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ABSTRACT
Examinations or assessments play a vital role in every student’s life; they determine their
future and career paths. The COVID pandemic has left adverse impacts in all areas,
including the academic field. The regularized classroom learning and face-to-face real-
time examinations were not feasible to avoid widespread infection and ensure safety.
During these desperate times, technological advancements stepped in to aid students
in continuing their education without any academic breaks. Machine learning is a key
to this digital transformation of schools or colleges from real-time to online mode.
Online learning and examination during lockdown were made possible by Machine
learning methods. In this article, a systematic review of the role of Machine learning
in Lockdown Exam Management Systems was conducted by evaluating 135 studies
over the last five years. The significance of Machine learning in the entire exam cycle
from pre-exam preparation, conduction of examination, and evaluation were studied
and discussed. The unsupervised or supervised Machine learning algorithms were
identified and categorized in each process. The primary aspects of examinations, such
as authentication, scheduling, proctoring, and cheat or fraud detection, are investigated
in detail with Machine learning perspectives. The main attributes, such as prediction
of at-risk students, adaptive learning, and monitoring of students, are integrated for
more understanding of the role of machine learning in exam preparation, followed by
its management of the post-examination process. Finally, this review concludes with
issues and challenges that machine learning imposes on the examination system, and
these issues are discussed with solutions.

Subjects Artificial Intelligence, Computer Education, Data Mining and Machine Learning
Keywords Machine learning, Online learning, Online examinations, Authentication, Fraud
detection, Security

INDRODUCTION
Machine learning (ML) is a pioneering area of research in artificial intelligence. ML has a
broad application area, from running search engines to protecting passwords. ML is the
study of machines learning from human behavior to solve simple to complex problems (Lv
& Tang, 2011). Machine learning algorithms revolutionize real-world applications and
research directions. Machine learning makes systems more intelligent and automated to
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handle high-dimensional and complex data (Sarker, 2021). ML is adept at knowledge
acquisition, learning, predicting, and solving problems. In real-time, ML saves the time
and efforts of every human. It has become inevitable for every human to make their
everyday lives smoother from multiple perspectives. This article discusses the role of
ML in the academic area. During the COVID pandemic crisis, the agony of students
and the hardships faced by education are many. The offline classes were not possible
due to widespread virus threats (Tarik, Aissa & Yousef, 2021). The protection of students’
health and safety was a priority. The educational institutions are forced to cancel physical
learning sessions in a classroom environment, and conducting examinations is challenging.
E-learning, remote learning, and online education became a solution as it’s the only way
out for continuous learning.

The examinations or assessments were considered necessary to be conducted online
mode. The online education mode came to rescue the aid of students in completing their
courses without a break in academia. The exam management system is the most affected
in academia during the lockdown scenario. ML played a significant role in paving students
toward their academic completion with examinations. The student data are a prerequisite
for any analysis related to the academic perspective. The data mining of the student’s data
of respective classes and research helps the educational infrastructure to develop a support
system for the students and teachers in preparation for final assessments.

The student learningmanagement data contribute to designing a decision-makingmodel
for prediction or analysis in the educational domain (Lavoué et al., 2017). Machine learning
approaches are the key to the development and process of these learning and assessment
models. However, the sample student data should be adequate and informational.
The ML models are beneficial in the prediction analysis to study student performance
based on the data. This futuristic prediction characteristic of ML facilitates improving
student performance and provides early intervention in learning and achieving success in
examinations (Sandra, Lumbangaol & Matsuo, 2021). Themain advantage of theMLmodel
is its capacity for accurate prediction with limited student data resources. The contribution
of ML models proved to be substantial in student academic performance predictions, with
learning outcomes aiding in preparation for upcoming examinations (Balaji et al., 2021).
The unique ability to explain and interpret enables easy adaptation and operation for
students, teachers, and administration. ML requires basic skills and primitive knowledge
for its operation that can be implemented in education (Linardatos, Papastefanopoulos &
Kotsiantis, 2020).

There is clear evidence thatML is a paradigm shift in the education field to be innovative,
interactive, and personalized for collaborative learning. Whether online or offline learning
mode, ML has proved to be valuable in outcome-based education for professional or
career perspectives of students. The teaching strategy has been shifted to outcome-based
education; the academic curriculum has been redefined based on program and course
outcomes. For this outcome-based model, the prediction is the basis for building up
the curriculum for student assessment preparation and evaluation. There is a demand
for constant observation and frequent measurement of student learning ability before
appearing examinations. The students’ examinations are centered on these curriculums
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and Program Educational Outcomes (Yanes et al., 2020). ML serves as an exoskeleton
for the instructor to plan the instruction and evaluation models. ML provides teachers a
platform for multifaceted presentation, simulation, and automated student feedback. ML
bridges the gap between students and teachers for more interactive learning and proximal
developments (August & Tsaima, 2021). This article is intended to discuss the impact of
machine learning on an event of the learning process, ‘‘Examinations’’. The key features of
this review paper are the role of ML in the examination process during the lockdown and
its emergence, multifaceted role in student assessment.

With the current onset of pandemic situation, educational institutions, industries,
government organizations, etc. have shifted their inclination towards online mode of
teaching/learning, communication and other interactions. In such scenario, there is a high
probability of false-doing such as malpractices in examinations and other negative aspects.
Hence, automated systems for online interactions must be well-equipped to overcome
these drawbacks. The rationale behind this review is mainly focused on this concept by
highlighting the merits and demerits of various ML models which can assist in the variety
of online applications.

This review is specifically intended for educational institutions who carry out teaching
and learning in the online mode. Proper selection of the ML based automated system
will enhance the efficiency of online learning, online examinations, etc.. Government
organizations which conduct nation-wide/state-wide online examinations also will benefit
out of this review.

The motives of this work are:

• To summarize an overview of machine learning and the primary classification of its
algorithms.

• To Identify research gap with research questions for ML in Exam Management with
search objective.

• To discuss the need for Machine Learning in the Lockdown scenario.
• Analyzing the role of ML in different phases of examination is based on research
questions.

• To address the issues and limitations of Machine Learning in the Exam Management
System.

MACHINE LEARNING: AN OVERVIEW
In artificial intelligence, Machine Learning is the study of how machines can learn human
behavior and imitate it for decision making and solving complex problems. The machine
learning algorithms started to evolve in 1970 though the term was coined in 1959. The
main classification is based on their learning and testing the validity of the proposed model
behavior as to whether supervised or unsupervised (Louridas & Ebert, 2016). In supervised
learning, classification and regression algorithms utilize training data for prediction. The
prediction is validated by the test set data. On the contrary, the machine must find its
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Figure 1 General classification of Machine Learning.
Full-size DOI: 10.7717/peerjcs.986/fig-1

solutions using the training data in unsupervised learning. The general machine learning
approaches and their classification with their techniques are displayed below in Fig. 1.

SEARCH STRATEGY AND RESEARCH QUESTIONS
Identification of research gap
Machine Learning is a vast area with multiple applications in different fields. This review
is based on its application in the field of academia. When the generalized survey on ML
in education was performed, several papers exhibited the role of ML in learning and the
prediction of student performance. However, there was limited focal point review on the
extensive role of ML in exam management. Systematic exam management is the need of
the hour under lockdown situations. The ML is pivotal in automation and efficient in
monitoring and regulation of a sequential examination process. If ML is not implemented
the examination process, it may tend to become complicated with huge student data
analysis. The manual timetable process can be challenging and may consume more human
efforts and time. This inadequacy of work on ML in exam management systems motivated
the authors to revisit the papers for the search strategy. This paper tracks the importance
of ML from beginning to end of the examinations as an entire cycle. This review paper is
structured as a sequence of activities aiming for a complete understanding of the pivotal
role of ML in Exam Management Systems, from preparation to assessment and grading.

Search strategy
The motivation of this work is to elucidate empirical evidence supporting the effectiveness
of machine learning on online preparation, assessment, and evaluation of student
performance. For this review, an extensive search on machine learning was performed.
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Figure 2 Search strategy for ML in the exammanagement system.
Full-size DOI: 10.7717/peerjcs.986/fig-2

The papers are selected based on recognized and accredited publications such as IEEE,
Springer, Elsevier, Wiley, ACM, and International Journals. The articles are indexed in
Scopus or web of sciences available in research databases. Machine learning is a popular
topic in exhibits and conferences. The recent conference papers with many citations and
novel ideas are also included in this study. The specific documents with machine learning
keywords are retrieved, ensuring practical relevance in selecting each article. About 140
papers were selected from the last five years (some exceptional previous papers were also
included). The search strategy is displayed below in Fig. 2.
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Figure 3 Distribution based on years.
Full-size DOI: 10.7717/peerjcs.986/fig-3

Research question formulation
The following research questions are based on the segmentation of the LEMS:

• RQ1:What is the significance ofML in education and examination during this lockdown
scenario?

• RQ2: How does ML play a role in preparing students for examination through
prediction?

• RQ3: What is the role of ML during examination in authentication, scheduling, and
proctoring students?

• RQ4: How is ML beneficial in the post-exam process like grading and feedback?

The above questions are formulated, and this leads into the following divisions: the
significance ofML in current lockdown, Pre-Examphase or preparationphase, Examination
phase, Post examination phase (Evaluation and grading), and issues and challenges are
discussed, followed by a conclusion. The distribution of retrieved papers based on years
and sources are given in Figs. 3 and 4. For LEMS, most of the articles are chosen between
2019–2022, which has a bearing on the lockdown era.

THE EMERGENCE OF ML IN LOCKDOWN EXAM
MANAGEMENT SYSTEMS
There is an unmistakable emergence of the use of Machine Learning tools in the education
sector during pandemic times. The contemporary research supports that ML has been a
powerful tool implied in learning and assessment during these pandemic times. There is a
profound shift in behavior for every student from learning in the classroom to onlinemode.
The pandemic crisis has increased students’ emotional sensitivity, they are in anguish, and
there is a big question mark about their future careers (Akour et al., 2021). In several
countries, the ministry of education has suspended regular school or college. Face-to-face
studies and group education were barred as a precaution. Distance education mode and
assessment became obligatory at all levels, from kindergarten school to a doctorate or
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Figure 4 Distribution based on sources.
Full-size DOI: 10.7717/peerjcs.986/fig-4

scholar defense exam (Tarik, Aissa & Yousef, 2021). The personal face-to-face contact to
identify the student’s attentiveness and make interventions on the spot is dispensed. The
performance prediction can be synchronous; the academic interventions online necessitate
monitoring the asynchronous activity of the individual student.

The Machine Learning methods are experts in monitoring. It is also used to develop
models to predict students at risk in advance to get the same benefit as in real-time (Karalar,
Kapucu & Gürüler, 2021). The ML lends its hand the extra mile to the teachers for smart
attendance, teaching, and conducting assessments. The ML made virtual classrooms and
assessments possible; the survey was conducted with students for determining student
satisfaction during emergency remote learning using Machine Learning. The results
indicated that the students favor remote education and assessments (Ho, Cheong & Weldon,
2021). Academic growth is highly impacted due to COVID. The COVID brought a severe
setback and sudden change in the modus operandi of academic structure. There are
consequences due to COVID, affecting students’ academic standards and behavior to
embrace new changes with fear of the future. The ML has been a silent hero that helped
the field of academics and assessment to continue with the same integrity (Agarwal et al.,
2021). The ML lays building blocks for students to have a safer world and stay ahead amid
setbacks.

The examination cycle in the lockdown exam management system
(LEMS) has four significant steps
1. Pre-Examination Phase (Preparation)
2. Examination Phase (Conduction of Assessments)
3. Post examination phase (Grading with Integrity)
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Figure 5 The exam cycle in LEMS.
Full-size DOI: 10.7717/peerjcs.986/fig-5

4. Resolving Issues with ML implementation in Examinations
The exam cycle and its subareas focused on this article are illustrated in Fig. 5.

ROLE OF ML IN PRE-EXAMS (PREPARATION PHASE)
Adaptive learning before examination
Adaptive learning is an approach where the study materials, teaching methods, and
inculcation are tuned with the proactive curriculum. The individual learning path is
designed for the maximum enrichment of the student’s knowledge and thus enhances
the student’s academic achievement. ML must identify the students who are low-level
performers to pay personal attention. The ML boosts the student to overcome his
vulnerability in the learning process through tailor-made learning modes. However, each
student has their behaviors in learning attitude and continual monitoring (Embarak,
2021). ML has a role in designing web-based learning systems by an interface. The
learning interface must be adaptive and satisfy individual learner criteria for creating
personalized learning. The downside is the non-availability of a collaborative learning
approach that has interactions for more efficiency (Oboko et al., 2016). The concepts
of brain dominance and students’ psychological behavior serve as input for ML-based
models. There is a prerequisite of catering the personalized education to the individual
student’s aspiration. This psychological behavior-based ML concept is proposed and tested
in practical conditions (Oke et al., 2016).

Modern technological developments demand an intelligent learning environment
for students. The teaching strategies should be adaptive to individual student learning
characteristics. The ML models enlighten more on personalized adaptive learning for
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effective pedagogy. The unique student characteristics and personal development are
its prime criteria in designing education-based ML models (Peng, Ma & Spector, 2019).
Recently, AI-based learning has been prominent in implementing adaptive learning. The
systematic mapping method of AI is beneficial for education purposes. The review clearly
shows thatMLwithAI dawns a new era for adaptive learning, helping students in knowledge
enhancement (Kabudi, Pappas & Olsen, 2021). The research revisits challenges and issues
with the widespread implementation of adaptive learning. The frequent redesigning of
curriculum, loss of control in the hands of the faculties, and reluctance to cope with the
learning of new tools for updating technology are the issues to be addressed (Mirata et al.,
2020).

Predictive analysis of student performance
Assessing a student’s performance at strategic time intervals before exams gives an impetus
for improved teaching methods that assist students in achieving success in their exams.
The various ML methods and algorithms are extensively used to predict performance in
many student communities. The details are inferred below in Table 1.

Identification of at-risk students before examinations
The ML has a significant role in predicting forthcoming performance. Besides that, it is
also proficient in identifying vulnerable students (low achievers) and a risk category of
failure in exams. This prediction and student identification aid the teachers in designing
a practical pedagogy for developing personalized monitoring and individual attention.
ML facilitates more students to achieve success in coming examinations. The generalized
model to predict any at-risk students involves five mandatory steps, as shown in Fig. 6.

The student dataset is preprocessed in an at-risk model, and the required features are
extracted. The features such as academic, demographic, social and behavioral factors of
the students in prior semester are considered for data set creation as input into ML model
for at-risk identification. The ML models are based on algorithms such as Naïve Bayes,
Decision Trees, Random Forest, Neural Networks, and even hybrid methods (Marwaha &
Singla, 2019). ML with data snapshot analysis helps find underperforming students who
need more attention in programming classes. The students can have rehearsal tasks for
more understanding of the concepts (Ahadi et al., 2015). The students’ data of periodic
assignments submission helps the ML model predict the students who are prone to
risk in the examination (Falkner & Falkner, 2012). When applied to the actual log of
Learning Management Systems (LMS), the ML methods can determine up to forty percent
accuracy in the early detection of at-risk students. The casual students’ behavior, such as
their e-book reading habits with an appropriate ML model, can predict students’ at-risk
using classifiers (Chen et al., 2021). By closely monitoring ML techniques output, the
instructors can intervene with the student and offer additional support and more adaptive
teaching (Kondo, Okubo & Hatanaka, 2017).

The ML also helps the university administration identify at-risk students before
examinations. ML resolves the issues of rising university attrition. ML models applied with
the administrative data give the university administration a predicting insight of students
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Table 1 Role of ML in predictive analysis.

Paper ID Student dataset ML technique used or
compared

Inferences

Kotsiantis, Pierrakeas & Pintelas (2004) University students
for distance learn-
ing

(Naïve Bayes) NB, 3-NN,
RIPPER

Early predictions are accu-
rate using NB

Koutina & Kermanidis (2011) Postgraduate stu-
dents

NB, 1-NN, Random Forest
(RF), and SMO

The combination of NB
and 1-NN is efficient with
sampling

Sweeney et al. (2016) Public University Factorization Machines
(FMs), Random Forests
(RFs), and the Personalized
Linear Multiple Regression
(PLMR)

A hybrid and efficient
method of RF and FM is
proposed.

Xu, Moon & Van der Schaar (2017) Degree students A novel method is pro-
posed (latent factor model-
based course clustering
method)

A progressive prediction
architecture is proposed for
evolving performances.

Fagbola et al. (2019) Programming
courses

Linear Regression (LR),
M5P decision tree

Designed and evaluated
Mobile Interface with ML
statistical models

Hussain et al. (2018) Learning session
data

LR, ANN, SVM, NBC, and
DT

The SVM and ANN models
are accurate

Sekeroglu, Dimililer & Tuncal (2019) Secondary school Backpropagation (BP),
Support Vector Regression
(SVR), and Long-Short
Term Memory (LSTM),

SVR has the highest predic-
tion rate accuracy.

Jain & Solanki (2019) Multiclass students DT, RF, Gradient Boost RF outperforms for cor-
relative analysis of student
performance

Alshabandar et al. (2020) Massive open on-
line courses

Root Mean Square Error
(RMSE) and R-squared

Pass or Fail analysis. But
lack of inclusion of tempo-
ral features.

Shashi, Sunil & Kumkum (2020) University students e Logistics Regression,
Naïve Bayes, K-Nearest
Neighbor, Decision Tree
(DT), Support Vector ma-
chine

DT outperforms the ac-
quired dataset.

Dhilipan et al. (2021) College students Binomial logical regression,
Decision tree, Entropy, and
KNN

Binomial Logical regression
is accurate.

Pallathadka et al. (2021) UCI machinery
student dataset

Naive Bayes, ID3, C4.5,
and SVM

SVM has more accuracy
and less error rate

Li & Liu (2021) High school stu-
dents

CNN, RNN, and DNN DNN is accurate for a vast
dataset

Alnassar et al. (2021) Virtual learning
environment

Support Vector Classifier
(SVC), k-Nearest Neighbor
(k-NN), Artificial Neural
Network (ANN)

K-NN algorithm is more
suitable for critical analysis.

(continued on next page)
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Table 1 (continued)

Paper ID Student dataset ML technique used or
compared

Inferences

Baashar et al. (2022) Higher education Various ANN algorithms ANN with data mining
methods is more promi-
nently used in higher edu-
cation

Albreiki, Zaki & Alashwal (2021) Multiple datasets SVM, DT, NB, KNN There is a need for dynamic
Priya, Ankit & Divyansh (2021) Secondary schools Logistic regression, ANN,

SVM
Logistic regression per-
forms better in the predic-
tion

Hussain & Khan (2021) Secondary and in-
termediate levels

DT, GA based DT, KNN,
GA found KNN

GA based DT outperforms
all the other methods

Xiao, Ji & Hu (2021) Survey on different
students

DT, NB, MLP, RF, SVM,
KNN

Shortcomings of each pre-
diction method were dis-
cussed

Qiu et al. (2022) E-learning envi-
ronment

SVM, NB, DT A behavior-based predic-
tion model is designed and
evaluated.

Figure 6 Steps for identification of at-risk students.
Full-size DOI: 10.7717/peerjcs.986/fig-6

who may discontinue in the middle of the course and take necessary steps to prevent
attrition (Berens et al., 2018). In a virtual learning environment of college education, the
ML methods identify at-risk students and even marginal students before the examination.
More success for these marginal students can be achieved by providing due attention to
the examination (Chui et al., 2020).

In massive online open courses (MOOC), ML predictions are more efficient in
identifying vulnerable students and improving these students’ performance with ML-based
learning achievement mode (Al-Shabandar et al., 2019). Sometimes, manual methods fail
to identify some demographic or financial issues that may cause students to be at-risk
before examinations. ML methods are pragmatic and more potent in determining the
student’s at-risk conditions, which manual processes overlook (Soobramoney & Singh,
2019). There are instances where the socio-economic situation leads a student towards
academic desertion before completion. There has been a forty to seventy percent increase
in at-risk students in countries like South America. The ML was applied to such scenarios
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for detecting students and focused on these students’ issues on a national scale (Zea, Reina
& Molano, 2019).

The ML has proved its extreme impact on the student population, from university
students to the K-12 classes, which determines a career path. The prediction promotes the
scholastic achievement of such altering their career path (Li et al., 2020). The ML models
can be implemented in levels for more accuracy in prediction. A model with three levels
of classifiers can achieve eighty percent of accuracy in prediction (Latif, XianWen &Wang,
2021). The ML model’s prediction is based on static data, but they can even stack the
students’ weekly performances and their growth in the academic pursuit and bring out a
few at risk. It is a repeated measure process that makes it possible to identify the at-risk
students throughout the academic year, not a one-time event (Koutcheme et al., 2022).
Whether it is its online courses or any virtual learning environment, it is established that
there is evidence of the inevitable role of ML, dedicated to the design of prediction models
for at-risk students (Adnan et al., 2021). The ML analyzes precisely and competently,
helping the students to receive support and proper mentoring from teachers or to avoid
dropping out of examinations.

Monitoring student attendance and learning
The examination may be a pivotal event in every student’s life; the preparation process is
necessary. The student’s regular attendance in the virtual class and attentiveness is obligatory
for preparation and appearance for examination. Most schools and universities regulate
a mandated attendance percentage for appearing examinations. Machine learning can be
implemented for face detection and face recognition for monitoring intelligent attendance
systems. The low-cost ML method of the camera model is all ready to take photos of
the students fifteen minutes before starting and ending the class, even in a real-time
environment. This method is efficient than other ML models based on LBPH, Eigen face
and Fisher face (Chowdhury et al., 2019). The convolutional neural networks (CNN) based
ML method of smart attendance is ideal for online and virtual environments (Srivastava
et al., 2019). Advanced ML methods also store multiple face data and can detect multiple
faces in real time-consuming time. The principal component analysis (PCA) also takes
the follow-up process of keeping the attendance information and redirects to the required
email as an attendance sheet. The teachers or instructors should have a detailed summary
of students’ attendance in their classes (Sawhney et al., 2019). The smart digital attendance
applies CNN with a camera used by the students for more pixel clarity and pleasing light
surroundings for detection and recognition (Devi & Narayanan, 2022). The ML supports
facial expression detection for monitoring the physical presence of the students. The facial
expression analysis gives information to teachers about the number of students present in
their classes, not just physical attendance but also collective feedback on to what extent
students could cope with the procedures (Ashok et al., 2020).

The ML has a substantial part in assisting smart attendance and an eye on learners’
attention. There is evidence of tracking the student’s attentiveness with ML-based
multimodal biometric techniques, including eye gazing and behavioral biometrics involving
body movements (Villa et al., 2020). In critical student training such as defense aircraft
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Figure 7 ML-based exam scheduler.
Full-size DOI: 10.7717/peerjcs.986/fig-7

systems, ML was implemented with wearable sensors for eye tracking, cardiovascular,
respiratory, and electrodermal classifiers to predict the accurate levels of learner’s
involvement engagement in a training session (Carroll et al., 2020). In air-pilot classes, the
machine vision-based ML approaches can be used to determine the students’ attentiveness.
The refined identification classifiers such as eye gaze, head poses, and facial expressions
can predict the student’s attention level (Goldberg et al., 2019). Any student who attends
a class with physical attendance, attentiveness, and zeal, can successfully come up in the
upcoming examinations.

ROLE OF ML IN EXAMS (EXAMINATION PHASE)
The core activities in carrying out the examination system are publishing the examination
schedule, question paper generation, authentication of eligible students appearing for the
examination, proctoring (supervision) of the examinations, and eliminating malpractices
by appropriate steps.

Scheduling examinations
The publication of the examination timetable or schedule is the first step in conducting
an examination. Machine learning has played a predominant role in scheduling since
1980. ML with artificial intelligence has proven to be capable of dynamic scheduling of
examinations. TheMLhas already ruled the commercial industries in scheduling, execution,
and automation. Now, ML is applied to education, payrolls, generating timetables, and
conduction of examinations (Aytug et al., 1994). In universities, students are allowed to
study extra credit courses parallelly, which may lead to overlapping in the examination
timetable schedule. There will be difficulty in preparing timetables in these overlapping
cases manually. The ML has a model that can automatically generate the timetable (Kumar
et al., 2020). The ML-based examination schedule system architecture is given in Fig. 7.

The improved automation methods with iterative machine learning and optimization
techniques will help conduct a fool-proof online or virtual examination. Neural networks
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Table 2 The Role of ML in authentication.

Paper ID Year Authentication MLmethods

Rateria & Agarwal (2018) 2018 Offline signature Hybrid classifier CNN and SVM
Gideon et al. (2018) 2018 Handwritten signature Conventional neural networks
Bibi, Naz & Rehman (2019) 2019 Signature online/offline ANN, NB, KNN, and SVM
Sadikan, Ramli & Fudzee (2019) 2019 Keystroke dynamics ANN, KNN, and hybrid classifiers
Ryu, Yeom & Kim (2020) 2021 Multi biometric face/keystroke Eigen Face and SVM
Geetha et al. (2021) 2021 Face recognition Eigen Face and SVM
Deepika & Sneha (2021) 2021 Face detection Logistic regression
Sukmandhani & Sutedja (2019) 2019 Face recognition Self-organized Neural networks
Mehta (2019) 2019 Face and emotion Local Binary Pattern Histogram
Kamencay et al. (2017) 2017 Face recognition Convolutional Neural Networks
Adetoba et al. (2022) 2020 Face, video, and password Logistic regression and SVM
Cerna et al. (2018) 2018 Face and fingerprint Multitask Convolutional Neural Net-

works
RaviTeja, Brahmananda & Swasthika Jain (2020) 2020 Face and fingerprint Convolutional neural networks
De Marsico, Petrosino & Ricciardi (2016) 2016 Iris recognition ANN and SVM
Shelke & Bagal (2017) 2017 Iris identification ANN and SVM
Traoré et al. (2017) 2017 Face, keyboard, and mouse Exam shield application
Prabu, Lakshmanan & Mohammed (2019) 2019 Iris and hand geometry Neural Networks and Bayes Networks
Joshy et al. (2018) 2018 Face, one time password, and fingerprint Histogram of oriented gradients with

KNN
Ryu et al. (2021) 2021 Continuous multimodal biometric KNN, NB, and Random Forest
Labayen et al. (2021) 2021 Multimodal Neural Networks and AI

and decision trees have a significant role in this ML-based model’s timetable generation
by the iterative development method. ML for the examination process reduces the work
burden of the instructors and invigilators to a large extent (Hutter, Kotthoff & Vanschoren,
2019).

Question paper generation
Precaution: The students may use the internet to search exam questions and find answers in
google or search engines during the examination. Based on this viewpoint, the questions can
be changed with a different verbatim and paraphrased to discourage web searching (Golden
& Kohlbeck, 2020). Another method is the generation of randomized multiple-choice
questions using theMLmethod. These questions can formapart of the question paper of the
online examination to reduce the repeated questions involving cooperative cheating (Tiong
& Lee, 2021).

Authentication of students
The verification of student identity is a pivotal step before the examination to avoid
impersonation.MLmethods can be implemented for the authentication of student identity.
In some complex cases such as twins the multimodal authentication techniques are used
for authentication of the individuals. The various existing methods of authentication are
listed below in Table 2.
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Proctoring (supervision) of examinations
The proctoring process of examinations requires continual monitoring and verification
of student identity. The student’s face is initially registered before the commencement of
the examination in a database. For continuous validation of a student’s face, an ML-based
Convolutional Neural Network (CNN) collects images for face recognition and efficiently
verifies the student’s identity (Asep & Bandung, 2019). The ML algorithms capture the
face of the student during the examination and match it with the collected images for
face recognition to confirm student attendance. This method is automatic and continuous
during online proctoring (Ghizlane, Hicham & Reda, 2019).

The ML-based Proctoring software PROCTORU is widely used in online examinations.
The ML can record numerous behavioral changes in a student. The head, hand, and
eyes movements are tracked and are created as data points with webcam scanning.
Suppose the symptom of mismatch pattern is detected, then immediately sent to the
knowledge of the admin to keep close watch the abnormal student behavior safeguarding
the security and integrity of the examination (Slusky, 2020). The ML with computer vision
is ideal for face recognition and gesture detection in image processing. Real-time face
recognition is possible by ML in OPENCV proctoring tool. The unsupervised examination
is feasible due to ML (Pandey et al., 2020). The PROCTORIO tool with ML is used for live
detection of human faces with automation. ML also supports the ID verification process
during proctoring examinations. The 360-degree security camera was proposed in online
proctoring for more coverage of the surrounding of the student. The sound is recorded,
and movements are tracked during an examination. The webcam and security camera
can monitor the surrounding of the students with ML algorithms (Turani, Alkhateeb
& Alsewari, 2020). This method is advantageous for both live proctoring and recorded
proctoring.

The artificial neural networks with ML pave the way for data analytics in the
authentication phase of invigilation. The unique ability of ML is to retrieve the required
data and label them from the unstructured data is used in recognitions and detections
for proctoring tools (Bhardwaj, 2020). In remote online proctoring systems, ML verifies
the user and tracks the student’s gazes. When integrated with RESPONDUS, it can lock
tabs to prevent cheating by locking down the browser (Vamsi & Ashwin, 2021). Integrated
remote supervision withmachine learning was proposed in IRS-MLA. This model enables a
hybrid learning and examination management system for the student’s maximum benefit,
providing a safe environment with remote supervision (Lu, Vivekananda & Shanthini,
2022). The supervision with ML proved to be more efficient and safer during the pandemic
times. The online ML-based English hierarchical test was tested against the traditional test
system. The comparative analysis showed that ML proved efficient in maintaining fairness
and speed (Wang et al., 2021). The evidence suggests ML and ML-based proctoring is
influential and trustworthy in all the revisited cases. Emerging AI technologies impact the
future of exam management in a far better way (Vincent-Lancrin & Van der Vlies, 2020).
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Fraud or cheat detection
The advancements in technology promote remote proctoring and unsupervised methods;
there is a susceptibility to cheating and fraud during the examination. Cheating in the
online assessment is termed ’’Academic Dishonesty’’. The cheat detection can be done
in-situ or in a-posteriori detection. In live proctoring, the detection should be in-situ, but
in many cases, a posteriori detection is done with the help of ANN and SVM (Küppers et
al., 2022).
(a) Plagiarism: Students tend to plagiarize the content during examinations. The

comparison of text structure can be done by statistical approaches. Finger printing
and term frequency matrices (TFM) are used to detect the column of words with the
frequency of words in rows of the matrices. This method is effective with the downside
of consumption of time, The second method to detect plagiarism implies on patterns
of word occurrences with Smith Waterman algorithm and Levinstein distance. The
extent of data string is altered to another data string is measured by Levenstein distance.
These methods are categorized as structured approaches to detect plagiarism in data.
The clustering approach is an unsupervised machine learning method that can be
prototype based, graph or density based and sometimes they are hybrid algorithms.
The ML with Levenstein distance and cosine similarity methods proved to be useful in
detecting plagiarism in the digital examinations (Anzén, 2022).

(b) Fraud (Malpractice) detection: The webcam serves as the human eyes in the virtual
environment. The web-based supervision has a webcam as the primary input device for
preventing misconduct during the examination time (Hylton, Levy & Dringus, 2016).
The fraud detection ML algorithms initially perform the data cleaning and multiple
variable creations. The essential features are selected, and the models are trained to
detect the incident of potential fraud occurrence (Wei et al., 2020). The generic fraud
detection module is given in Fig. 8.
The fraud detection module is designed with ML, and the threshold is set to verify fraud

occurrence. The module includes multimodal biometric verification with activity analysis.
The detecting module does continuous monitoring, gather data and image to identify any
event of fraud in online proctoring (Haytom et al., 2020). In in-situ detection, the head
pose detection and the gaze tracking with ML is called VFOA (visual focus of attention).
This model has a threshold X for cheat detection. When the VFOA value is more significant
than X, it alerts the proctor of possible cheating and makes them more vigilant (Indi et al.,
2021).
(c) Multiple account detection: In the cases of Massive Open Online Courses (MOOC),

many students open numerous fake accounts to obtain a solution for the question. The
CAMEO detector based on ML resolves this problem and identifies the master account
and the harvester (Ruipérez-Valiente et al., 2019). The correct answer is harvested from
any charges to earn a certificate.

(d) E-cheating intelligence agent: ML can be incorporated into the examination system
as an intelligence agent to detect practices of online cheating. The agent can handle
malpractices corresponding to Internet protocol and behavioral changes. The DNN,
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Figure 8 ML-based fraud detection module.
Full-size DOI: 10.7717/peerjcs.986/fig-8

Table 3 ML techniques in spoof identification.

Paper ID Spoof identifier ML techniques

Thepade et al. (2020) Face Naïve Bayes, SMV, MLP, Decision table,
J48, Random Forest & Random Tree

Patil et al. (2020) Face CNN and HAAR cascade classifier
Raj, Tamilselvi & Javith (2022) Face 3D face with CNN, LBPH, and HAAR

cascade classifier
Singh, Joshi & Nandi (2014) Eye and mouth Principal component analysis with

HAAR cascade
Deepika & Kirithigaa (2021) Retina movement Logistic regression with data mining
Nema (2020) Blink count Support Vector Machine
Deepika & Philip (2021) Lip movement Logistic, Linear, and polynomial regres-

sion

RNN, and LSTM algorithms are apt to detect such academic dishonesty (Tiong & Lee,
2021).

(e) Liveliness spoof detection: The liveliness of the student can be seen for fraud
identification. There are cases where the student spoofs the liveliness with photos
or images.
The articles with ML spoof identifiers are displayed in Table 3.

(f) Anomaly detection: The LSTM algorithm is applied to students’ test scores and
compares with their previous scores on assignments, quizzes, and other performance
metrics. The anomaly of the student’s final score exceeding the fixed tolerance limit is
detected, and the potential cheating or fraud is detected if there are inconsistencies in
scores (Kamalov, Sulieman & Santandreu Calonge, 2021).

ROLE OF ML IN POST-EXAMS (EVALUATION PHASE)
Evaluation and grading
The assessment of online e-learning is part and parcel of the examination system. Machine
learning has transfigured the assessment system. The ML with AI provided a breakthrough
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in the online grading system with automation and more accurate assessment (Gardner,
O’Leary & Yuan, 2021). The DT, NB, and SVM are widely used in evaluation techniques to
assess students’ learning outcomes. These algorithms can estimate or predict the student’s
expected performance (based on their continuous internal assessment) in advance and are
used for validity purposes while doing answer script evaluation (Rana et al., 2021). ML
has a significant role in adapting to be integrated with other systems to design innovative
assessment models. The Item Response Theory with Natural Language Processing is used
to build a student assessment method model (Marigowda et al., 2021). The various ML
algorithms used in awarding grades are discussed below:

• Quizzes: ML predicts responses in advance, enabling the technique to predict and
evaluate the exam questions (Lincke et al., 2021). The commonly used algorithms include
Linear regression, Logistic regression, gradient boost tree, Bayesian neural network, and
XGboostas.

• Short answers: The automated short answer grading is possible with classification or
regression models—most of the ML algorithms with support vector machines are used
extensively for grading short answers online (Galhardi & Brancher, 2018).

• Essays: The human manual score for essay evaluation is checked against the ML
algorithms such as linear regression, random forest, and support vector machine. The
ML algorithms can evaluate essays with automated ML test models and proved to be
capable of assessing closer to the manual scores (Ghanta, 2019). The handwritten sheets
are converted digitally with optical character recognition and evaluated using the neural
networks module for assessment and grading scores (Rosy Salomi Victoria, Viola Grace
Vinitha & Sathya, 2020).

• Content: When combined with a random forest algorithm, the hierarchical SoftMax
algorithm can grade the content bag of words for evaluation. However, the downside
of ML with a hierarchical algorithm is that when it is tokenized, the grammatical and
vocabulary can be a challenge (Chauhan et al., 2020).

• Short answers: The short answers were assessed by KNN, SVM, and Gini are implied,
and ML techniques are proved to have the best experience (Çınar et al., 2020).

• Subjective answers: TheML processing techniques such asWordnet andWordmovers’
distance (WMD), cosine similarity, and multinomial naïve Bayes (MNB) are employed
for assessing the subjective answers; The WMD method proved to be more accurate in
automatic evaluation (Bashir et al., 2021).

• Descriptive answers: The evaluation of descriptive answers is more challenging due
to the evaluation of unstructured data. The faculty answers are stored in the semantic
database and is compared with students’ answers. The calculation of semantic similarity
is estimated, and the grading is done based on these similarity scores. The comparative
semantic analysis of human andML evaluation was done with TF-IDF (Term Frequency-
Inverse Document Frequency), cosine similarity, and LSA. The cosine similarity is closer
to the values of manual grading of descriptive answers (Phalke, Bamnote & Ahmad,
2021).
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Issues with ML in examination:
Challenges
• The ML-based algorithms do not have a test oracle. These models are sometimes based
on probabilistic prediction with no actual values. Though the ML models are crucial
for online examination and evaluation, there is a need for random testing with human
grading to ensure fairness and reliability of student scores.

• The ML execution consumes ample sample data space for storage and process. There
is a need for substantial data spaces for storing colossal student test data supported by
higher-end servers. Academic institutions and universities need an update in software
architecture, data management, and storage. Updating the storage devices increases the
burden of cost-effectiveness for the university or school administration (Marijan, Gotlieb
& Kumar Ahuja, 2019).

• The ML decision-making is systematic, and there is a lack of rationale judgment
in assessing students’ descriptive answers. On the contrary, human decisions are
multifaceted with empathy and flexibility, and reviews are moral or context-
related (Webb et al., 2020).

• There are several challenges on the student’s side, such as they should have virtual
devices like routers with required internet data coverage in their home network. The
students should also possess a laptop or standalone with a webcam and other accessories.

• There is a learning and adaptation process for both students and teachers to the new
assessment and exam management system during these lockdown scenarios. These new
methods tend to be confusing. The changes require time to adjust and are not liked by
both ends. Learning and adapting to change is difficult for students and teachers and
consumes time and effort (Bashitialshaaer, Alhendawi & Lassoued, 2021).

• The home environment is supposed to be environment friendly and relaxing to the
student’s mentality. When examinations are conducted at home, the students tend to
have mental stress because changing from a comfortable and familiar environment to a
new hectic environment could cause stress.

Threats to using ML in the examination:
(a) Privacy
Privacy is a big question mark since ML applications require personal or private data
for student authentication or verification during the examination. These identity data
are stored in a location for comparison and verification before examinations. There is a
possibility of hacking these data, such as student addresses, that can be exposed or misused.
There is a possibility of privacy issues if these data are mishandled (Al-Rubaie & Chang,
2019). The ML algorithms use private data to design the prediction or evaluation models.
These training models are prone to attacks. So, there is a need for privacy in two areas:
Training set data privacy and model privacy. The adversaries have two types of access
to the training models. The white box access is full access to the training set model with
knowledge of the data. On the contrary, black-box access is the access to the prediction
model with queries and interference.
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In ML, the models for prediction and the private data require assured protection of
student data (Liu et al., 2020). Another concern is that the student is monitored on video
while writing examinations during an assessment. The General Data Protection Regulation
(GDPR) has instructed academic institutions to justify the necessity of video recording.
The survey indicates that students’ privacy is violated when closely monitored by their
devices such as a webcam. Though that is a need of an hour, the student’s privacy should
never be broken during the supervision by monitoring their devices wherever they may
be (Langenfeld, 2020).

(b) Security
The student data should be ensured private, and privacy always necessitates security against
privacy attacks. Privacy and security go hand in hand against threats due to pitfalls in ML.
The secure and private data with white box access are attacked less since the attacker has
almost all data access on models and private training data. The black box access, the data
that are prone to be more secure are targeted for attacks. The ML models should detect
such attacks and preserve the model and the privacy of the data (Papernot et al., 2018).
The issue with ML is that the assessment models require top-notch security as it contains
highly secure data of exam question papers and student data. The disadvantage is that
these secure models are cost-heavy. The integrity of these assessment models depends on
cost-effectiveness, which may weigh a load on the academic institutions to need more
financial support (Langenfeld, 2020). Many attacks or anomalies are induced in the ML
system for less security. The attacks are data poisoning, backdoor attacks on the assessment
models, interference attacks on sensitive data, and private data stealing. The security
methods are inevitable in the ML architecture for security (Xue et al., 2020).

(c) Fairness
In the design of online assessment models based on ML, the neural networks and decision-
making algorithms are applied in evaluation. These models should judge and evaluate
students’ answers with fairness and integrity. The decision trees are like human judgment,
but machine algorithms do not assess the students’ tests with human consideration
and sensitivity. The ML decision-making algorithm should be ensured with additional
information for more fairness (Mehrabi et al., 2021).

Future solutions of ML
Though ML is vulnerable to attacks, the ML models can detect these breaches and attacks.
The ML algorithms can handle authentication, distributed attacks, anomaly, or intrusion
detection (Hussain et al., 2020; Liang et al., 2019). With the required additional security
features, it can be modified for more security (Kaddoura & Husseiny, 2021; Kaddoura & Al
Husseiny, 2021).

(a) Privacy-preserving Machine language (PPML)
When the multiple parties train in an educational assessment of the teaching module, the
data can be secured privately with cryptographic approaches. The issues and solutions for
the ML are tabulated in Table 4.
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Table 4 Threats and solutions for privacy.

Threats/attacks Solution

Private data in the clear
Model inversion
Membership
De-anonymization

Cryptographic:
Homomorphic encryption,
Garbled circuits,
Secret sharing,
Secure processors,

Perturbation approaches:
Differential privacy
Local differential privacy
Dimensionality reduction

Model extraction
Feature estimation
Membership interference
Model Memorization

Cryptographic:
Homomorphic
Encryption (HE),
Cryptonets,
Multikey HE

Obfuscation:
Differential privacy (DP),
Simpler DP,
DPfed AVG

Aggregation
Federated learning
Private aggregation

Table 5 Security attacks and solutions.

Attacks Solution

Poisoning attacks ANTIDOTE, KUAFUDET, AUROR, and Defending SVM
Backdoor attacks Activated clustering method and STRIP
Adversarial attacks Fast gradient sign method and Sec defender
Model stealing ML capsule and PRADA
Sensitive data PATE
Misuse attacks VANET, CANN, and KDD
Anomaly attacks LSTM RNN and RNN IDS
Malware attacks LSTM

(b) Security solutions
Standard security attacks are training set poisoning, backdoor attacks, adversarial example
attacks, model theft, and recovery of sensitive training data. The available solutions are
provided in Table 5.

CONCLUSIONS
Machine Learning is instrumental in transforming the current field of education under
lockdown scenarios. ML forms a basis for machines to learn from real-time experiences
and examples. Its learning capability using statistical techniques paves the way for future
education. The benefit to students and the potential of the ML to automate learning
and assessments is this article’s focus. The lockdown necessitated Machine Learning
to transform the education mode to virtual or online. The complete exam cycle from
preparation to feedback is the thrust area for lockdown exam management. ML has
proved its significance in smart attendance, identifying academically vulnerable students,
personalized learning, and predictive analysis of students’ educational performance in
the preparation phase before the examination. Automatic scheduling, authentication,
proctoring, and quest bank generation are possible with ML algorithms during the
examination phase. The feedback on examinations, fraud, and cheat detection and
prevention were highlighted for more understanding. ML algorithms also efficiently
evaluate all types of questions, be they a quiz or descriptive. This article ends with a note on
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the threats and challenges such as privacy, security, and fairness. This article is structured
comprehensively with an analysis of machine learning methods for Lockdown Exam
Management Systems. The future work is planned to bring together the Deep learning
concepts and explore the implication of deep learning in exam management systems.
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