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ABSTRACT
Recently, gait has been gathering extensive interest for the non-fungible position in
applications. Although various methods have been proposed for gait recognition,
most of them can only attain an excellent recognition performance when the probe
and gallery gaits are in a similar condition. Once external factors (e.g., clothing
variations) influence people’s gaits and changes happen in human appearances, a
significant performance degradation occurs. Hence, in our article, a robust hybrid
part-based spatio-temporal feature learning method is proposed for gait recognition
to handle this cloth-changing problem. First, human bodies are segmented into the
affected and non/less unaffected parts based on the anatomical studies. Then, a
well-designed network is proposed in our method to formulate our required hybrid
features from the non/less unaffected body parts. This network contains three sub-
networks, aiming to generate features independently. Each sub-network emphasizes
individual aspects of gait, hence an effective hybrid gait feature can be created through
their concatenation. In addition, temporal information can be used as complement
to enhance the recognition performance, a sub-network is specifically proposed to
establish the temporal relationship between consecutive short-range frames. Also,
since local features are more discriminative than global features in gait recognition,
in this network a sub-network is specifically proposed to generate features of local
refined differences. The effectiveness of our proposed method has been evaluated by
experiments on the CASIA Gait Dataset B and OU-ISIR Treadmill Gait Dataset B.
Related experiments illustrate that compared with other gait recognition methods, our
proposed method can achieve a prominent result when handling this cloth-changing
gait recognition problem.

Subjects Artificial Intelligence, Computer Vision
Keywords Gait recognition, Part-based, Spatio-temporal feature learning, Clothing-independent

INTRODUCTION
For decades, there has been a growing demand for robust surveillance applications. Given
that each person reveals his/her biometric features, e.g., face, iris, fingerprint, gait, etc, in a
sufficiently characteristic and fairly individual way, lately recognition using biometrics has
been widely utilized in most surveillance systems. However, in the real world the captured
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surveillance images can be influenced by low resolution, poor illumination, etc. Monitoring
targets also can cover their most regular biometrics by using masks, glasses, and gloves.
Thus, a biometric feature, which shows more robust to these factors, is more popular for
real-world surveillance systems, e.g., gait.

Compared with other biometric features, recognition using gait offers a better option
for most surveillance systems. First, it is difficult to disguise other people’s gaits, because
walking is essential for human mobility. Second, gait can be measured from a distance
without physical contact or proximal sensing. Third, gait works well in an unconstrained
scenario. It can be recognized from a single still image or a sequence of continuous frames.
All these strengths makes gait specifically attractive for human authentication. In Denmark
and the UK, gait analysis plays an important part for evidence collection when convicting
criminals (Bouchrika et al., 2011; Iwama et al., 2013;Wu et al., 2017; Zhang et al., 2021).

The potential of gait recognition is enormous, but currently gait recognition is more
at the evaluation stage rather than the application stage; thus, gait analysis is still in the
infancy (Makihara, Nixon & Yagi, 2020). Gait recognition is one of the newest biometric
authentication methods, since its development truly begins as the processing speeds and
the computer memories became sufficient to settle gait sequences with a considerable
performance (Makihara, Nixon & Yagi, 2020).

Meanwhile, although lately many gait recognition methods have been proposed, most of
these methods can only attain an outstanding recognition performance when the probe gait
and the gallery gait are in a similar environment (Makihara, Nixon & Yagi, 2020; Liu, Liu
& Zhang, 2022). It becomes more challenging when people’s gaits are impacted by other
factors and the probe/gallery gaits are no longer similar. Examples of factors that will cause
a negative influence on gait recognition are: clothing variations (Hossain et al., 2010; Deng
& Wang, 2018; Anusha & Jaidhar, 2019; Yao et al., 2021a), carrying bags (Singh & Biswas,
2009; Zhang, Wu & Xu, 2019b; Yoo & Park, 2021), walking/running modes (Kusakunniran
et al., 2012b; Yao et al., 2022; Makihara et al., 2018), etc. There also remain some other
influencing factors which are relevant with the external environment. Examples of these
factors are: view angle changes (Kusakunniran et al., 2012c; Iwashita, Ogawara & Kurazume,
2014; Yao et al., 2021), etc. Among these factors, clothing variations can be seen as the most
challenging factor for gait recognition (Hossain et al., 2010; Yao et al., 2021c). Thus, in this
article, an efficient gait recognition method is proposed to handle this cloth-changing
problem.

For gait, different body parts are differently influenced by clothing variations. There
remainmany body parts which are significantly influenced by clothing variations, and there
also remain lots of parts which still can retain relatively unchanged regardless of the cloth-
changing influence (Hossain et al., 2010; Yao et al., 2021c; Zhang & Wang, 2022). Thus, in
our method, we mainly focus on extracting robust gait features from the body parts which
are non/less vulnerable to clothing variations. Meanwhile, given that comparison
experiments in Wu et al. (2017) have indicated that in gait recognition local detailed
features prove more discriminative than global semantic features; thus, in our method we
give more attention to the local refined differences within human gaits, and a sub-network
is specifically designed to extract more discriminative local spatial features. Also, given
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that temporal features can be deemed as an effective feature complement to enhance
the recognition performance (Fan et al., 2020; Yao et al., 2021b), one sub-network is also
specifically used in our method to model the micro-motion temporal relationship among
continuous short-range frames. Moreover, related experiments have proved that our
proposed hybrid feature learning method can always obtain a prominent performance
when approaching this challenging cloth-changing gait recognition problem.

Contributions of this article are summarized as follows,

• This article generates a hybrid part-based spatio-temporal feature for gait recognition to
approach the cloth-changing problem. This hybrid spatio-temporal feature is made up
of three different parts, each generated by one specific sub-network. Each sub-network
emphasizes an individual aspect of gait, thus a robust hybrid gait feature has been
generated through their concatenation.
• This proposed method has presented an excellent performance for cloth-changing gait
recognition on CASIA Gait Dataset B and OU-ISIR Treadmill Gait Dataset B.

RELATED WORK
In this section, a brief survey is given for gait recognition.

In decades, a number of differentmethods have been raised for gait recognition. Roughly,
these proposed methods can be classified into two categories, i.e., template-based methods
or sequence-based methods (Chao et al., 2019).

Template-based gait recognition
For template-basedmethods, a pre-process of integrating gait templates from images/videos
is first needed. One of themost commonly accepted templates in this category is Gait Energy
Image (GEI) (Han & Bhanu, 2006), integrated by averaging aligned silhouettes within a
whole gait cycle. Another similar template is Motion Silhouette Image (MSI) (Lam & Lee,
2006), where each pixel is denoted as a descriptor of its motions in the temporal domain
across all the silhouettes which are part of a whole gait cycle. Distinct from GEI and MSI,
Skeleton Gait Energy Image (SGEI) is denoted as an average product of human skeleton
models over a whole gait cycle (Yao et al., 2018; Yao et al., 2021). Once gait templates are
attained, various machine learning methods and deep learning networks can be chosen to
extract the representations of gait and enhance their characterization capabilities. Finally,
the similarities between gait representations can be matched using Euclidean distance
or some other metric learning methods (Wu et al., 2017; Yao et al., 2021; Takemura et al.,
2019).

Basically, template-based methods divide this pipeline into two parts, i.e., template
generation andmatching (Chao et al., 2019). The aim of template generation is to transform
gait information across frames into a single gait template (Chao et al., 2019). In this way,
both spatial and temporal information have been efficiently embedded for each template.
Moreover, the recognition performance is also significantly influenced by the transformed
templates. Taking GEI for example: because silhouettes are sensitive to clothing changes,
GEI cannot always present a satisfying performance if the probe/gallery gaits are in two
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varying dressing patterns. Also, given that viewing changes can prominently change the
accessible visual features to be used, the recognition accuracy of GEI can go through a
significant degradation if the viewing gaps get larger. In order to decline these negative
influences, a wide range of machine learning methods have been raised for matching
templates (Kusakunniran et al., 2012a; Matin, Paul & Sayeed, 2017; Kusakunniran et al.,
2009). For example, in Kusakunniran et al. (2009), an adaptive weighting method was
used to distinguish significance of bits for rescaled GEI. In Kusakunniran et al. (2012a),
a View Transformation Model (VTM) was proposed to learn the relationship between
different views, and a view-invariant gait representation can be learned by projecting GEI
into a latent subspace. In Matin, Paul & Sayeed (2017), a method was proposed to detect
co-factor affected segments of GEI. GEI is first divided into different parts based on the
area of co-factor appearance. Then, co-factored cues are detected and reduced according to
the predefined thresholds. Finally, a co-factored GEI is dynamically reconstructed through
combination.

Recently, deep learning has been flourishing in computer vision community, and a large
number of deep learning-based networks also have been constructed for template-based
gait recognition. Shiraga et al. (2016) proposed GEINet with GEI as its input. Zhang et al.
(2016) fine-tuned a Siamese neural network for feature generation andusedKNN for feature
matching. In Li et al. (2020a), an encoder was utilized to disentangle GEI into identity and
covariate features. In the decode stage, the original GEI and the canonical GEI without any
covariates were both rebuilt. In Zhang, Wu & Xu (2019b), a view transformation generative
adversarial network (VT-GAN) was adopted for gait features to achieve transformation
across any two views using a single generic model. Further, in Zhang, Wu & Xu (2019a)
an identity-preserved variation normalizing generative adversarial network (VN-GAN)
was also proposed to formulate identity-related features. For the aforementioned deep
learning-based methods, a main disadvantage of using gait templates as input is that they
may loss the individual information of each frame, since generally they are generated by
stacking and averaging frames together. Also, given that only one or two gait templates can
be formed from one sequence, it may lead to the problem of insufficient input training
data.

Sequence-based gait recognition
Different from template-based methods formulating gait templates first, sequence-based
methods directly treat a sequence of gait frames as input. Based on the manners of
formulating temporal features, these methods can be divided into different categories, i.e.,
3D CNN-based and LSTM-based (Chao et al., 2019). A main advantage of these methods
is that they can capture individual information for each frame. Also, more temporal
information can be formulated since specialized structures are utilized (Chao et al., 2019).
In Wolf, Babaee & Rigoll (2016), a 3D-CNN network is proposed to capture features in
multiple views. In Lin, Zhang & Bao (2020), a multiple-temporal-scale framework is
proposed to model temporal information in multiple scales. In Feng, Li & Luo (2016), heat
maps were first explored as features of each frame, then a LSTM network was used to
assemble the features of each frame into a feature of the whole sequence. In Battistone &

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.996


Petrosino (2019), features were first modeled for each skeleton key-point and then attached
to the graph/skeleton edges. A LSTM-based network was adopted to jointly exploit
structured data and temporal information by learning long short-term dependencies from
graph structures. In Zhang et al. (2020), features of human body parts were extracted and
linked as input, and LSTM models were handled as temporal attention models to calculate
the attention score of each frame. In Zhang et al. (2022), pose, appearance, and canonical
features were formulated from input frames first using disentanglement learning. Followed,
a LSTM network is adopted to integrate the pose features into a dynamic feature, and the
canonical features are averaged as a static feature. All these methods have presented a
prominent result for gait recognition in various conditions. However, for these methods, a
huge disadvantage is their high computation cost (Chao et al., 2019), which may limit their
usage in practical applications.

Recently, some 2D-CNNnetworks also have been raised to approach this gait recognition
problem in the sequence-based way. Different from the aforementioned methods learning
the temporal relation between continuous frames, these networks assume that the
appearance of each silhouette has involved its positional information, in which way
the order information of a sequence is not necessary for gait recognition (Chao et al.,
2019). Examples of these networks are Wu, Huang & Wang (2015); Chao et al. (2019); Yao
et al. (2021b). InWu, Huang & Wang (2015), its main network first approached each input
frame independently via a number of 2D convolution units with shared weights. A global
spatio-temporal pooling module was adopted at the top to combine the independent
information of each input frame into a feature of the whole sequence. In Chao et al. (2019),
a global pipeline was used to collect combined information from different levels. Chao
et al. (2019) presented a state-of-the-art performance for gait recognition in different
datasets. Moreover, Fan et al. (2020) improved the network proposed in Chao et al. (2019)
by using a special module to model the micro-motion patterns within input frames. The
performance improvement indicates that although the appearance of each silhouette do
contain the positional information, additional temporal modeling can use as a complement
to enhance its recognition performance.

METHODS
Overview
For image/video-based gait recognition, its core lies in extracting robust gait-related
features from walking sequences (Zhang et al., 2019). In our article, encouraged by Wu
et al. (2017), Feichtenhofer et al. (2019), Chao et al. (2019), Sun et al. (2019) and Fan et al.
(2020), a robust hybrid gait-related feature is formulated for cloth-changing gait recognition
from each input walking sequence.

Figure 1 reveals the framework of our proposed network. For each input sequence,
the silhouette human bodies of each frame are first segmented into the affected parts
and the non/less affected parts based on the anatomical studies of gait (Dempster &
Gaughran, 1967). Then, focused on the non/less affected human body parts, three different
sub-networks are specifically proposed to capture efficient gait-related features. Finally,
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Figure 1 Framework of the proposed method.
Full-size DOI: 10.7717/peerjcs.996/fig-1

through assembling these three gait-related features, a feasible hybrid spatio-temporal
gait feature has been formulated in our method. Experiments certify that this proposed
hybrid gait feature will achieve an excellent result for gait recognition when approaching
the cloth-changing problem.

More specifically, assuming a silhouette sequence consisting of n successive frames
can be represented as χ ={xi|i= 1,2,3,...,n}, and its segmented non/less affected human
body parts can be represented as χ̃ , thus our proposed hybrid part-based spatio-temporal
feature can be learned as,

f =H (G(Fsl(χ̃)))
⊕

H (G(Fsg (χ̃)))
⊕

H (G(Ft (χ̃))) (1)

where Fsl and Fsg denote creating local and global spatial features, respectively, from
each non/less affected body part using a variety of 2D convolution units with shared
weights. Ft denote grasping the micro-motion gait features from the non/less affected body
parts between continuous short-range frames. G represents assembling the spatial/motion
features of each silhouette into a spatial/motion feature of the entire sequence, and
H represents the transforming these assembled spatial/motion features into a more
discriminative subspace to enhance their discrimination capabilities.

⊕
denotes the

feature concatenation operation.

Segmenting human bodies
In gait recognition, part-based strategies are widely utilized when approaching the cloth-
changing problem. For example, inHossain et al. (2010), the heavier weighting was assigned
to the body parts which enable to maintain unchanged by clothing variations, while the
lighter weighting is assigned to the other body parts which can be significantly changed.
The main reason that part-based strategies work well in cloth-changing gait recognition is
that clothing variations generally can cause different influence on different human body
parts (Hossain et al., 2010). Hence, for these part-based gait recognition methods, it plays a

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 6/23

https://peerj.com
https://doi.org/10.7717/peerjcs.996/fig-1
http://dx.doi.org/10.7717/peerj-cs.996


significant role in accurately segmenting each human body into the affected parts and the
unaffected parts.

For our method, each human body is first divided into the affected and non/less affected
parts according to the anatomical studies of gait (Dempster & Gaughran, 1967). Assuming a
humanbodyofH height, we can segment his/her entire body into a series of different parts at
some key positions, e.g., neck (0.87H ), waist (0.535H ), pelvis (0.48H ), and knees (0.285H )
(Dempster & Gaughran, 1967). Moreover, because clothes designing and tailoring are not
always totally consistent with the anatomical studies, in our method the segmentation
restriction has been moderately relaxed while we segment human bodies. Thus, the final
segmented parts are actually a little broader than they ought to be. Furthermore, given that
for each person the upper body can be more easily to be influenced by clothing variations,
thus in the proposed method we mainly focus on two segmented parts, i.e., the head part
and the crus part.

Figure 2 shows a sample of our segmented head and crus parts.

Generating spatial features
As Fig. 1 reveals, in this article two sub-networks are specially proposed to capture local
and global spatial features for cloth-changing gait recognition.

Motivations
In Wu et al. (2017), a comprehensive analysis was made on cross-view gait-based human
identification using deep CNNs. Three different networks are proposed and compared
with a pair input of two GEIs. Among these three networks, the only shared module was
two successive units made of one convolution, normalization, and pooling layers, and
the major disparity is when and where their extracted gait-related features are compared.
In LB-Net, local features were compared at the first layer. In MT-Net, mid-level features
were compared at the top layer. In GT-Net, global features were compared at the top after
a fully-connected layer. Experiment results illustrate that there are no significant gaps
between the performances of LB-Net and MT-Net, while they both outperform GT-Net
with a distinct margin (Wu et al., 2017). To some extent, gait recognition can be seen as a
fine-grained task, and it highly relies on the existing local subtle differences. Thus, a good
gait recognition network can always take full advantage of the refined information within
local areas, e.g., LB-Net and MT-Net in Wu et al. (2017). Meanwhile, considering that in
a CNN-based network pixels in the feature maps of shallow layers are more related with
local fine-grained information while pixels in the feature maps of deeper layers are more
connected with global coarse-grained information (Chao et al., 2019), in our method we
focus more attention on the features generated from shallow layers.

Generating local spatial features
Figure 3 illustrates the architecture of our sub-network proposed for generating local
spatial features. Given that features of the crus part are more efficient than features of the
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Figure 2 Segmentation of human bodies.
Full-size DOI: 10.7717/peerjcs.996/fig-2

Figure 3 Sub-network used to extract local spatial features.
Full-size DOI: 10.7717/peerjcs.996/fig-3

head part (Yao et al., 2021c), in our method we mainly focus on seeking robust local spatial
features from our segmented crus parts.
Stimulated byChao et al. (2019) and Sun et al. (2019), distinct frommost gait recognition

networks stacking convolutions in turn and capturing features from deeper layers,
our network convolutions are placed in parallel, and only features from shallow layers
will be learned for the following recognition task. Specifically, as revealed in Fig. 3,
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starting with a convolution unit as our first convolution stage, we gradually create more
convolution stages by adding another convolution unit. After each convolution stage, a
sub-network is formed, and all these sub-networks are arranged in parallel. Thus, finally,
three convolution stages are created and three parallel sub-networks are formed. The
feature scales are gradually reduced as more convolution stages are created, but they will
maintain unchanged throughout each following sub-network. Moreover, given that this
proposed network enables to learn and preserve multi-scale features for gait recognition, a
scheme of information exchanging is also established in this network to enhance the feature
robustness. As Fig. 3 presents, information is exchanged over any two sub-networks through
the functions of upsampling and downsampling. Through this information exchanging
scheme, amore robust feature can be integrated by this proposed network. On the one hand,
a more robust global feature can be formed in this network by adding more convolution
stages, which can lead the shallow stages to offer a more robust feature representation for
the local refined differences. On the other hand, the spatial-aware cues of local areas are
well preserved throughout each sub-network, which can lead the deeper stages to formulate
a more efficient global semantic feature. In this way, a tendency of mutual utilization and
promotion has been integrated in our network, which also improves the robustness of our
extracted gait-related features. Besides, given that features of shallow layers are more related
with local subtle information, in this network only features of the first two sub-networks
are involved in the next recognition task. A pooling operation is used to map these two
features of every frame into two features of the entire sequence. HPM (Chao et al., 2019) is
also used to project these two sequence features into a more discriminative feature space.
Finally, our utilized local spatial features are integrated through the concatenation of these
two sequence features.

Generating global spatial features
Although local features prove more discriminative than global features for gait recognition
(Wu et al., 2017), it is not a practical option to totally ignore global features when identifying
different gaits. Local region based features cannot model the relations across neighboring
regions, thereby influencing the robustness (Lin et al., 2020). Thus, in our method, another
sub-network is designed to make up for the global features ignored in ‘Generating local
spatial features’.

Consisting of two branches aiming to tackle our segmented head and crus parts
independently, the architecture of the sub-network is much similar to that proposed in Yao
et al. (2021c). Each branch includes three convolution stages, and each convolution stage
consists of two sequential convolution layers and one pooling layer. After all convolution
stages, a pooling operation is used to integrate the features of each frame into a feature of the
full sequence. HPM (Chao et al., 2019) is also followed to project these sequence features
into a more discriminative feature space. Finally, our required global spatial features are
learned by hybridizing the features of the head and crus parts together.

Although global features are also involved when extracting local spatial features, it is
rational for us to adopt another sub-network to capture global spatial features. As shown in
Fig. 3, a scheme of information exchange is adopted when extracting local spatial features.
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With this direct connection, its involved global features are highly correlative with its local
features of shallow layers. Learning global spatial features using another sub-network can
not only preserve the independence, but also achieve the diversity of different features.

Generating temporal features
As Fig. 1 shows, in our method another different sub-network is specially used to explore
robust temporal features for cloth-changing gait recognition.

Motivations
The gaits of each individual can be deemed as postures from a set, in a sequence showing
an implicit structured probabilistic nature (Sundaresan, Roy-Chowdhury & Chellappa,
2003). Thus, it is reasonable for gait recognition to focus some attention on the temporal
correlation across consecutive frames, e.g., HMM in Sundaresan, Roy-Chowdhury &
Chellappa (2003), LSTM in Zhang et al. (2019) andGRU in Sepas-Moghaddam et al. (2021).
In our method, it is apparent that no temporal features have been explicitly modeled when
formulating spatial features, thereby leading to the information loss in time series (Wu
et al., 2017; Wang et al., 2012). Thus, in our method another sub-network is proposed to
remedy the lost temporal information.

Generally, most gait recognition methods represent the global understandings of gait
sequences through modeling the long-range dependencies (Fan et al., 2020). However, for
a successive gait sequence, frames with similar appearance are more likely to arise at fixed
time intervals, which illustrates that the long-range dependencies, e.g., in most cases longer
than a whole gait cycle, may be redundant and inefficient for gait recognition (Fan et al.,
2020). Thus, compared with modeling the generally used long-range dependencies, it is
more rational and efficient for gait recognition to attach more attention to the short-range
dependencies across successive short-range frames.

Generating micro-motion temporal features
Figure 4 illustrates the architecture of our sub-network proposed for graspingmicro-motion
temporal features among consecutive short-range frames. Considering that the segmented
crus parts enable to generate more temporal cues than the head parts (Yao et al., 2021c), in
this part we only focus attention on extractiing micro-motion temporal features from the
aforementioned crus parts.

Taking a clip of continuous silhouettes as input, this proposed sub-network first
approached each input silhouette independently. After that, inspired by Wu et al. (2017)
and Fan et al. (2020), a module is specifically proposed in our sub-network to generate the
micro-motion temporal features across continuous short-range silhouettes. Motivated by
GEI formed by averaging silhouettes within an entire gait cycle (Han & Bhanu, 2006), in
our network the micro-motion temporal features are generated by taking max-pooling
operations within successive short-range silhouettes. The max-pooling operations function
as sliding-window models, formulating the micro-motion temporal features across short-
range silhouettes using a shared max-pooling operation. Furthermore, in order to combine
multi-scale temporal information, in our method two different window sizes, i.e., 3 and
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Figure 4 Sub-network used to extract temporal features.
Full-size DOI: 10.7717/peerjcs.996/fig-4

5, are utilized. Finally, a pooling operation and HPM are also used as we generate the
local/global spatial features in ‘Generating spatial features’.

It is worth noticing that there remain significant differences between Fan et al. (2020) and
our proposed method. For Fan et al. (2020) the micro-motion patterns were formulated at
the top following HPM, while in this method they are directly formulated from the feature
maps before HPM. In this way, more refined local motion information can be retained in
our formulated micro-motion temporal features.

Other details
As Fig. 1 indicates, in this method our hybrid gait-related features used for recognition
are formulated by concatenating features of each sub-network together. Batch All (BA+)
triplet loss is also used in this method to train our proposed network (Hermans, Beyer &
Leibe, 2017).

EXPERIMENTS
In this section, we validated the robustness of our proposed method on two of the most
widely-used datasets, the CASIA Gait Dataset B (Zheng et al., 2011) and OU-ISIR Treadmill
Gait Dataset B (Makihara et al., 2012). Our training and testing details are first shown in
‘Training and testing details’. After that, more details about these two comparisons are
shown in ‘Comparison experiments onCASIA gait dataset B’ and ‘Comparison experiments
on OU-ISIR treadmill gait dataset B’. Finally, ablation experiments are given in ‘Ablation
experiments on CASIA gait dataset B’. These comparison experiments illustrate that
compared with other gait recogition methods, our proposed method can achieve a more
robust performance when handling the cloth-changing problem.
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Table 1 Sub-network parameters.

Sub-network Convolution channels HPM scales

Sub-network 1 {64,128,256} {5,4}
Sub-network 2 {32,64,128} {2,4}
Sub-network 3 {32,64,128} 4

Training and testing details
For our experiments, the input is aligned silhouette sequences in size of 64×64. In the
training stage, a clip of 30 silhouettes is first randomly intercepted from each sequence.
After that, a batch with size of 8×8 is sampled from each training dataset, which indicates
that each batch contains eight persons and each person can have eight clips in each batch.
The parameters of each sub-network are revealed in Table 1. Adam (Kingma & Ba, 2015)
serves as our optimizer, with its learning rate set to be 1e−4. The margin in BA+ triplet
loss (Hermans, Beyer & Leibe, 2017) is set to be 0.2. In the testing stage, in order to suppress
the uncertainty of random sampling, each batch size is set as 1, and the full silhouette
sequences are adopted as our testing input.

Comparison experiments on CASIA gait dataset B
CASIA Gait Dataset B (Zheng et al., 2011), one of the most widely-used gait datasets,
captures gait data from 124 persons under 11 different viewing angles (0◦, 18◦, 36◦, . . . ,
180◦). For each person under each viewing angle, 10 videos are provided, 6 videos in normal
styles (NM#1-6), 2 videos with a long coat (CL#1-2), and 2 videos with a bag (BG#1-2).
Gait silhouettes are also directly offered by this dataset. In our experiments, all silhouettes
are aligned using the method in Chao et al. (2019).

Our comparison experiments on this dataset include three different parts.
In the first part, only clothing changes have been taken into account. Under each view,

the training set is assembled by the first three NM videos (NM#1-3) and the first CL
video (CL#1) of all persons. Also, under each view, two testing sets are evaluated, the first
comprised of the left three NM videos (NM#4-6), and the other comprised of the left CL
videos (CL#2). Table 2 exhibits the experiment results for our method and three other gait
recognition methods under the common viewing angles. From this table, we can find that
this proposed method exceeds other gait recognition methods with an obvious margin.
In all cases, our proposed method has achieved the accuracy of 100%. This experiment
certifies that comparedwith other gait recognitionmethods, under a fixed common viewing
angle our proposed method is more efficient and robust to handle the cloth-changing gait
recognition problem.

In the second part, both variations of views and clothes have been taken into our
consideration, and an unconstrained environment has been simulated for performance
evaluation. As Table 3 illustrates, in this part six probe/gallery view pairs are simulated
within the common viewing angles (Chen et al., 2018). For each probe/gallery view pair
(θp,θg ), the training set is formed by videos of the first 34 persons under the 2 viewing
angles of θp and θg . For testing, the two CL videos of the left 90 persons under the viewing
angle of θp are regarded as the probe, and the six NM videos of the left 90 persons under
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Table 2 Comparison on CASIA-B under the same viewing angle by accuracies (%).

Probe set Ours Yao et al. (2021c) Anusha & Jaidhar (2019) Deng &Wang (2018)

36◦ (NM) 100.0 100.0 90.5 89.5
36◦ (CL) 100.0 100.0 90.9 91.1
54◦ (NM) 100.0 100.0 91.1 88.2
54◦ (CL) 100.0 100.0 93.2 91.9
72◦ (NM) 100.0 100.0 94.7 88.7
72◦ (CL) 100.0 100.0 96.5 89.5
90◦ (NM) 100.0 100.0 93.5 87.1
90◦ (CL) 100.0 99.2 95.1 88.7
108◦ (NM) 100.0 100.0 92.7 –
108◦ (CL) 100.0 99.2 94.1 –
126◦ (NM) 100.0 100.0 91.1 –
126◦ (CL) 100.0 100.0 91.5 –
144◦ (NM) 100.0 99.7 92.2 –
144◦ (CL) 100.0 100.0 93.5 –

Notes.
The first and second highest scores are represented by bold and underline, respectively.

Table 3 Comparison on CASIA-B under different walking conditions by accuracies (%).

(Probe, Gallery) Ours Yao et al. (2021c) Zhang et al. (2019) Chen et al. (2018) Wu et al. (2017)

(36◦, 54◦) 97.2 93.7 87.0 59.8 49.7
(54◦, 72◦) 97.2 94.1 90.0 72.5 62.0
(72◦, 90◦) 97.2 98.8 94.2 88.5 78.3
(90◦, 108◦) 97.8 98.7 86.5 85.7 75.6
(108◦, 126◦) 95.0 94.9 89.8 68.8 58.1
(126◦, 144◦) 95.0 93.5 91.2 62.5 51.4
Mean 96.6 95.6 89.8 73.0 62.5

Notes.
The first and second highest scores are represented by bold and underline, respectively.

the viewing angle of θg are regarded as the gallery. Table 3 reveals the comparison results
of our proposed method and four other gait recognition methods. It is evident that our
proposed method has obtained the best recognition performance in this unconstrained
environment. Its mean accuracy peaks at 96.6%, outperforming Yao et al. (2021c) by 1.0%.
This comparison experiment illustrates that although our method is not designed for gait
recognition to approach the view-changing problem, it still indicates a strong robustness
against viewing changes. Therefore, it can be concluded that compared with other gait
recognition methods, our proposed method has a promising application in real-world
surveillance systems.

In the final part, our proposed method is compared with the state-of-the-art deep
learning-based gait recognition methods in the LT setting (Chao et al., 2019). The training
set consists of videos of the first 74 persons, and the testing set is made up of videos of the
left 50 persons. The two CL videos are handled as the probe, and the first four NM videos
are tackled as the gallery. Table 4 shows the comparison of our proposed method and
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Table 4 Averaged rank-1 accuracies (%) on CASIA-B using setting LT, excluding identical-view cases.

Gallery NM#1-4 Probe views

Probe CL#1-2 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

Wu et al. (2017) 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
Zhang et al. (2019) 42.1 – – 70.7 – 70.6 – 69.4 – – – 63.2
Chao et al. (2019) 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
Huang et al. (2020) 64.7 79.4 84.1 80.4 73.7 72.3 75.0 78.5 77.9 71.2 57.0 74.0
Hou et al. (2020) 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5
Li et al. (2020b) 78.2 81.0 82.1 82.8 80.3 76.9 75.5 77.4 72.3 73.5 74.2 77.6
Li et al. (2020b) 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
Sepas-Moghaddam et al. (2021) 63.4 77.3 80.1 79.4 72.4 69.8 71.2 73.8 75.5 71.7 62.0 72.4
Sepas-Moghaddam & Etemad (2021) 65.8 80.7 82.5 81.1 72.7 71.5 74.3 74.6 78.7 75.8 64.4 74.7
Yao et al. (2021c) 64.2 80.9 83.0 79.5 74.3 69.1 74.8 78.5 81.0 77.0 60.3 74.8
Ours 68.3 83.3 86.3 83.8 77.8 76.1 81.8 86.0 83.1 78.0 59.3 78.5

Notes.
The first and second highest scores are represented by bold and underline, respectively.

some state-of-the-art gait recognition methods. Results offered in Table 4 are averaged on
the gallery views, and all identical views have been excluded from each averaging process.
It can be seen that this proposed method has presented a remarkable performance in
the LT setting, attaining the second best recognition result. Moreover, except the front
view(0◦) and the back view (180◦), our proposed method has always achieved the top three
recognition accuracies under each view. The main reason why our proposed method is a
little inferior than Fan et al. (2020) lies in that for Fan et al. (2020) a channel-wise attention
function is proposed to re-weight the feature vectors among micro-motion patterns while
in our method all feature vectors are equally processed. A more remarkable performance
surely can be attained if attention mechanism or phase estimation (Xu et al., 2020) is
utilized in this method.

To sum up, these comparison experiments on CASIA Gait Dataset B have certified
that our proposed hybrid feature learning method is more feasible and effective when
approaching this cloth-changing gait recognition problem. Compared with other gait
recognition methods, this proposed method has performed a more remarkable result on
this dataset for recognizing gaits across varying dressing styles.

Comparison experiments on OU-ISIR treadmill gait dataset B
As far as we know, OU-ISIR Treadmill Gait Dataset B (Makihara et al., 2012) has the
maximum clothing conditions (Deng & Wang, 2018). It collects gait sequences from 68
persons in 32 clothing combinations, and each person in each clothing combination is
recorded twice on the same day. Figure 5 presents the 32 clothing combinations used in
this dataset. Given the varying clothing combinations, it is appropriate for us to validate
the robustness and effectiveness of our proposed method on this dataset.
In this comparison experiment, our training set is assembled by the first sequence of each

person in 32 clothing combinations, thereby 2,176 sequences contained. In our evaluation
stage, 32 testing sets are respectively formed by the remaining sequences according to their
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Figure 5 Thirty-two clothing combinations used in OU-ISIR Treadmill Dataset B.
Full-size DOI: 10.7717/peerjcs.996/fig-5

clothing combinations. Table 5 reveals the comparison results for our proposed method
with three other cloth-changing gait recognition methods. It can seen from this table that
our proposed method enables to attain the accuracy of 100% in all clothing combinations,
which verifies its strong robustness and effectiveness against varying clothing variations.

This experiment shows that nomatter how significantly people alter their dressing styles,
our proposed method can always effectively approach their changing styles and achieve a
remarkable gait recognition performance. Made up of three sub-networks aiming to extract
spatial and temporal features independently, our proposed method can offer a thorough
gait description for each walking person. Also, given that for gait recognition local subtle
features always prove more discriminative than global semantic features, in our method a
sub-network is specifically proposed to grasp features from local subtle differences. Above
all, compared with other gait recognition methods, our proposed hybrid feature learning
method illustrates more capabilities for addressing this cloth-changing gait recognition
problem. As long as a dressing style is involved in the training phase, it surely can be
recognized in the following evaluation phase.

Ablation experiments on CASIA gait dataset B
Effectiveness of different input frames
Table 6 shows the accuracy of different input frame numbers, and in this table (a,b) denotes
the numbers of frames used for extracting spatial and temporal features respectively.

As presented in Table 6, the accuracy first monotonically rises as input frame numbers
increase. This accuracy improvement first starts sharply and later levels off. Generally, the
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Table 5 Comparison on OU-ISIR Treadmill Dataset B by accuracies (%).

Probe set type Ours Yao et al. (2021c) Anusha & Jaidhar (2019) Deng &Wang (2018)

0 100.0 99.7 94.0 100.0
2 100.0 100.0 93.5 100.0
3 100.0 100.0 91.6 100.0
4 100.0 100.0 94.1 98.5
5 100.0 100.0 94.5 94.1
6 100.0 100.0 92.0 91.2
7 100.0 100.0 94.2 94.1
8 100.0 100.0 94.5 94.1
9 100.0 100.0 92.0 97.1
A 100.0 100.0 91.6 91.2
B 100.0 99.9 88.2 95.6
C 100.0 100.0 94.5 94.1
D 100.0 100.0 92.0 100.0
E 100.0 100.0 91.5 91.2
F 100.0 100.0 93.1 100.0
G 100.0 99.8 89.1 98.5
H 100.0 100.0 95.0 94.1
I 100.0 100.0 98.5 98.5
J 100.0 100.0 91.5 91.2
K 100.0 100.0 87.5 98.5
L 100.0 100.0 90.0 100.0
M 100.0 100.0 97.5 97.1
N 100.0 100.0 85.5 100.0
P 100.0 100.0 91.1 100.0
R 100.0 100.0 86.2 88.2
S 100.0 100.0 89.1 95.6
T 100.0 100.0 95.0 94.1
U 100.0 100.0 95.5 94.1
V 100.0 100.0 91.6 91.2
X 100.0 100.0 90.1 100.0
Y 100.0 100.0 89.0 100.0
Z 100.0 100.0 87.2 98.5

Notes.
The first and second highest scores are represented by bold and underline, respectively.

critical value is 25, and it is in accord with the frame number that a complete gait cycle
normally has.

Effectiveness of different sub-networks
Table 7 compares the performance of the three sub-networks utilized in our method. It
can be seen that the proposed hybrid spatio-temporal features have obtained the best result
through concatenating these three sub-networks together. Besides, we can also find that
features of the second sub-network, i.e., fsg , cause a more significant influence on our
hybrid gait features.
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Table 6 Effectiveness of different input frames.

Input frame number Accuracy (%)

(5, 5) 23.1
(10, 10) 73.8
(15, 15) 77.0
(20, 20) 77.3
(25, 25) 78.2
(30, 30) 78.5
(35, 35) 77.9

Table 7 Effectiveness of different sub-networks.

Feature component Accuracy (%)

fsl 68.4
fsg 77.9
ft 69.6
fsl

⊕
fsg

⊕
ft 78.5

CONCLUSION
Clothing variations have a significant influence on image/video-based gait recognition,
and the performance can be sharply decreased if the probe and gallery gaits are no longer
in a similar condition. Hence, a robust hybrid part-based spatio-temporal feature learning
method was proposed in this article for gait recognition to approach the cloth-changing
problem. First, each human body was divided into two parts, the affected parts and
the non/less unaffected parts. After that, a well-designed network was proposed in this
paper to formulate our required hybrid features from the divided non/less unaffected
body parts. This network consists of three sub-networks, aiming to create robust features
independently. Each sub-network emphasizes the individual aspects of gait, thus a potential
hybrid gait feature was formulated through their concatenation. For example, because for
gait recognition local detailed features prove more discriminative than global semantic
features, one sub-network was specifically designed in our method to extract spatial
features from local subtle areas. Moreover, given that temporal information can be
deemed as complement to enhance the gait recognition performance, in our network one
sub-network was also specifically proposed to extract the temporal relationship among
successive short-range frames. The efficiency and effectiveness of our proposed method
have been verified on CASIA Gait Dataset B and OU-ISIR Treadmill Gait Dataset B. The
relevant experiments illustrate that this proposed hybrid feature learning method can
always achieve a prominent result for gait recognition when handling the challenging
cloth-changing problem.

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.996


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work has been funded by the Major Science and Technology Project of State
Development and Investment Group CO., Ltd. (No. SDIC2021-07). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Major Science and Technology Project of State Development and Investment Group CO.,
Ltd.: No. SDIC2021-07.

Competing Interests
Zhipeng Gao, Junyi Wu, Tingting Wu, Renyu Huang and Jianqiang Zhao are employed by
the AI Research Center, Xiamen Meiya is employed by the Pico Information Co., Ltd.

Author Contributions
• Zhipeng Gao conceived and designed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.
• Junyi Wu conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.
• Tingting Wu performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Renyu Huang performed the experiments, prepared figures and/or tables, and approved
the final draft.
• Anguo Zhang conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• Jianqiang Zhao performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplementary File.
The CASIA B dataset is available at: http://www.cbsr.ia.ac.cn/english/Gait%20Databases.

asp.
TheOU-ISIR B dataset is available at: http://www.am.sanken.osaka-u.ac.jp/BiometricDB/

GaitTM.html.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.996#supplemental-information.

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 18/23

https://peerj.com
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitTM.html
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitTM.html
http://dx.doi.org/10.7717/peerj-cs.996#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.996#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.996


REFERENCES
Anusha R, Jaidhar C. 2019. Clothing invariant human gait recognition using modified

local optimal oriented pattern binary descriptor.Multimedia Tools and Applications
79:2873–2896.

Battistone F, Petrosino A. 2019. TGLSTM: a time based graph deep learning approach to
gait recognition. Pattern Recognition Letters 126:132–138
DOI 10.1016/j.patrec.2018.05.004.

Bouchrika I, GoffredoM, Carter J, NixonM. 2011. On using gait in forensic biometrics.
Journal of Forensic Sciences 56(4):882–889 DOI 10.1111/j.1556-4029.2011.01793.x.

Chao H, He Y, Zhang J, Feng J. 2019. GaitSet: regarding gait as a set for cross-view gait
recognition. In: AAAI.

Chen X,Weng J, LuW, Xu J. 2018.Multi-gait recognition based on attribute discovery.
IEEE Transactions on Pattern Analysis and Machine Intelligence 40:1697–1710
DOI 10.1109/TPAMI.2017.2726061.

DempsterWT, Gaughran GR. 1967. Properties of body segments based on size and
weight. American Journal of Anatomy 120:33–54 DOI 10.1002/aja.1001200104.

DengM,Wang C. 2018. Gait recognition under different clothing conditions via
deterministic learning. IEEE/CAA Journal of Automatica Sinica 1–10 Epub ahead of
print 2018 17 April DOI 10.1109/JAS.2018.7511096.

Fan C, Peng Y, Cao C, Liu X, Hou S, Chi J, Huang Y, Li Q, He Z-Q. 2020. GaitPart:
temporal part-based model for gait recognition. In: 2020 IEEE/CVF conference on
computer vision and pattern recognition (CVPR). Piscataway: IEEE, 14213–14221.

Feichtenhofer C, Fan H, Malik J, He K. 2019. SlowFast networks for video recognition.
In: 2019 IEEE/CVF international conference on computer vision (ICCV). Piscataway:
IEEE, 6201–6210.

Feng Y, Li Y, Luo J. 2016. Learning effective gait features using LSTM. In: 2016 23rd
international conference on pattern recognition (ICPR). 325–330.

Han J, Bhanu B. 2006. Individual recognition using gait energy image. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28:316–322 DOI 10.1109/TPAMI.2006.38.

Hermans A, Beyer L, Leibe B. 2017. In defense of the triplet loss for person re-
identification. ArXiv preprint. arXiv:1703.07737.

HossainMA, Makihara Y,Wang J, Yagi Y. 2010. Clothing-invariant gait identification
using part-based clothing categorization and adaptive weight control. Pattern
Recognition 43:2281–2291 DOI 10.1016/j.patcog.2009.12.020.

Hou S, Cao C, Liu X, Huang Y. 2020. Gait Lateral network: learning discriminative and
compact representations for gait recognition. In: European conference on computer
vision.

Huang G, Lu Z, Pun C-M, Cheng L. 2020. Flexible gait recognition based on flow
regulation of local features between key frames. IEEE Access 8:75381–75392
DOI 10.1109/ACCESS.2020.2986554.

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 19/23

https://peerj.com
http://dx.doi.org/10.1016/j.patrec.2018.05.004
http://dx.doi.org/10.1111/j.1556-4029.2011.01793.x
http://dx.doi.org/10.1109/TPAMI.2017.2726061
http://dx.doi.org/10.1002/aja.1001200104
http://dx.doi.org/10.1109/JAS.2018.7511096
http://dx.doi.org/10.1109/TPAMI.2006.38
http://arXiv.org/abs/1703.07737
http://dx.doi.org/10.1016/j.patcog.2009.12.020
http://dx.doi.org/10.1109/ACCESS.2020.2986554
http://dx.doi.org/10.7717/peerj-cs.996


Iwama H,Muramatsu D, Makihara Y, Yagi Y. 2013. Gait verification system for criminal
investigation. IPSJ Transactions on Computer Vision and Applications 5:163–175
DOI 10.2197/ipsjtcva.5.163.

Iwashita Y, Ogawara K, Kurazume R. 2014. Identification of people walking along
curved trajectories. Pattern Recognition Letters 48:60–69
DOI 10.1016/j.patrec.2014.04.004.

Kingma DP, Ba J. 2015. Adam: a method for stochastic optimization. CoRR abs/1412.6980.
KusakunniranW,WuQ, Li H, Zhang J. 2009. Automatic gait recognition using

weighted binary pattern on video. In: 2009 sixth IEEE international conference on
advanced video and signal based surveillance. Piscataway: IEEE, 49–54.

KusakunniranW,WuQ, Zhang J, Li H. 2012a. Cross-view and multi-view gait recog-
nitions based on view transformation model using multi-layer perceptron. Pattern
Recognition Letters 33:882–889 DOI 10.1016/j.patrec.2011.04.014.

KusakunniranW,WuQ, Zhang J, Li H. 2012b. Gait recognition across various walking
speeds using higher order shape configuration based on a differential composition
model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
42:1654–1668 DOI 10.1109/TSMCB.2012.2197823.

KusakunniranW,WuQ, Zhang J, Li H. 2012c. Gait recognition under various viewing
angles based on correlated motion regression. IEEE Transactions on Circuits and
Systems for Video Technology 22:966–980 DOI 10.1109/TCSVT.2012.2186744.

Lam TH, Lee R. 2006.Human identification by using the motion and static characteristic
of gait. In: 18th international conference on pattern recognition (ICPR’06). 996–999.

Li X, Makihara Y, Xu C, Yagi Y, RenM. 2020a. Gait recognition via semi-supervised
disentangled representation learning to identity and covariate features. In: 2020
IEEE/CVF conference on computer vision and pattern recognition (CVPR). Piscataway:
IEEE, 13306–13316.

Li X, Makihara Y, Xu C, Yagi Y, Yu S, RenM. 2020b. End-to-end model-based gait
recognition. In: Asian conference on computer vision.

Lin B, Zhang S, Bao F. 2020. Gait recognition with multiple-temporal-scale 3D convo-
lutional neural network. In: Proceedings of the 28th ACM international conference on
multimedia.

Lin B, Zhang S, Yu X, Chu Z, Zhang H. 2020. Learning effective representations from
global and local features for cross-view gait recognition. ArXiv abs/2011.01461.

Liu J, Liu Y, Zhang Q. 2022. A weight initialization method based on neural net-
work with asymmetric activation function. Neurocomputing 483:171–182
DOI 10.1016/j.neucom.2022.01.088.

Makihara Y, Adachi D, Xu C, Yagi Y. 2018. Gait recognition by deformable registration.
In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops
(CVPRW). Piscataway: IEEE, 674–67410.

Makihara Y, Mannami H, Tsuji A, HossainMA, Sugiura K, Mori A, Yagi Y. 2012.
The OU-ISIR gait database comprising the treadmill dataset. IPSJ Transactions on
Computer Vision and Applications 4:53–62 DOI 10.2197/ipsjtcva.4.53.

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 20/23

https://peerj.com
http://dx.doi.org/10.2197/ipsjtcva.5.163
http://dx.doi.org/10.1016/j.patrec.2014.04.004
http://dx.doi.org/10.1016/j.patrec.2011.04.014
http://dx.doi.org/10.1109/TSMCB.2012.2197823
http://dx.doi.org/10.1109/TCSVT.2012.2186744
http://dx.doi.org/10.1016/j.neucom.2022.01.088
http://dx.doi.org/10.2197/ipsjtcva.4.53
http://dx.doi.org/10.7717/peerj-cs.996


Makihara Y, NixonMS, Yagi Y. 2020. Gait recognition: Databases, representations, and
applications. Computer Vision: A Reference Guide 1–13.

Matin A, Paul J, Sayeed T. 2017. Segment based co-factor detection and elimination for
effective gait recognition. In: 2017 IEEE international conference on imaging, vision
and pattern recognition (IcIVPR). Piscataway: IEEE, 1–5.

Sepas-Moghaddam A, Etemad A. 2021. View-invariant gait recognition with attentive
recurrent learning of partial representations. IEEE Transactions on Biometrics,
Behavior, and Identity Science 3:124–137 DOI 10.1109/TBIOM.2020.3031470.

Sepas-Moghaddam A, Ghorbani S, Troje NF, Etemad A. 2021. Gait recognition using
multi-scale partial representation transformation with capsules. In: 2020 25th
international conference on pattern recognition (ICPR). 8045–8052.

Shiraga K, Makihara Y, Muramatsu D, Echigo T, Yagi Y. 2016. GEINet: view-invariant
gait recognition using a convolutional neural network. In: 2016 international
conference on biometrics (ICB). 1–8.

Singh S, Biswas KK. 2009. Biometric gait recognition with carrying and clothing vari-
ants. In: Pattern recognition and machine intelligence. Vol. 5909. Berlin, Heidelberg:
Springer DOI 10.1007/978-3-642-11164-8_72.

Sun K, Xiao B, Liu D,Wang J. 2019. Deep high-resolution representation learning for
human pose estimation. In: 2019 IEEE/CVF conference on computer vision and pattern
recognition (CVPR). Piscataway: IEEE, 5686–5696.

Sundaresan A, Roy-Chowdhury AK, Chellappa R. 2003. A hidden Markov model based
framework for recognition of humans from gait sequences. In: Proceedings 2003
international conference on image processing (Cat. No.03CH37429). II–93.

Takemura N, Makihara Y, Muramatsu D, Echigo T, Yagi Y. 2019. On input/output
architectures for convolutional neural network-based cross-view gait recognition.
IEEE Transactions on Circuits and Systems for Video Technology 29:2708–2719
DOI 10.1109/TCSVT.2017.2760835.

Wang C, Zhang J, Wang L, Pu J, Yuan X. 2012.Human identification using temporal
information preserving gait template. IEEE Transactions on Pattern Analysis and
Machine Intelligence 34:2164–2176 DOI 10.1109/TPAMI.2011.260.

Wolf T, Babaee M, Rigoll G. 2016.Multi-view gait recognition using 3D convolutional
neural networks. In: 2016 IEEE international conference on image processing (ICIP).
Piscataway: IEEE, 4165–4169.

WuZ, Huang Y,Wang L. 2015. Learning representative deep features for image set anal-
ysis. IEEE Transactions on Multimedia 17:1960–1968 DOI 10.1109/TMM.2015.2477681.

WuZ, Huang Y,Wang L,Wang X., Tan T. 2017. A comprehensive study on cross-view
gait based human identification with deep CNNs. IEEE Transactions on Pattern
Analysis and Machine Intelligence 39:209–226.

Xu C, Makihara Y, Li X, Yagi Y, Lu J. 2020. Gait recognition from a single image using a
phase-aware gait cycle reconstruction network. In: European conference on computer
Vision (ECCV).

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 21/23

https://peerj.com
http://dx.doi.org/10.1109/TBIOM.2020.3031470
http://dx.doi.org/10.1007/978-3-642-11164-8_72
http://dx.doi.org/10.1109/TCSVT.2017.2760835
http://dx.doi.org/10.1109/TPAMI.2011.260
http://dx.doi.org/10.1109/TMM.2015.2477681
http://dx.doi.org/10.7717/peerj-cs.996


Yao L, KusakunniranW,WuQ, Xu J, Zhang J. 2021a. Collaborative feature learning for
gait recognition under cloth changes. IEEE Transactions on Circuits and Systems for
Video Technology.

Yao L, KusakunniranW,WuQ, Xu J, Zhang J. 2022. Recognizing gaits across walking
and running speeds. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM) 18:1–22.

Yao L, KusakunniranW,WuQ, Zhang J. 2021b. Gait recognition using a few gait
frames. PeerJ Computer Science 7:e382.

Yao L, KusakunniranW,WuQ, Zhang J, min Tang Z. 2018. Robust CNN-based gait
verification and identification using skeleton gait energy image. In: 2018 digital image
computing: techniques and applications (DICTA). 1–7.

Yao L, KusakunniranW,WuQ, Zhang J, Tang Z, kou YangW. 2021. Robust gait
recognition using hybrid descriptors based on Skeleton Gait Energy Image. Pattern
Recognition Letters 150:289–296.

Yao L, KusakunniranW,WuQ, Zhang J, Xu J. 2021c. Part-based collaborative spatio-
temporal feature learning for cloth-changing gait recognition. In: 2020 25th interna-
tional conference on pattern recognition (ICPR). 2057–2064.

Yoo J, Park K. 2021. Skeleton silhouette based disentangled feature extraction network
for invariant gait recognition. In: 2021 International conference on information
networking (ICOIN). 687–692.

Zhang A, Gao Y, Niu Y, LiuW, Zhou Y. 2021. Coarse-to-fine person re-identification
with auxiliary-domain classification and second-order information bottleneck. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
Piscataway: IEEE, 598–607.

Zhang C, LiuW,MaH, Fu H. 2016. Siamese neural network based gait recognition for
human identification. In: 2016 IEEE international conference on acoustics, speech and
signal processing (ICASSP). Piscataway: IEEE, 2832–2836.

Zhang P,WuQ, Xu J. 2019a. VN-GAN: identity-preserved variation normalizing
GAN for gait recognition. In: 2019 international joint conference on neural networks
(IJCNN). 1–8.

Zhang P,WuQ, Xu J. 2019b. VT-GAN: view transformation GAN for gait recognition
across views. In: 2019 international joint conference on neural networks (IJCNN). 1–8.

Zhang Q,Wang H. 2022. A novel data-based stochastic distribution control for
non-Gaussian stochastic systems. IEEE Transactions on Automatic Control
67(3):1506–1513.

Zhang Y, Huang Y, Yu S,Wang L. 2020. Cross-view gait recognition by discrimi-
native feature learning. IEEE Transactions on Image Processing 29:1001–1015
DOI 10.1109/TIP.2019.2926208.

Zhang Z, Tran L, Liu F, Liu X. 2022. On learning disentangled representations for
gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
44(1):345–360 DOI 10.1109/TPAMI.2020.2998790.

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 22/23

https://peerj.com
http://dx.doi.org/10.1109/TIP.2019.2926208
http://dx.doi.org/10.1109/TPAMI.2020.2998790
http://dx.doi.org/10.7717/peerj-cs.996


Zhang Z, Tran L, Yin X, Atoum Y, Liu X,Wan J, Wang N. 2019. Gait recognition via
disentangled representation learning. In: 2019 IEEE/CVF conference on computer
vision and pattern recognition (CVPR). Piscataway: IEEE, 4705–4714.

Zheng S, Zhang J, Huang K, He R, Tan T. 2011. Robust view transformation model for
gait recognition. In: 2011 18th IEEE international conference on image processing.
Piscataway: IEEE, 2073–2076.

Gao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.996 23/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.996

