-alkali soil environments. The present study further analyzed the mechanism that enables K. variicola to alleviate saline-alkali stress at the level of the antioxidant system.MethodsThe accumulation of O2− was observed directly via histochemical staining. The activities of several antioxidant enzymes were determined using the nitro blue tetrazolium and the guaiacol methods. The contents of non-enzymatic antioxidants were determined using the dithionitrobenzoic acid method.ResultsThe contents of the superoxide anion and hydrogen peroxide in leaves and roots of maize seedlings increased under saline-alkali stress conditions. The higher level of reactive oxygen species increased the degree of membrane lipid peroxidation. There were differences in the degree of oxidative damage and performance of the antioxidant defence system in maize seedlings under saline-alkali stress. Following the application of increasing concentrations of K. variicola, the activity of antioxidant enzymes increased by 21.22%–215.46%, and the content of non-enzymatic antioxidants increased as well, the ratios of ASA/DHA and GSH/GSSG in leaves increased by 4.97% and 1.87 times, respectively, and those in roots increased by 3.24% and 1.60 times, respectively. The accumulation of reactive oxygen species was reduced, and the content of H2O2 decreased by 26.07%–46.97%. The content of O2− decreased by 20.18%–37.01%, which alleviated the oxidative damage to maize seedlings caused by saline-alkali stress.ConclusionK. variicola reduced ROS-induced peroxidation to membrane lipids and effectively alleviated the damage caused by saline-alkali stress by increasing the activities of antioxidant enzymes in maize seedlings, thus enhancing their saline-alkali tolerance. A bacterial concentration of 1×108 cfu/mL was optimal in each set of experiments. creator: Lijuan Yang creator: Yufeng Wang creator: Kejun Yang uri: https://doi.org/10.7717/peerj.11963 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Yang et al. title: Comparative transcriptome analysis of R3a and Avr3a-mediated defense responses in transgenic tomato link: https://peerj.com/articles/11965 last-modified: 2021-08-09 description: Late blight caused by Phytophthora infestans is one of the most devastating diseases in potatoes and tomatoes. At present, several late blight resistance genes have been mapped and cloned. To better understand the transcriptome changes during the incompatible interaction process between R3a and Avr3a, in this study, after spraying DEX, the leaves of MM-R3a-Avr3a and MM-Avr3a transgenic plants at different time points were used for comparative transcriptome analysis. A total of 7,324 repeated DEGs were detected in MM-R3a-Avr3a plants at 2-h and 6-h, and 729 genes were differentially expressed at 6-h compared with 2-h. Only 1,319 repeated DEGs were found in MM-Avr3a at 2-h and 6-h, of which 330 genes have the same expression pattern. Based on GO, KEGG and WCGNA analysis of DEGs, the phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly up-regulated. Parts of the down-regulated DEGs were enriched in carbon metabolism and the photosynthesis process. Among these DEGs, most of the transcription factors, such as WRKY, MYB, and NAC, related to disease resistance or endogenous hormones SA and ET pathways, as well as PR, CML, SGT1 gene were also significantly induced. Our results provide transcriptome-wide insights into R3a and Avr3a-mediated incompatibility interaction. creator: Dongqi Xue creator: Han Liu creator: Dong Wang creator: Yanna Gao creator: Zhiqi Jia uri: https://doi.org/10.7717/peerj.11965 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Xue et al. title: Snakes on an African plain: the radiation of Crotaphopeltis and Philothamnus into open habitat (Serpentes: Colubridae) link: https://peerj.com/articles/11728 last-modified: 2021-08-06 description: BackgroundThe African continent is comprised of several different biomes, although savanna is the most prevalent. The current heterogeneous landscape was formed through long-term vegetation shifts as a result of the global cooling trend since the Oligocene epoch. The overwhelming trend was a shift from primarily forest, to primarily savanna. As such, faunal groups that emerged during the Paleogene/Neogene period and have species distributed in both forest and savanna habitat should show a genetic signature of the possible evolutionary impact of these biome developments. Crotaphopeltis and Philothamnus (Colubridae) are excellent taxa to investigate the evolutionary impact of these biome developments on widespread African colubrid snakes, and whether timing and patterns of radiation are synchronous with biome reorganisation.MethodsA phylogenetic framework was used to investigate timing of lineage diversification. Phylogenetic analysis included both genera as well as other Colubridae to construct a temporal framework in order to estimate radiation times for Crotaphopeltis and Philothamnus. Lineage diversification was estimated in Bayesian Evolutionary Analysis Sampling Trees (BEAST), using two mitochondrial markers (cyt–b, ND4), one nuclear marker (c–mos), and incorporating one fossil and two biogeographical calibration points. Vegetation layers were used to classify and confirm species association with broad biome types (‘closed’ = forest, ‘open’ = savanna/other), and the ancestral habitat state for each genus was estimated.ResultsPhilothamnus showed an ancestral state of closed habitat, but the ancestral habitat type for Crotaphopeltis was equivocal. Both genera showed similar timing of lineage diversification diverging from their sister genera during the Oligocene/Miocene transition (ca. 25 Mya), with subsequent species radiation in the Mid-Miocene. Philothamnus appeared to have undergone allopatric speciation during Mid-Miocene forest fragmentation. Habitat generalist and open habitat specialist species emerged as savanna became more prevalent, while at least two forest associated lineages within Crotaphopeltis moved into Afromontane forest habitat secondarily and independently.DiscussionWith similar diversification times, but contrasting ancestral habitat reconstructions, we show that these genera have responded very differently to the same broad biome shifts. Differences in biogeographical patterns for the two African colubrid genera is likely an effect of distinct life-history traits, such as the arboreous habits of Philothamnus compared to the terrestrial lifestyle of Crotaphopeltis. creator: Hanlie M. Engelbrecht creator: William R. Branch creator: Krystal A. Tolley uri: https://doi.org/10.7717/peerj.11728 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Engelbrecht et al. title: Identification of a circRNA-miRNA-mRNA regulatory network for exploring novel therapeutic options for glioma link: https://peerj.com/articles/11894 last-modified: 2021-08-06 description: BackgroundGlioma is the most common brain neoplasm with a poor prognosis. Circular RNA (circRNA) and their associated competing endogenous RNA (ceRNA) network play critical roles in the pathogenesis of glioma. However, the alteration of the circRNA-miRNA-mRNA regulatory network and its correlation with glioma therapy haven’t been systematically analyzed.MethodsWith GEO, GEPIA2, circBank, CSCD, CircInteractome, mirWalk 2.0, and mirDIP 4.1, we constructed a circRNA–miRNA–mRNA network in glioma. LASSO regression and multivariate Cox regression analysis established a hub mRNA signature to assess the prognosis. GSVA was used to estimate the immune infiltration level. Potential anti-glioma drugs were forecasted using the cMap database and evaluated with GSEA using GEO data.ResultsA ceRNA network of seven circRNAs (hsa_circ_0030788/0034182/0000227/ 0018086/0000229/0036592/0002765), 15 miRNAs(hsa-miR-1200/1205/1248/ 1303/3925-5p/5693/581/586/599/607/640/647/6867-5p/767-3p/935), and 46 mRNAs (including 11 hub genes of ARHGAP11A, DRP2, HNRNPA3, IGFBP5, IP6K2, KLF10, KPNA4, NRP2, PAIP1, RCN1, and SEMA5A) was constructed. Functional enrichment showed they influenced majority of the hallmarks of tumors. Eleven hub genes were proven to be decent prognostic signatures for glioma in both TCGA and CGGA datasets. Forty-six LASSO regression significant genes were closely related to immune infiltration. Finally, five compounds (fulvestrant, tanespimycin, mifepristone, tretinoin, and harman) were predicted as potential treatments for glioma. Among them, mifepristone and tretinoin were proven to inhibit the cell cycle and DNA repair in glioma.ConclusionThis study highlights the potential pathogenesis of the circRNA-miRNA-mRNA regulatory network and identifies novel therapeutic options for glioma. creator: Yi He creator: Yihong Chen creator: Yuxin Tong creator: Wenyong Long creator: Qing Liu uri: https://doi.org/10.7717/peerj.11894 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 He et al. title: IdentPMP: identification of moonlighting proteins in plants using sequence-based learning models link: https://peerj.com/articles/11900 last-modified: 2021-08-06 description: BackgroundA moonlighting protein refers to a protein that can perform two or more functions. Since the current moonlighting protein prediction tools mainly focus on the proteins in animals and microorganisms, and there are differences in the cells and proteins between animals and plants, these may cause the existing tools to predict plant moonlighting proteins inaccurately. Hence, the availability of a benchmark data set and a prediction tool specific for plant moonlighting protein are necessary.MethodsThis study used some protein feature classes from the data set constructed in house to develop a web-based prediction tool. In the beginning, we built a data set about plant protein and reduced redundant sequences. We then performed feature selection, feature normalization and feature dimensionality reduction on the training data. Next, machine learning methods for preliminary modeling were used to select feature classes that performed best in plant moonlighting protein prediction. This selected feature was incorporated into the final plant protein prediction tool. After that, we compared five machine learning methods and used grid searching to optimize parameters, and the most suitable method was chosen as the final model.ResultsThe prediction results indicated that the eXtreme Gradient Boosting (XGBoost) performed best, which was used as the algorithm to construct the prediction tool, called IdentPMP (Identification of Plant Moonlighting Proteins). The results of the independent test set shows that the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUC) of IdentPMP is 0.43 and 0.68, which are 19.44% (0.43 vs. 0.36) and 13.33% (0.68 vs. 0.60) higher than state-of-the-art non-plant specific methods, respectively. This further demonstrated that a benchmark data set and a plant-specific prediction tool was required for plant moonlighting protein studies. Finally, we implemented the tool into a web version, and users can use it freely through the URL: http://identpmp.aielab.net/. creator: Xinyi Liu creator: Yueyue Shen creator: Youhua Zhang creator: Fei Liu creator: Zhiyu Ma creator: Zhenyu Yue creator: Yi Yue uri: https://doi.org/10.7717/peerj.11900 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Liu et al. title: Identification of miRNA-target gene regulatory networks in liver fibrosis based on bioinformatics analysis link: https://peerj.com/articles/11910 last-modified: 2021-08-06 description: BackgroundLiver cirrhosis is one of the leading causes of death worldwide. MicroRNAs (miRNAs) can regulate liver fibrosis, but the underlying mechanisms are not fully understood, and the interactions between miRNAs and mRNAs are not clearly elucidated.MethodsmiRNA and mRNA expression arrays of cirrhotic samples and control samples were acquired from the Gene Expression Omnibus database. miRNA-mRNA integrated analysis, functional enrichment analysis and protein-protein interaction (PPI) network construction were performed to identify differentially expressed miRNAs (DEMs) and mRNAs (DEGs), miRNA-mRNA interaction networks, enriched pathways and hub genes. Finally, the results were validated with in vitro cell models.ResultsBy bioinformatics analysis, we identified 13 DEMs between cirrhotic samples and control samples. Among these DEMs, six upregulated (hsa-miR-146b-5p, hsa-miR-150-5p, hsa-miR-224-3p, hsa-miR-3135b, hsa-miR-3195, and hsa-miR-4725-3p) and seven downregulated (hsa-miR-1234-3p, hsa-miR-30b-3p, hsa-miR-3162-3p, hsa-miR-548aj-3p, hsa-miR-548x-3p, hsa-miR-548z, and hsa-miR-890) miRNAs were further validated in activated LX2 cells. miRNA-mRNA interaction networks revealed a total of 361 miRNA-mRNA pairs between 13 miRNAs and 245 corresponding target genes. Moreover, PPI network analysis revealed the top 20 hub genes, including COL1A1, FBN1 and TIMP3, which were involved in extracellular matrix (ECM) organization; CCL5, CXCL9, CXCL12, LCK and CD24, which participated in the immune response; and CDH1, PECAM1, SELL and CAV1, which regulated cell adhesion. Functional enrichment analysis of all DEGs as well as hub genes showed similar results, as ECM-associated pathways, cell surface interaction and adhesion, and immune response were significantly enriched in both analyses.ConclusionsWe identified 13 differentially expressed miRNAs as potential biomarkers of liver cirrhosis. Moreover, we identified 361 regulatory pairs of miRNA-mRNA and 20 hub genes in liver cirrhosis, most of which were involved in collagen and ECM components, immune response, and cell adhesion. These results would provide novel mechanistic insights into the pathogenesis of liver cirrhosis and identify candidate targets for its treatment. creator: Yang Tai creator: Chong Zhao creator: Jinhang Gao creator: Tian Lan creator: Huan Tong uri: https://doi.org/10.7717/peerj.11910 license: https://creativecommons.org/licenses/by/4.0/ rights: ©2021 Tai et al. title: A new Andean treefrog (Amphibia: Hyloscirtus bogotensis group) from Ecuador: an example of community involvement for conservation link: https://peerj.com/articles/11914 last-modified: 2021-08-06 description: We provide several lines of evidence to delimit a new species of Hyloscirtus and define its phylogenetic position inside the Hyloscirtus bogotensis group. The new species is the sister taxon to Hyloscirtus mashpi and is related to a clade formed by H. alytolylax and a putative new species from the province of El Oro in, southwestern Ecuador. Hyloscirtus conscientia sp. nov. is described from the montane forests of the Mira River basin in the extreme northwestern Ecuador. The new species is characterized as follows: tympanic annulus conspicuous, tip of snout in dorsal view subacuminate, middorsal stripe formed by melanophores larger and less dense, dorsal skin with individual iridophores forming dots, scarcely distributed across dorsum. Our study also highlights the importance of the Mira River Valley as a biogeographic barrier; suggesting research efforts north and south of the valley are likely to reveal additional endemic cryptic diversity. Finally, our partnership with Reserva: The Youth Land Trust, Rainforest Trust and EcoMinga Foundation has produced a novel and meaningful way to connect young people with biodiversity discovery and habitat conservation. creator: Mario H. Yánez-Muñoz creator: Juan Pablo Reyes-Puig creator: Diego Batallas-Revelo creator: Callie Broaddus creator: Miguel Urgilés-Merchán creator: Diego F. Cisneros-Heredia creator: Juan M. Guayasamin uri: https://doi.org/10.7717/peerj.11914 license: https://creativecommons.org/licenses/by-nc/4.0 rights: © 2021 Yánez-Muñoz et al.