title: PeerJ description: Articles published in PeerJ link: https://peerj.com/articles/index.rss3?journal=peerj&page=1948 creator: info@peerj.com PeerJ errorsTo: info@peerj.com PeerJ language: en title: VirSorter: mining viral signal from microbial genomic data link: https://peerj.com/articles/985 last-modified: 2015-05-28 description: Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome), new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs) of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages). Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs) as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision) on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made available through the iPlant Cyberinfrastructure that provides a web-based user interface interconnected with the required computing resources. VirSorter thus complements existing prophage prediction softwares to better leverage fragmented, SAG and metagenomic datasets in a way that will scale to modern sequencing. Given these features, VirSorter should enable the discovery of new viruses in microbial datasets, and further our understanding of uncultivated viral communities across diverse ecosystems. creator: Simon Roux creator: Francois Enault creator: Bonnie L. Hurwitz creator: Matthew B. Sullivan uri: https://doi.org/10.7717/peerj.985 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Roux et al. title: ACE and UCP2 gene polymorphisms and their association with baseline and exercise-related changes in the functional performance of older adults link: https://peerj.com/articles/980 last-modified: 2015-05-28 description: Maintaining high levels of physical function is an important aspect of successful ageing. While muscle mass and strength contribute to functional performance in older adults, little is known about the possible genetic basis for the heterogeneity of physical function in older adults and in how older adults respond to exercise. Two genes that have possible roles in determining levels of muscle mass, strength and function in young and older adults are angiotensin-converting enzyme (ACE) and mitochondrial uncoupling protein 2 (UCP2). This study examined whether polymorphisms in these two individual genes were associated with baseline functional performance levels and/or the training-related changes following exercise in previously untrained older adults. Five-eight Caucasian older adults (mean age 69.8 years) with no recent history of resistance training enrolled in a 12 week program of resistance, balance and cardiovascular exercises aimed at improving functional performance. Performance in 6 functional tasks was recorded at baseline and after 12 weeks. Genomic DNA was assayed for the ACE intron 16 insertion/deletion (I/D) and the UCP2 G-866A polymorphism. Baseline differences among genotype groups were tested using analysis of variance. Genotype differences in absolute and relative changes in physical function among the exercisers were tested using a general linear model, adjusting for age and gender. The genotype frequencies for each of the studied polymorphisms conformed to the Hardy-Weinberg equilibrium. The ACE I/D genotype was significantly associated with mean baseline measures of handgrip strength (II 30.9 ± 3.01 v. ID 31.7 ± 1.48 v. DD 29.3 ± 2.18 kg, p < 0.001), 8ft Up and Go time (II 6.45 ± 0.48 v. ID/DD 4.41 ± 0.19 s, p < 0.001) and 6 min walk distance (II 458 ± 28.7 v. ID/DD 546 ± 12.1m, p = 0.008). The UCP2 G-866A genotype was also associated with baseline 8ft Up and Go time (GG 5.45 ± 0.35 v. GA 4.47 ± 0.26 v. AA 3.89 ± 0.71 s, p = 0.045). After 12 weeks of training, a significant difference between UCP2 G-886A genotype groups for change in 8ft Up and Go time was detected (GG −0.68 ± 0.17 v. GA −0.10 ± 0.14 v. AA +0.05 ± 0.31 s, p = 0.023). While several interesting and possibly consistent associations with older adults’ baseline functional performance were found for the ACE and UCP2 polymorphisms, we found no strong evidence of genetic associations with exercise responses in this study. The relative equivalence of some of these training-response findings to the literature may have reflected the current study’s focus on physical function rather than just strength, the relatively high levels of baseline function for some genotype groups as well as the greater statistical power for detecting baseline differences than the training-related changes. creator: Justin W.L. Keogh creator: Barry R. Palmer creator: Denise Taylor creator: Andrew E. Kilding uri: https://doi.org/10.7717/peerj.980 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Keogh et al. title: Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line link: https://peerj.com/articles/962 last-modified: 2015-05-28 description: Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA) in combination with arsenic trioxide (ATO) on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01). Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway. creator: Nainong Li creator: Xiaoyan Guan creator: Fang Li creator: Xiaofan Li creator: Yuanzhong Chen uri: https://doi.org/10.7717/peerj.962 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Li et al. title: Morphometric comparisons of Diaphorina citri (Hemiptera: Liviidae) populations from Iran, USA and Pakistan link: https://peerj.com/articles/946 last-modified: 2015-05-28 description: The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), vector of citrus greening disease pathogen, Huanglongbing (HLB), is considered the most serious pest of citrus in the world. Prior molecular based studies have hypothesized a link between the D. citri in Iran and the USA (Florida). The purpose of this study was to collect morphometric data from D. citri populations from Iran (mtCOI haplotype-1), Florida (mtCOI haplotype-1), and Pakistan (mtCOI haplotype-6), to determine whether different mtCOI haplotypes have a relationship to a specific morphometric variation. 240 samples from 6 ACP populations (Iran—Jiroft, Chabahar; Florida—Ft. Pierce, Palm Beach Gardens, Port St. Lucie; and Pakistan—Punjab) were collected for comparison. Measurements of 20 morphological characters were selected, measured and analysed using ANOVA and MANOVA. The results indicate differences among the 6 ACP populations (Wilks’ lambda = 0.0376, F = 7.29, P < 0.0001). The body length (BL), circumanal ring length (CL), antenna length (AL), forewing length (WL) and Rs vein length of forewing (RL) were the most important characters separating the populations. The cluster analysis showed that the Iran and Florida populations are distinct from each other but separate from the Pakistan population. Thus, three subgroups can be morphologically discriminated within D. citri species in this study, (1) Iran, (2) USA (Florida) and (3) Pakistan population. Morphometric comparisons provided further resolution to the mtCOI haplotypes and distinguished the Florida and Iranian populations. creator: Mohammadreza Lashkari creator: Matthew G. Hentz creator: Laura M. Boykin uri: https://doi.org/10.7717/peerj.946 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Lashkari et al. title: Using 3D printed eggs to examine the egg-rejection behaviour of wild birds link: https://peerj.com/articles/965 last-modified: 2015-05-26 description: The coevolutionary relationships between brood parasites and their hosts are often studied by examining the egg rejection behaviour of host species using artificial eggs. However, the traditional methods for producing artificial eggs out of plasticine, plastic, wood, or plaster-of-Paris are laborious, imprecise, and prone to human error. As an alternative, 3D printing may reduce human error, enable more precise manipulation of egg size and shape, and provide a more accurate and replicable protocol for generating artificial stimuli than traditional methods. However, the usefulness of 3D printing technology for egg rejection research remains to be tested. Here, we applied 3D printing technology to the extensively studied egg rejection behaviour of American robins, Turdus migratorius. Eggs of the robin’s brood parasites, brown-headed cowbirds, Molothrus ater, vary greatly in size and shape, but it is unknown whether host egg rejection decisions differ across this gradient of natural variation. We printed artificial eggs that encompass the natural range of shapes and sizes of cowbird eggs, painted them to resemble either robin or cowbird egg colour, and used them to artificially parasitize nests of breeding wild robins. In line with previous studies, we show that robins accept mimetically coloured and reject non-mimetically coloured artificial eggs. Although we found no evidence that subtle differences in parasitic egg size or shape affect robins’ rejection decisions, 3D printing will provide an opportunity for more extensive experimentation on the potential biological or evolutionary significance of size and shape variation of foreign eggs in rejection decisions. We provide a detailed protocol for generating 3D printed eggs using either personal 3D printers or commercial printing services, and highlight additional potential future applications for this technology in the study of egg rejection. creator: Branislav Igic creator: Valerie Nunez creator: Henning U. Voss creator: Rebecca Croston creator: Zachary Aidala creator: Analía V. López creator: Aimee Van Tatenhove creator: Mandë E. Holford creator: Matthew D. Shawkey creator: Mark E. Hauber uri: https://doi.org/10.7717/peerj.965 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Igic et al. title: Have the “mega-journals” reached the limits to growth? link: https://peerj.com/articles/981 last-modified: 2015-05-26 description: A “mega-journal” is a new type of scientific journal that publishes freely accessible articles, which have been peer reviewed for scientific trustworthiness, but leaves it to the readers to decide which articles are of interest and importance to them. In the wake of the phenomenal success of PLOS ONE, several other publishers have recently started mega-journals. This article presents the evolution of mega-journals since 2010 in terms of article publication rates. The fastest growth seems to have ebbed out at around 35,000 annual articles for the 14 journals combined. Acceptance rates are in the range of 50–70%, and speed of publication is around 3–5 months. Common features in mega-journals are alternative impact metrics, easy reusability of figures and data, post-publication discussions and portable reviews from other journals. creator: Bo-Christer Björk uri: https://doi.org/10.7717/peerj.981 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Björk title: Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables link: https://peerj.com/articles/979 last-modified: 2015-05-26 description: The objective of this study was to relate earthworm assemblage structure with three different soil use intensities, and to indentify the physical, chemical, and microbiological soil variables that are associated to the observed differences. Three soil uses were evaluated: 1-Fifty year old naturalized grasslands, low use intensity; 2-Recent agricultural fields, intermediate use intensity, and 3-Fifty year old intensive agricultural fields, high use intensity. Three different sites for each soil use were evaluated from winter 2008 through summer 2011. Nine earthworm species were identified across all sampling sites. The sites shared five species: the native Microscolex dubius, and the introduced Aporrectodea caliginosa, A. rosea, Octalasion cyaneum, and O. lacteum, but they differed in relative abundance by soil use. The results show that the earthworm community structure is linked to and modulated by soil properties. Both species abundance and diversity showed significant differences depending on soil use intensity. A principal component analysis showed that species composition is closely related to the environmental variability. The ratio of native to exotic species was significantly lower in the intensive agricultural system when compared to the other two, lower disturbance systems. Microscolex dubius abundance was related to naturalized grasslands along with soil Ca, pH, mechanical resistance, and microbial respiration. Aporrectodea caliginosa abundance was related to high K levels, low enzymatic activity, slightly low pH, low Ca, and appeared related to the highly disturbed environment. Eukerria stagnalis and Aporrectodea rosea, commonly found in the recent agricultural system, were related to high soil moisture condition, low pH, low Ca and low enzymatic activity. These results show that earthworm assemblages can be good indicators of soil use intensities. In particular, Microscolex dubius, Aporrectodea caliginosa, and Aporrectodea rosea, showed different temporal patterns and species associations, due to the changes in soil properties attributable to soil use intensity, defined as the amount and type of agricultural operations. creator: LB Falco creator: R Sandler creator: F Momo creator: C Di Ciocco creator: L Saravia creator: C Coviella uri: https://doi.org/10.7717/peerj.979 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Falco et al. title: Evolution of heritable behavioural differences in a model of social division of labour link: https://peerj.com/articles/977 last-modified: 2015-05-26 description: The spectacular diversity of personality and behaviour of animals and humans has evoked many hypotheses intended to explain its developmental and evolutionary background. Although the list of the possible contributing mechanisms seems long, we propose that an underemphasised explanation is the division of labour creating negative frequency dependent selection. We use analytical and numerical models of social division of labour to show how selection can create consistent and heritable behavioural differences in a population, where randomly sampled individuals solve a collective task together. We assume that the collective task needs collaboration of individuals performing one of the two possible subtasks. The total benefit of the group is highest when the ratio of different subtasks is closest to 1. The probability of choosing one of the two costly subtasks and the costs assigned to them are under selection. By using adaptive dynamics we show that if a trade-off between the costs of the subtasks is strong enough, then evolution leads to coexistence of specialized individuals performing one of the subtasks with high probability and low cost. Our analytical results were verified and extended by numerical simulations. creator: Zsóka Vásárhelyi creator: Géza Meszéna creator: István Scheuring uri: https://doi.org/10.7717/peerj.977 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Vásárhelyi et al. title: Caveolar disruption causes contraction of rat femoral arteries via reduced basal NO release and subsequent closure of BKCa channels link: https://peerj.com/articles/966 last-modified: 2015-05-26 description: Background and Purpose. Caveolae act as signalling hubs in endothelial and smooth muscle cells. Caveolar disruption by the membrane cholesterol depleting agent methyl-β-cyclodextrin (M-β-CD) has various functional effects on arteries including (i) impairment of endothelium-dependent relaxation, and (ii) alteration of smooth muscle cell (SMC) contraction independently of the endothelium. The aim of this study was to explore the effects of M-β-CD on rat femoral arteries.Methods. Isometric force was measured in rat femoral arteries stimulated to contract with a solution containing 20 mM K+ and 200 nM Bay K 8644 (20 K/Bay K) or with one containing 80 mM K+(80 K).Results. Incubation of arteries with M-β-CD (5 mM, 60 min) increased force in response to 20 K/Bay K but not that induced by 80 K. Application of cholesterol saturated M-β-CD (Ch-MCD, 5 mM, 50 min) reversed the effects of M-β-CD. After mechanical removal of endothelial cells M-β-CD caused only a small enhancement of contractions to 20 K/Bay K. This result suggests M-β-CD acts via altering release of an endothelial-derived vasodilator or vasoconstrictor. When nitric oxide synthase was blocked by pre-incubation of arteries with L-NAME (250 µM) the contraction of arteries to 20 K/Bay K was enhanced, and this effect was abolished by pre-treatment with M-β-CD. This suggests M-β-CD is inhibiting endothelial NO release. Inhibition of large conductance voltage- and Ca2+-activated (BKCa) channels with 2 mM TEA+ or 100 nM Iberiotoxin (IbTX) enhanced 20 K/Bay K contractions. L-NAME attenuated the contractile effect of IbTX, as did endothelial removal.Conclusions. Our results suggest caveolar disruption results in decreased release of endothelial-derived nitric oxide in rat femoral artery, resulting in a reduced contribution of BKCa channels to the smooth muscle cell membrane potential, causing depolarisation and contraction. creator: AY Al-Brakati creator: T Kamishima creator: C Dart creator: JM Quayle uri: https://doi.org/10.7717/peerj.966 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Al-Brakati et al. title: Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species link: https://peerj.com/articles/976 last-modified: 2015-05-21 description: Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host’s apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of balancing selection maintaining the variation. Using Bayesian and likelihood methods positive and negative selection is evident at sites in the conserved part of the genes and, to a larger extent, in the active part which also shows episodic diversifying selection, further supporting the argument for balancing selection. creator: Katrín Halldórsdóttir creator: Einar Árnason uri: https://doi.org/10.7717/peerj.976 license: http://creativecommons.org/licenses/by/4.0/ rights: © 2015 Halldórsdóttir and Árnason