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ABSTRACT
Malware harms the confidentiality and integrity of the information that causes material
andmoral damages to institutions or individuals. This study proposed amalware detec-
tionmodel based on API-call graphs and used Graph Variational Autoencoder (GVAE)
to reduce the size of graph node features extracted from Android apk files. GVAE-
reduced embeddings were fed to linear-based (SVM) and ensemble-based (LightGBM)
models to finalize the malware detection process. To validate the effectiveness of the
GVAE-reduced features, recursive feature elimination (RFE) and Fisher score (FS)
were applied to select informative feature sets with the same sizes as GVAE-reduced
embeddings. The results with RFE and FS selections revealed that LightGBM and
RFE-selected 50 features achieved the highest accuracy (0.907) and F-measure (0.852)
rates. When we used GVAE-reduced embeddings in the classification, there was an
approximate increase of %4 in both models’ accuracy rates. The same performance
increase occurred in F-measure rates which directly indicated the improvement in the
discrimination powers of the models. The last conducted experiment that combined
the strengths of RFE selection and GVAE led to a performance increase compared to
only GVAE-reduced embeddings. RFE selection achieved an accuracy rate of 0.967 in
LightGBM with the help of selected 30 relevant features from the combination of all
GVAE-embeddings.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Mobile and Ubiquitous
Computing, Security and Privacy, Neural Networks
Keywords Malware detection, Recursive Feature Elimination, Graph Variational Autoencoder,
Graph embeddings, API-call graphs

INTRODUCTION
In our daily life, the use of mobile devices gradually increases as they facilitate many human
needs. The increasing interest of end-users on mobile devices gives rise to service providers
transferring their activities and services to mobile platforms. Due to this transformation,
the number of mobile applications increases by the day. Moreover, end-users store
personal multimedia data such as photos and videos, as well as confidential data such as
card information, user names, and passwords on mobile devices. Attackers can generate
malware on the mobile operating systems (OS) to gain financial benefits from users.
Android OS is frequently targeted by malware because of both having a higher market
share and more number of developed applications compared to its competitors. According
to the report published by Kaspersky in 2021, the number of malware increased from
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approximately 1.150M in Q1 of 2020 to approximately 1.250M in the Q2 of 2020. The
rapid increase in the number of malware shows the importance of analysis methods on
Android OS (https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2020_en.pdf).

Malware defects the confidential information of institutions or individuals that causes
material and moral damages. Therefore, intensive studies are carried out at both academic
and industry levels to detect malware components effectively and continuously in Android-
based devices. Literature studies on malware analysis present us with two types of analysis
techniques named static and dynamic. Static analysis performs malware examinations
based on source files without running them on any virtual/real devices. On the other hand,
attackers can bypass the detection mechanisms of static analysis with code obfuscation.
Dynamic analysis is more effective in detecting malicious activity consisting of code
obfuscations. One of the cons of dynamic analysis is that malicious activity in the
applications can be triggered during the conduction of analysis. In addition, running
a malicious application within a sufficient time interval will have a great impact on the
dynamic analysis results.

In the last decade, the analysis of Android applications was conducted automatically
with the help of machine learning (ML) and deep learning (DL) models. The performances
of such models were directly related to the quality of handcrafted features. To boost the
predictive power and increase the generalization ability of ML models, dimensionality
reduction methods reduce the size of the feature space. Feature selection is a type of
dimensionality reduction method that aims to find the subset of informative features from
the entire feature space. It is a process that needs human labor and domain expertise.
Since DL can directly extract high-level features from instances and automatize the feature
engineering process, it has gained popularity in malware detection tasks. The ability of DL
models on solving complex problems is another aspect that attracts many researchers to
use such models in the detection of malware.

ML and DL models perform malware detection in 3 steps:
1. The analysis of Android apk files with appropriate tools.
2. The extraction of static and dynamic features from the analyzed files.
3. The use of extracted features in model training to discriminate malware from benign
While ML models such as K-nearest neighbors, support vectors machines, naive Bayes,

random forest, and decision trees (Al-Kasassbeh et al., 2020; Chumachenko, 2017;Mahajan,
Saini & Anand, 2019) were the most preferred algorithms in malware detection, several DL
models such as convolutional neural networks (CNN), artificial neural networks (ANN),
and recurrent neural networks (RNN)were employed in recent detection studies (Alzaylaee,
Yerima & Sezer, 2020; Hemalatha et al., 2021; Kim et al., 2018). Features mainly obtained
from apk files of the applications such as permissions, op-code sequences, function call
graphs (FCG), and Application Programming Interface (API) calls were used as inputs to
these models to detect the malicious applications (Liu et al., 2020).

Graph-based models recently have been adopted in many tasks since they can
model the latent properties between nodes and edges successfully. For instance, graph
convolutional neural networks (GCNs), and graph attention networks (GANs) can extract
rich representations that result in performance increases compared to the traditional ML
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andDLmodels (Kipf & Welling, 2016;Veličković et al., 2017). The advantage of graph-based
models is that they can capture the behavioral features and information accurately which
lack in other methods.

Our study proposed a malware detection framework based on the Graph Variational
Autoencoder (GVAE). To train and validate the framework performance, we acquired
malware andbenignAndroid applications from twopublic datasets. SinceGVAE considered
the edges between pair nodes that may contain specific information about its end-points
in generating node representations, we applied it to reduce the size of API-call graph
nodes extracted from Android .apk files. Thus, GVAE produced low-dimensional node
representation vectors from API-call graphs to generate graph embeddings with varying
sizes. We then provided GVAE-reduced embeddings to linear (SVM) and ensemble-based
(LightGBM) models to realize the malware detection process and finally assessed the
performances of these models with both accuracy and F-Measure metrics. To validate the
effectiveness of the GVAE model on dimensionality reduction, we chose Recursive Feature
Elimination (RFE) and Fisher Score (FS) as alternative selection methods. For making a
fair comparison, we determined the same number of features as GVAE-reduced feature
sets from node features by RFE and FS selections. In the last step, we pipelined GVAE with
RFE and FS selections to create a hybrid reduction method.

The main contributions of our work can be summarized as follows:

• First of all, our malware detection framework contributes to the generation of robust
node feature embeddings from the API-call graphs with the help of GVAE. GVAE
handles irregularities in latent space by embedding input data to distribution rather
than a point and generates the less noisy and compact node embeddings from raw node
features. To the best of our knowledge, this is the first malware detection study that
employs GVAE in generating node embeddings from API-call graphs.
• Our second contribution is the use of a hybrid reduction pipeline that combined GVAE
with two different feature selection methods. The proposed model selected relevant
feature representations from GVAE-reduced embeddings to improve the malware
detection performance. The notable performance of RFE and Fisher Score in handling
noisy data during the selection process is the main factor in using these methods
hierarchically. To the best of our knowledge, it is the first study that combines different
types of selection methods with GVAE-reduced embeddings to use in the malware
detection process.
• Our last contribution is that the model used in the dimensionality reduction steps has a
flexible structure. Networks (such as biological, citation, etc.), contain nodes with high
dimensional features that can result in memory and computation issues in the training
and inference phase of ML models. Our hybrid feature reduction model has a generic
structure that can be applied to the aforementioned tasks to address the complexity and
memory issues.

The remainder of the paper consists of four sections. ‘‘RelatedWork’’ briefly summarizes
recent malware studies. ‘‘Methods’’ section explains the used dimensionality reduction
methods, classification models, and evaluation metrics in detail. ‘‘Experimental Results’’
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section presents the results of all conducted experiments in order, and ‘‘Conclusion and
Discussion’’ section concludes the paper and compares the experimental findings with
recent studies.

RELATED WORK
As mentioned before, static malware analysis is performed without running applications
on virtual or real mobile devices. There are many studies in which a static analysis approach
is used to detect Android malware. This approach is based on the intuition that the static
attributes of applications belonging to the same malware family should be similar. The
use of static analysis for the detection of malware is quite common because malware can
be examined quickly without infecting any device. In addition, low analysis cost and low
resource consumption can be mentioned as positive aspects of static analysis.

Many malware static analysis studies used different types of feature sets given as
inputs to the ML and DL models. These features can be listed as source codes of the
applications, application permissions, Application Programming Interface (API)-call
graphs, and component dependency graphs (CDG). For instance;Malgenomewas a pioneer
study in which the static analysis approach was employed to inspect Android malware
families within 1260 collected malware applications. Methods in the application source
codes and application permissions in the AndroidManifest.xml were two data sources
during the examination process. Malgenome study revealed that malicious applications
requested SMS-related permissions such as READ_SMS, WRITE_SMS, RECEIVE_SMS,
and SEND_SMS more frequently than non-malicious applications (Zhou & Jiang, 2012).

Drebin was another study supporting evidence in the Malgenome and used API-calls to
evaluate for services in sending/receiving SMSmessages (Arp et al., 2014). It was also one of
the early studies that used machine learning models for the detection of Android malware.
Permissions, activities, services, content providers, and broadcast receivers were the types
of features extracted from apps in the Drebin dataset. Linear Support Vector Machines
were used as an ML model to determine the families of 5560 malware applications. Drebin
was been an inspiration to future malware detection studies with the specification of using
different features and performing feature selection to find effective features in malware
detection.

Suarez-Tangil et al. (2014) proposed a model named ‘‘Dendroid’’ that utilized control
flow graphs (CFG) as model inputs. CFGs were used to extract the code structures/blocks
in malware applications. The K-Nearest Neighbor model was formed with the extracted
frequencies of code blocks based on each malware family. A single linkage hierarchical
clustering algorithm was used to extract hierarchical similarities between malware families
and the results were represented with dendrogram trees.

DroidSIFT (Zhang et al., 2014) was the first study that employed a graph-based method
for malware family classification. This study extracted methods and API-calls from the
source code of applications to express apps with weighted contextual API-based graphs.
The classification process considered API-calls that match the permissions requested from
the user as well as security-related API-calls. To perform the classification process, the
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similarity value between each graph obtained from a new app and the graphs of different
malware apps was computed.

Image processing-based features were also employed in static analysis. In Iadarola et
al. (2020), malware applications were converted to grayscale and binary images before
passing them through four different image filters. An accuracy rate of 96.9% has been
demonstrated with the combination of the feature representations obtained from filters
and the Random Forest model.

Deep learning architectures were also used together with the static analysis approach
in recent malware detection studies. Sewak, Sahay & Rathore (2018) blended different
types of deep learning architectures and extracted feature representations from deep
layers automatically. Their model achieved accuracy and false-positive rates of 99.21%
and 0.19% respectively. Another study presented a shallow malware detection model to
handle the overfitting of DL models. This model used the combination of a Convolutional
Neural Network (CNN) with given a sequence of op-code instructions as input data. The
proposed model achieved a 95% rate of accuracy over a dataset that contained nearly
70,000 instances. In Kang et al. (2020), two different dataset samples were derived from
the .dex files of applications using image processing techniques. The first dataset created
feature sets from the entire .dex files, while the second dataset created features considering
only the data part of the files. The CNN model was trained with the extracted datasets and
malware families were predicted with an accuracy rate of 91%.

Autoencoder is the other deep learning architecture actively studied in cyber-security
domain for anomaly detection (Xu et al., 2021), data generation (Kabore et al., 2021),
and dimensionality reduction (Haseeb et al., 2022). For example, several autoencoder
models have been utilized in intelligent Network Intrusion Detection Systems (NIDS) to
handle zero-day attacks with high accuracy (Song, Hyun & Cheong, 2021). The variational
autoencoder (VAE) has been used to generate intrusion data in a generativemanner to cover
the imbalanced data problem generally seen in many intrusion detection systems (Lopez-
Martin, Carro & Sanchez-Esguevillas, 2019; Vaiyapuri & Binbusayyis, 2020). Yousefi-Azar
et al. (2017) employed autoencoders to generate code vectors that captured latent
representations of different feature sets. Trained autoencoders generated distinguished
features from original features in an unsupervised fashion for malware classification and
decreased the computational complexity of the proposed model significantly.

Recently, graph neural networks (GNN) have gained popularity in the cyber-security
domain, especially in malware detection tasks. For instance, Xu, Eckert & Zarras (2021)
proposed a GNN-based malware family classification model that transformed function
call graphs into dense embedding vectors to maintain the relationships between functions
in the applications. The accuracy rates of the models increased up to 99.6% in malware
detection and 98.7% in malware classification tasks. Gao, Cheng & Zhang (2021)’s study
presented a model named ‘‘Gdriod’’ for malware classification. This study made use of
a GNN model on a heterogeneous graph to model edge-based relationships between
applications mapped APIs. The success rate of the proposed model measured 98.99% in
terms of accuracy in the malware detection task. Our recent study on malware detection
extracted API-call graphs from Android apk files and detected malicious applications over
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Android-based devices placed at intelligent transportation systems. Our work constructed
two types of node features as Node2Vec embedding and network properties for each node
in API-call graphs. Graph attention networks (GAN) were trained with extracted feature
sets and the combination of GAN and Node2Vec features showed the best performances
over the entire feature set and GNN combinations (Catal, Gunduz & Ozcan, 2021).

METHODS
This section provides information on the proposed framework and explains the details
of each component of such framework. The proposed malware detection framework is
designed as an end-to-end model that takes the Android .apk files as model input and
classifies these files as benign or malware in the output. Figure 1 presents the graphical
representation of the framework. The proposed framework consists of four sequential
steps. In the first step, training and test apk files were collected from two public datasets.
The details about the used datasets were explained in the next subsection. In the second
step, API-call graphs, which represented caller-callee relationships between the methods in
a source code, were created from .apk files with the help of the Androguard tool. After the
call graph generation, the Node2Vec model produced 100-dimensional features for each
node in the graphs. The third step of the framework realized the dimensionality reduction
process. Graph Variational Autoencoder (GVAE) was first applied to obtain reduced node
embeddings with varying sizes. Following the production of node embeddings, the graph
embedding vector was constructed by averaging all the node embeddings in the graph.
At last, recursive feature elimination (RFE) and Fisher score (FS) were used to reduce the
dimensions of the graph embedding vector. As stated in the introduction, the RFE and FS
methods were used to demonstrate the effectiveness of the GVAEmethod in size reduction.
RFE was determined as an alternative model to GVAE due to its success in handling the
dependencies and collinearity between the attributes that are also present in the graph-
structured data. On the other hand, FS was chosen as another comparison method since
it considered both positive and negative class samples during the computation of feature
relevances and directly assessed the relevance between each feature and class labels. The
last step of the framework covered the model training phase. As stated in Liu et al. (2020)
and Pan et al. (2020), the vast majority of malware detection studies employed support
vector machines (SVM) and ensemble learning models in the classification process. Our
framework utilized SVM and LightGBM models to assess the effectiveness of the reduced
graph embeddings. The predictive performance of these models was compared in terms of
accuracy and F-Measure metrics.
The details of each component in the framework were explained in the subsections below.

Dataset
To assess the performance of our proposed framework, we used two open-access datasets
from Canadian Institute for Cybersecurity website (https://www.unb.ca/cic/datasets,
accessed on 10 December 2021). The first dataset is ISCX-AndroidBot-2015 which
comprises 14 botnet families with 1929 instances (https://www.unb.ca/cic/datasets/android-
botnet.html, accessed on 10 December 2021). Since this dataset does not include any

Gunduz (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.988 6/19

https://peerj.com
https://www.unb.ca/cic/datasets
https://www.unb.ca/cic/datasets/android-botnet.html
https://www.unb.ca/cic/datasets/android-botnet.html
http://dx.doi.org/10.7717/peerj-cs.988


Figure 1 Graphical representation of the proposed framework.
Full-size DOI: 10.7717/peerjcs.988/fig-1

Table 1 Information about datasets.

Dataset #instances Type

CICMalDroid 1929 benign
ISCX-AndroidBot-2015 1843 malware

benign instances, we provide benign apps from another dataset named CICMalDroid
(https://www.unb.ca/cic/datasets/maldroid-2020.html, accessed on 10 December 2021). We
acquired 1,795 benign instances from CICMalDroid and finally devised a dataset consisting
of 3,724 instances (Table 1).

After generating the dataset, we extracted the API-call graphs from application .apk files.
We used the Androguard tool for the API-call extraction process. We first determined the
sensitive Android APIs from all API sets. Selected sensitive APIs are ‘‘Landroid.accounts’’,
‘‘Landroid.app’’, ‘‘Landroid.bluetooth’’, ‘‘Landroid.content’’, ‘‘Landroid.location’’,
‘‘Landroid.net‘‘, ‘‘Landroid.nfc’’, ‘‘Landroid.provider’’, ‘‘Landroid.telecom’’, and
‘‘Landroid.telephony’’.We then created the nodes of call graphs by representing caller-callee
relationships between the methods of the sensitive APIs. Following the creation of API-call
graphs, we used the Node2Vec for generating 100-dimensional features for each node in
the graphs.

Graph Variational Autoencoder (GVAE)
An autoencoder is a neural network architecture that reconstructs the samples given to the
input layer at the output layer. Variational autoEncoder (VAE), on the other hand, is a
generative autoencoder model that forces the distribution of samples in the hidden space
to a normal distribution (An & Cho, 2015). VAE composes of two separate components as
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encoder and decoder. The encoder creates a hidden representation vector h from the input
vector x in the hidden space, while the decode makes use of h vector to reconstruct the r
output with the decoder network. VAE expresses the vector x in the input layer in terms of
2 parameters in the hidden space. These parameters are the mean and standard deviation
(sd), which are the descriptive statistics of the learnt normal distribution. VAE generates
new low-dimensional samples with the learnt mean and sd vectors after model training.
Although mean and sd values are deterministic, samples generated from these values are
probabilistic.

A graph variational autoencoder (GVAE) is proposed by Kipf & Welling (2016) for
representation learning that operates theVAEover the graph data. GVAEbasically generates
new graphs from original input graphs. Due to having irregularities in graph-structured
data, VAE is not directly applied to form feature representations for each node in the
graphs. GVAE uses adjacency and feature matrices in generating node embeddings. While
adjacency matrix A represents the neighborhood relationships between each node, feature
matrix X extracts the feature information of each node from the input graph. The encoder
component of GVAE consists of two consecutive GCN layers to generate the latent variable
Z as output. The first GCN layer takes A and X matrices as inputs and creates∼A and∼X
matrices to be inputted to the second GCN layer. The output of the second GCN is µand
logσ vectors. Low dimensional Z matrix is calculated with generated µand logσ matrices
using re-parameterization trick. The decoder component of GVAE is defined by an inner
product between latent variable Z and the output of decoder component is a reconstructed
adjacency matrix.

Recursive feature elimination
Recursive feature elimination (RFE), which is a wrapper feature selection method, uses ML
methods such as SVMandGBM to assign the feature relevance scores (Granitto et al., 2006).
RFE initially builds a model from whole features and calculates a feature importance score
for each feature. After that, the feature with the least importance score is removed from the
feature space and the model is reconstructed with the remaining features for computing
new importance scores. This procedure is maintained up to the predefined number of
features retains in the dataset. Hence, the desired feature count is a hyper-parameter for
RFE. Another parameter to be specified in the RFE is the ML model, which is employed in
calculating the feature importance scores. SVM is a favored algorithm for RFE to its high
accuracy and robust generalization ability. At each iteration of the RFE, the Linear SVM
model is trained to assign a weight coefficient to each feature. Since the feature with the
lowest weight could have the least effect on the classification, this feature can be ignored
in the next iteration. In the case of high dimensional feature space, more than one feature
may be omitted per each iteration of RFE (Gunduz, 2021a).

Fisher score
The Fisher score is a filter-based method that aims to measure the relevance between each
feature and the class label to select the informative features. The Fisher score utilizes the
mean and standard deviation values of the features for each class in computing feature
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relevances. The equation of the Fisher score is shown below:

f (k)=

∑C
j=1nj(µ

k
j −µ

k)2∑C
j=1nj(σ

k
j )2

. (1)

In Eq. (1), µk
j denotes to the mean of the k-th feature in the j-th class while σ k

j indicates
the variance of the k-th feature in the j-th class. nj refers to the total instance counts in the
j-th class. µk shows the mean of the k-th feature. In the Fisher score selection, the Fisher
scores of all the features are sorted in descending order, and the desired number of features
are selected starting with the high-scoring features (Sun et al., 2021; Gunduz, 2021b).

Support Vector Machines (SVM)
Support vector machines (SVM) is a machine learning algorithm used to solve both
classification and regression problems. SVM aims to find an optimal hyperplane that
separates the instances of two classes in a binary classification task. SVM creates this
hyperplane using different kernel functions in datasets in which the number of dimensions
is more than the number of instances. However, some problems consist of data points
that cannot be separated linearly. Therefore, SVM projects the patterns in non-separable
data into a new space and looks for a hyperplane in the new space. SVM uses the kernel
functions to project the linearly non-separable dataset to larger dimensional spaces that
can be linearly separated. The linear separation of the dataset is realized with a certain error
because of the noisy and complex structure of the data. In the case of linear separation with
a certain error, a slack-bound approach is used to separate the two-class dataset. To reduce
the probability of misclassification, the problem turns into an optimization problem by
performing transformations in the linear separation case with the help of the C coefficient.
Lower C values can cause under-fitted models that may have more misclassified samples,
while higher C values tend to rise the variance of the model and lead to overfitting (Huda
et al., 2016).

LightGBM
Boosting is an ensemble model that constructs a single strong learner from a predefined
number of base learners. Boosting trains a group of learners with the same dataset instances,
but adjusts the weights of the instances according to the errors of the final prediction. The
intuition behind the boosting is to empower models to focus on instances that are hard to
predict.

LightGBM is a fast, distributed, and high-performance boosting model built on decision
trees. It is a typical gradient boosting strategy that utilizes many weak decision trees.
Opposite to the bagging strategy, LightGBM iteratively combines models. Boosting models
have two formation approaches, level-oriented and leaf-oriented, during the iterative
training of each decision tree. The level-oriented approach maintains the balance property
during tree expansion, whereas the leaf-oriented approach continues to split the biggest
loss-decreasing leaf. LightGBM makes use of a leaf-oriented approach that considers both
losses in a particular tree split and the contribution of this splitting to the entire loss.
Therefore, it forms the trees with lower errors rather than a level-oriented tree growing (Ke
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et al., 2017). The training time of a simple decision tree is directly related to the number
of possible node splits. Small variations in splitting often do not make a big distinction
in model performance. LightGBM utilizes this case by grouping the features into several
bins and splitting them into the bins instead of the features. This property can decrease the
computational complexity and result in reductions in model training time.

The basic parameters to be determined in the LightGBM are the number of learners,
learning rate, and max-depth. The number of learners is the number of iterations used in
setting up the ensemble model. A high number of iterations can lead to overfitting while a
low number prevents us from learning patterns. Learning rate (lr) is a value between 0 and
1 for scaling generated trees. A smaller lr can help better predictive power. However, it can
increase model training time and result in possible overfitting. Max-dept is used to limit
the depth of the tree to be built. It should be optimized to avoid overfitting. Too much
branching will cause overfitting, and too little branching will cause underfitting.

Evaluation metrics
Although accuracy is a common measure in performance evaluation, it has a lack of ability
in the assessment of class discrimination. F-measure is an alternative metric to use in the
validation of the class-based model performance. The computation of the accuracy and
F-Measure is directly related to Confusion Matrix (CM) in which basically presents the
number of correct and incorrect predicted instances per class (Table 2). True positive (tp),
false positive (fp), false negative (fn), and true negative (tn) are the values used to compute
aforementioned metrics (Gunduz, 2021b).

Accuracy is defined as the ratio of the number of accurate predictions to the total
number of instances. However, when the ratio between the fp and fn becomes very large,
F-measure needs to handle the job in performance evaluation.

F-measure considers precision and recall by taking the harmonic mean of both metrics.
Therefore, false positive and false negative samples are involved in the assessment of class
discrimination. Based on the confusion matrix, F-measure is computed as follows:

precision=
tp

tp+ fp
(2)

recall=
tp

tp+ fn
(3)

F-Measure=
2×precision× recall
precision+ recall

. (4)

EXPERIMENTAL RESULTS
As aforementioned before, experiments were conducted with a dataset formed from the
combination of two public datasets. Seeing that graph-structured data needed a high
computational resource, experiments were realized on a PC with GTX 1070 graphics
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Table 2 Confusionmatrix for two-class classification.

Actual/Predicted as Positive Negative

Positive tp fn
Negative fp tn

Table 3 Parameters of proposed GVAEmodel.

Parameter Value

#epoch 100
#hidden units in GCN {20, 30, 40, 50}
#GCN layers 2
Dropout rate 0.2
L2-regularization rate 0.01
Optimizer Adam

processing unit (GPU) support. Pytorch-Geometric framework (Fey & Lenssen, 2019)
of the Pytorch was employed to build graph variational autoencoder (GVAE) models.
Compared to Keras and Tensorflow, Pytorch presents great and diverse opportunities for
building graph neural networks with the help of the Pytorch-Geometric package.

In the first experiments, the GVAE model reduced the size of the node features and
generated low-dimensional node embeddings by considering the adjacency relations
between the nodes as well as neighbors node features. The proposed GVAE architecture
used the GCN network in its encoder component. Table 3 presented the hyperparameters
of the generated network architecture. The training of the GVAE model was realized in 100
epochs with 64 batch sizes. While there were diverse options for the selection of optimizer
functions including Adagrad, AdaBelief, and Rmsprop, Adam was chosen as the optimizer
due to its ability to achieve convergence quickly with high accuracy (Bock & Weiß, 2019).
Both dropout and regularizer layers were also attached subsequently to GCN layers for
avoiding overfitting during model generation.

GVAE reduced the sizes of node features from 100 to 20, 30, 40, and 50, respectively.
After producing low-dimensional node embeddings, each graph was represented with a
graph embedding vector by averaging the node embedding vectors. SVM and LightGBM
models were trained with graph embedding vectors, and the performances of the models
were evaluated with the 10-fold cross-validation (CV) method. Despite the most preferred
approach in performance assessment being a hold-out method, this method cannot
consider all instances in the dataset and can cause biases in performance evaluation.
In addition, cross-validation is simple to comprehend and is less susceptible to biased
prediction in the evaluation of the model success. A grid search was conducted on the
parameters specified in Tables 4 and 5 in company with the CV to find out the optimal
parameter set. To assess the statistical properties of the obtained results, the Wilcoxon
signed rank test was utilized with a 0.05 significance level.

The results in Table 6 showed that LightGBM had more successful performance than
SVM in terms of accuracy and F-Measure metrics. LightGBM reached 0.943 accuracy with
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Table 4 Parameter space of LightGBM.

Parameters Value

number of learners {100,200,500,1000}
learning rate {0.1,0.01}
L2-regularizer {0.001,0.0001}
max_depth {7,9,11}

Table 5 Parameter space of SVM.

Parameters Value

Kernel Type {rbf,poly}
Regularization (C) {0.5,0.1,1,2,4,8}

Table 6 Classification results with GVAE-reduced node embeddings.

#Features LightGBM SVM

Accuracy F-Measure Accuracy F-Measure

20 0.917 0.875 0.909 0.865
30 0.943 0.909 0.927 0.892
40 0.943 0.912 0.935 0.902
50 0.937 0.901 0.927 0.889

0.912 F-Measure rates using only 40 features. SVM also showed satisfactory performance
with 40 features that resulted in an accuracy rate of 0,935 with an F-measure rate of 0.912.

After the classification process with GVAE-reduced embeddings, the second experiments
used raw node features directly in the classification process. Since each node in the
graph included 100 features, each graph was represented by a 100-dimensional vector
by averaging such node features. Following the formation of the graph vectors, feature
subsets with varying sizes were created with RFE and FS selections. RFE benefited from
SVM and LightGBM models for the computation of feature-relevance scores. To make a
fair comparison with the results obtained in the first experiments, the size of graph vectors
was reduced from 100 to 20, 30, 40, and 50, respectively. SVM and LightGBMmodels were
trained with the obtained selected relevant features and their classification performances
were evaluated with 10-Fold CV.

Table 7 showed that the highest classification accuracy was achieved with 50 features
selected by RFE. With this feature set, LightGBM and SVM had accuracy rates of 0.907 and
0.886, respectively. The combination of FS with LightGBM underperformed slightly than
RFE selection with an accuracy of 0.895 (Table 8). The performance of SVM stayed behind
LightGBM and obtained 0.874 accuracy with a subset of 50 FS-selected features.

In the last experiment, two-dimensionality reduction methods used in the previous
experiments were blended. In order to achieve this, all GVAE-reduced embedding sets
(20,30,40, and 50) were concatenated. The combination of all embedding features resulted
in a 140-dimensional vector for each graph. After the expansion of feature space with
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Table 7 Classification results with raw node features (RFE-selected).

#Features LightGBM SVM

Accuracy F-Measure Accuracy F-Measure

20 0.873 0.802 0.851 0.779
30 0.892 0.831 0.870 0.808
40 0.901 0.846 0.883 0.823
50 0.907 0.852 0.886 0.835

Table 8 Classification results with raw node features (FS-selected).

#Features LightGBM SVM

Accuracy F-Measure Accuracy F-Measure

20 0.861 0.791 0.841 0.767
30 0.883 0.820 0.862 0.798
40 0.889 0.834 0.872 0.811
50 0.895 0.841 0.874 0.825

Table 9 Classification results with the combination of GVAE-reduced embedding and RFE selection.

Model #Features Accuracy F-Measure

LightGBM 30 0.967 0.934
SVM 40 0.955 0.924

all embedding sets, the dimensions of feature vectors were reduced via RFE selection.
The main reason for using RFE is that it outperformed FS in the previous experiments.
Classification results obtained with the combination of the GVAE-reduced embeddings
and RFE selection were shown in Table 9.

The results obtained with the combination of GVAE-reduced embeddings were higher
than those obtained with the individual GVAE-reduced features sets. When RFE selection
was made on the combined GVAE-reduced embeddings, the most successful classification
result was again obtained with LightGBM. Classification accuracy was up to 0.967 with
LightGBM, while the accuracy rate was realized in 0.955 with SVM. LightGBM achieved
this result with 40 informative features. On the other hand, SVM reached the highest
success rate with selected 30 features.

CONCLUSION AND DISCUSSION
Even though numerous studies have been realized on malware detection using ML and
DL models, detecting malware effectively using graph variational autoencoders remains
an unexplored topic area in the cyber-security domain. Our study used API-call graphs
for malware detection and performed different dimensionality reduction methods on
node features to find malicious code patterns. The first experiments utilized GVAE to
extract low-dimensional node embeddings of several sizes from API-call graphs. The next
experiments applied RFE and FS selections to select informative feature sets with the

Gunduz (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.988 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.988


same sizes as GVAE-reduced embeddings. The results with RFE and FS selections revealed
that LightGBM achieved the highest accuracy (0.907) and F-measure (0.852) rates using
50 features. SVM again showed sufficient performance with an accuracy rate of 0.886.
When both models used GVAE embeddings as model inputs, there was an approximate
increase of 4 percent in their accuracy rates. Same performance increases could also be
seen in F-Measure rates that directly indicated the improvement in the discrimination
power of the models. LightGBM and SVM reached the best accuracy rates with 40 and 30
reduced features, respectively. The last conducted experiment combined the strengths of
RFE selection and GVAE that led to the performance rise compared to only GVAE-reduced
embeddings. RFE selected 30 relevant features from the combination of all GVAE-reduced
features and boosted prediction accuracy to 0.967 in LightGBM. SVM also reached an
accuracy of 0.955 with 0.921 F-Measure scores with 40 features that resulted in a nearly %2
increase on both performance metrics compared to only GVAE-reduced features.

All conducted experiments revealed that the proposed hybrid size-reduction framework
had two prominent properties that helped to achieve the best results compared to all
individual models. The first property is that GVAE uses the GCN model in its encoder
component. GCN considers adjacent nodes as well as node features during the generation of
node embeddings. The second property of the framework is that RFE employs LightGBM in
computing feature importance scores. LightGBM is an efficientmodel for reducing variance
and preventing overfitting during the computation of feature relevances. Obtained test
results confirmed that the proposed framework can effectively detect malware with high
accuracy and F-Measure scores.

The experimental results we obtained were also compared with the results of the recent
malware studies that had deployed DL and ML models in the detection process. Recent
survey articles presented the dominance of static analysis in the detection/classification
process due to the ease of finding malware code structures without running on real devices.
Moreover, most of these studies employed the features extracted from source code files
such as Android permissions, Op-code sequences, API-call sequences, and API-call graphs
in malware detections. Classification performances of recent studies are presented in
Table 10. When the results were examined, it was concluded that the performances of the
proposed models in these studies varied between 0.90 and 0.99 in terms of accuracy and
F-Measure rates. In addition, these studies benefited from DL models in feature extraction
and classification steps.

Considering the studies using the same feature set as in our study, it was seen that the
highest success ratewas achievedPektaş & Acarman (2020) that compared the performances
of different graph embeddings on CNN models. Since this study trains a shallow CNN
model with a relatively small number of instances (5560 samples), it is not feasible to build
such a model due to the chance of increasing overfitting. Another difficulty faced in this
study is that the CNN model has many trainable parameters and the determination of
the best parameter setting is a time-consuming process. Unlike the aforementioned study,
our study used a deep learning model, GVAE, during the extraction of low dimensional
embeddings. After dimensionality reduction with GVAE, each application was represented
by vectors with a maximum of 50 dimensions. Reducing the feature space of the data has
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Table 10 Classification results of recent malware studies.

Models Feature Set Accuracy F-Measure

SVM, kNN (Zhao et al., 2015) Permissions, API-calls 0.975 NA
RF, SVM (Canfora et al., 2015) n-opcode of classes.dex 0.965 NA
CNN (Ganesh et al., 2017) Permissions 0.930 NA
MKL (Narayanan et al., 2018) APIs’ permissions NA 0.985
DBN (Li et al., 2018) API-calls 0.900 NA
CNN (Amin et al., 2019) Risky permissions 0.974 0.974
BiLSTM (Ma et al., 2020) API-call sequences 0.972 0.982
GE+CNN (Pektaş & Acarman, 2020) API-call graphs 0.988 0.986
LightGBM (Al Sarah et al., 2021) APIs’ permissions 0.990 0.980
GAT (Catal, Gunduz & Ozcan, 2021) API-call graphs 0.961 0.948
GVAE+LightGBM (Proposed study) API-call graphs 0.967 0.934

also enabled the optimum parameters of the models to be found in a short time. Our study
also benefited from the LightGBMmodel, which reduces overfitting by adjusting the model
variance at each step during training. Our previous study (Catal, Gunduz & Ozcan, 2021)
trained the graph attention network model with the dataset used in this study and reached
an accuracy rate of 0.96 using 100-dimensional node features. Although the classification
performance of the previous study was close to this study, our proposed model achieved
this performance with only 30 features.

Experimental studies have some limitations and threats to validity. In this study,
experimental setups were trained with two open-source datasets. The performance of the
proposed model on other datasets might be slightly different; however, we do not expect
too many variations in the performance. Different researchers also might develop new
malware detection frameworks models using novel deep learning architectures and achieve
better performance results than the one reported in this study.

This study focused to enhance the performance of malware detection models using
a novel dimensionality reduction method. The proposed framework fused the GVAE
and RFE. Experimental results presented that the execution of RFE selection on GVAE
embeddings provided remarkable results. In addition, the proposed framework has a
generic form that can be widened to diverse domains including graph-structured data
types. Tasks in bioinformatics and recommendation systems are some examples of these
domains where our framework can be adopted. Future work will conduct research on the
utilization of the DL and ML models in malware detection systems from the point of view
of Explainable Artificial Intelligence (XAI).
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