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ABSTRACT
Time series appear in many scientific fields and are an important type of data. The use
of time series analysis techniques is an essential means of discovering the knowledge
hidden in this type of data. In recent years, many scholars have achieved fruitful results
in the study of time series. A statistical analysis of 120,000 literatures published between
2017 and 2021 reveals that the topical research about time series is mostly focused on
their classification and prediction. Therefore, in this study, we focus on analyzing the
technical development routes of time series classification and prediction algorithms.
87 literatures with high relevance and high citation are selected for analysis, aiming to
provide a more comprehensive reference base for interested researchers. For time series
classification, it is divided into supervised methods, semi-supervised methods, and
early classification of time series, which are key extensions of time series classification
tasks. For time series prediction, from classical statistical methods, to neural network
methods, and then to fuzzy modeling and transfer learning methods, the performance
and applications of these different methods are discussed. We hope this article can help
aid the understanding of the current development status and discover possible future
research directions, such as exploring interpretability of time series analysis and online
learning modeling.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Neural Networks
Keywords Time series analysis, Classification, Prediction, Evaluation models

INTRODUCTION
Time series are a set of observations made and recorded at different points in
time (Misra & Siddharth, 2017). It is ubiquitous in real life. Whether measured
during natural processes (weather, sound waves) or artificially generated processes
(stock, robots), most real-world data contain time elements (Langkvist, Karlsson &
Loutfi, 2014). Moreover, time series data are being produced in different fields at
an unprecedented scale and speed. Therefore, knowledge discovery from time series
has considerable potential. Because of its unique sequence characteristic, time series
analysis is considered one of the ten most-challenging problems in the field of data
mining (Yang & Wu, 2006), becoming a prevalent research topic that has attracted the
attention of many researchers over the years (Schreiber, 1999; Osmanoglu et al., 2016).
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Figure 1 Subject category co-occurrence map of time series literatures (2017–2021).
Full-size DOI: 10.7717/peerjcs.982/fig-1

In time series analysis, common data sets are often used, such as UCR time series
classification archive (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/), Awesome
Public Dataset (https://github.com/awesomedata/awesome-public-datasets) and CEIC
(https://www.ceicdata.com/zh-hans).

To gain a comprehensive understanding of the current status of time series application,
we use time series as a keyword to search the Web of Science Core Collection and collect
120,000 references published between 2017 and 2021. Then, we use VOSViewer (Leiden
University, The Netherlands) to visualize anaysis result: the subject category co-occurrence
map of first-level disciplines as shown in Fig. 1.

To gain a clearer understanding of the application fields of time series, we remove the
two subjects with the highest number of matches, i.e., Engineering and Computer Science,
both of which have a high total link strength; this can be attributed to the fact that these
two subjects are often used in research as analysis tools for other domains. The 120,000
publications contain 161 unique level-1 subjects in total. From Fig. 1, we can see that time
series has an extensive range of applications.

Time series has been widely used in many fields (Jiang, 2015) such as environmental
sciences (Shahane, Thomas & Bock, 1977; Gluhovsky & Agee, 2007), chemistry (Bates et
al., 2014), physics (Song & Russell, 1999), mathematics (Corradi, 1995; McDonald & Alan,
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1986), biomedical (Bar-Joseph, 2004; Zeger, Irizarry & Peng, 2006), meteorology (Ghil
et al., 2002), astronomy (Zhu, 2017), finance (Sezer, Gudelek & Ozbayoglu, 2020), and
other fields (Li et al., 2019). Specifically, in medicine, medical time series test data can be
used to diagnose diseases (for example, diagnoses of heart disease Kadous & Sammut,
2005), predict disease counts (Talaei-Khoei & Wilson, 2019), evaluate the impact of
interventions on public health over time (Lopez, Steven & Antonio, 2017), and analyze
gene sequences to gain a deeper understanding of the human body (Bar-Joseph, 2004).
Further, in environmental science and radiology, researchers can use observational data
to analyze hydrometeorology (Shahane, Thomas & Bock, 1977), climate change (Gluhovsky
& Agee, 2007), rainfall prediction (Barrera-Animas et al., 2022), X-rays, and gamma rays
(Protheroe & Hocking, 1988). Finally, financial and traffic data are commonly used to
predict market fluctuations (Idrees, Alam & Agarwal, 2019), stock prices (Chen, Cheng &
Jong Teoh, 2007; Spiro et al., 2018; Li, Wu &Wang, 2020), passenger flow (Ye et al., 2020),
etc. Time series is a ubiquitous data type in our daily lives, and the analysis thereof holds
great value.

Time series applications are present in every aspect of our lives, computational statistics
and data analysis will give us a new perspective and help us gain a deeper understanding of
the world.

Motivation
Time series is an important data object, used in an extensive range of research, including
classification, prediction, clustering, similarity retrieval, anomaly detection, and noise
elimination (Kalpakis, Gada & Puttagunta, 2001). The analysis and investigation of
its current research applications can provide a comprehensive research review to aid
future researchers in understanding the current development state of time series-related
algorithms.

To identify the trending topics in current time series research, we further analyze the
chosen studies. After removing generic terms like time series, time, analysis of time series,
etc., we obtain a co-occurrence map by using literature keyword, shown in Fig. 2.

The font size in the figure is related to the frequency of occurrence of keywords. The
larger the font, the higher the frequency of occurrence. There are approximately seven
clusters in the figure, representing algorithms and different application domains. Two
main research topics are identified, namely, classification and prediction. Because this
article focuses on the analysis of time series algorithms, we will present our analysis and
conclusions based on the technical development route of classification and prediction
algorithms and discuss relevant areas for subsequent research.

Main contribution
The main contributions of this article can be summarized as follows:

• a comprehensive analysis of prevalent topics in the field of time series;
• an investigation into the progress of time series classification and prediction problems
in recent years, highlighting several technical development routes that are widely studied
in the field, and discussing the improvement and optimization of these algorithms;
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Figure 2 Keyword co-occurrence map of time series literatures (2017–2021).
Full-size DOI: 10.7717/peerjcs.982/fig-2

• a comparison of the performance of the different algorithms on multiple datasets,
concluding with their advantages and disadvantages;
• and finally, an analysis of the challenges and future development tendencies of time
series classification and prediction problems.

Methods and materials
The following is the process of our study. First, a literature analysis tool is used to identify
current popular research topics. We use VOSViewer to analyze the time series literature
through keywords to examine the areas of greatest interest. These topics are classified
into 478 categories, and the two research directions with the highest frequency are
‘‘classification’’ and ‘‘prediction’’. Then, the relevant scientific literatures for the identified
categories are located. We review related papers on time series classification and prediction
and select 87 literatures with high relevance and high citation for analysis. The scientific
databases used in the search include Web of Science Core Collection, IEEE Xplore, ACM
Digital Library, Springer Link, and ScienceDirect. Finally, according to the literatures,
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important technical development routes are extracted, and detailed analysis and summary
are carried out.

Structure of this survey
The remainder of this article is organized as follows. ‘Related Work’ provides an
introduction of related work of time series investigation and the comparison of our
survey with other traditional surveys and review articles. ‘Preliminaries’ describes the
fundamentals of time series classification and prediction tasks. ‘Time Series Classification’
elaborates on the development route of time series classification and prediction algorithms,
by comparing their performances, analyzing the challenges being faced, and discussing
future development trends. Finally, the ‘Conclusion’ concludes the article.

RELATED WORK
Knowledge discovery in time series is an important direction for dynamic data analysis and
processing. The urgent need to predict future data trends based on historical information
has attracted widespread attention in many research fields. In the past few decades, many
studies have summarized time series research methods from different perspectives. Table 1
summarizes the existing time series surveys and their contributions.

In contrast to the above works, we focus on the development direction of time series
technical routes, try to track the most primitive methods of each technical route, study the
improvement ideas and improvement strategies of subsequent methods, and compare the
advantages and disadvantages of various technical routes and methods. Finally, we provide
new ideas for future work.

PRELIMINARIES
Categories of time series
Using data characteristics, time series can be classified into five categories:
1. Variables: According to the number of variables, time series can be divided into

univariate and multivariate time series. Univariate time series only contains a single
variable, whilemultivariate time series containsmultiple variables. For example,Kadous
& Sammut (2005) use ECG (electrocardiogram) to predict whether patients suffer from
heart disease; here ECG can be regarded as a univariate time series. Knape et al. (Lopez,
Steven & Antonio, 2017) use weather and climate data to analyze its influences on the
animal population. These two variables form a multivariate time series.

2. Continuity : Time series can be classified as discrete or continuous time series. For
example, a gene sequence can be regarded as discrete time series (Göb, 2006), while
hourly power demand is a continuous time series.

3. Stability : Based on the stability of a time sequence, time series can be categorized as
a stationary time series or non-stationary time series. The statistical law states that a
stationary time series will not change over time. Its sequence diagram intuitively shows
random fluctuations around a constant value, within a bounded fluctuation range,
with no obvious trends or periodic characteristics. The common periodic function is a
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Table 1 Related time series surveys.

Theme Related surveys Topic Key contributions

Prediction (De Gooijer & Hyndman, 2006) prediction Review the time series
prediction research of
the past 25 years.

(Mehrmolaei & Keyvanpourr, 2015) time series mining;
event prediction

Classify and evaluate event
prediction methods in time series.

(Nyein Naing & Htikemuhammad Yusof, 2015) time series prediction;
machine learning

Review the time series prediction
of machine learning technology in
different states spanning ten years.

(Mahalakshmi, Sridevi & Rajaram, 2016) prediction;
time series mining

Provide a detailed survey
of various techniques used to
predict different types of time
series datasets, and discuss various
performance evaluation parameters
used to evaluate predictive models.

(Deb et al., 2017) prediction; machine learning;
energy prediction

A comprehensive review of
existing machine learning
techniques used to predict time
series energy consumption.

(Tealab, 2018) prediction; nonlinear time
series; neural network

Summarize the research
progress of artificial neural
network methods in time
series prediction models.

(Bose & Mali, 2019) prediction;
fuzzy time series

Summarize and review the
contributions in the field of
fuzzy time series prediction
in the past 25 years.

(Hajirahimi & Khashei, 2019) prediction;
mixed structure

Analyze various hybrid
structures used in time series
modeling and prediction.

(Salles et al., 2019) prediction model;
non-stationarity;
conversion method

Review and analyze the
conversion methods of non-stationary
time series, and discuss their
advantages and limitations on
time series prediction problems.

(Sezer, Gudelek & Ozbayoglu, 2020) prediction; deep learning;
finance

Provide research on deep
learning in the field of financial
time series prediction.

(Lim & Zohren, 2021) counterfactual prediction;
deep neural networks

Survey encoder–decoder
designs for time series forecasting and
recent developments in hybrid
deep learning models.

(Liu et al., 2021) Intelligent predictors;
Hybrid modeling strategies

Analyze various components
and combinations in mixed models
for time series forecasting.

Classification (Radha & Divya, 2017) classification;
data mining technology

Research multiple time
series and classification
techniques and investigate
various data mining methods
for disease prediction.

(continued on next page)
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Table 1 (continued)

Theme Related surveys Topic Key contributions

(Fawaz et al., 2019) deep learning; time series
classification

Conduct empirical research
on the latest deep neural network
architecture for time series
classification, and analyze
the latest performance of
deep learning algorithms
for time series classification.

(Abanda, Mori & Lozano, 2019) classification;
distance

Summarize the development
of distance-based time
series classification methods.

(Ali et al., 2019) clustering; classification;
visualization; visual analysis

Clarify the main concepts
of using clustering or classification
algorithms in the visual
analysis of time series data.

Data
mining

(Chung Fu, 2011) data mining;
representation;
similarity; segmentation;
visualization

Comprehensively review the
existing research on time
series data mining and divide
it into research directions such
as representation and indexing,
similarity measurement,
segmentation, visualization,
and mining.

(Fakhrazari & Vakilzadian, 2017) data mining;
machine learning

Summarize the existing data
mining techniques for
time series modeling and
analysis and divide the
main research directions
of time series into three
sub-fields: dimensionality reduction
(time series representation),
similarity measurement, and data
mining tasks.

Clustering (Rani & Sikka, 2012) clustering; data mining;
dimensionality reduction;
distance measurement

Investigate the clustering of
time series in various application
fields such as science,
engineering, business, finance,
economics, health care,
and government.

(Seyedjamal, Saeed & Wah, 2014) time series clustering;
subsequence

Review the definition and
background of subsequence
time series clustering.

(Aghabozorgi, Seyed Shirkhorshidi
& Ying Wah, 2015)

clustering; distance measurement;
evaluation measures

Reveal the four main
components of time series
clustering, investigating the
improvement trends in the efficiency,
quality, and complexity of
clustering time series methods
over the past decade.

(continued on next page)
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Table 1 (continued)

Theme Related surveys Topic Key contributions

(Teichgraeber & Brandt, 2022) clustering; representative
periods

Summarize time series
analysis methods used in energy
system optimization models.

Similarity
measure

(Chen, Liu & Sun, 2017) time series data mining;
time series similarity;
mining accuracy

Analyze the advantages and
disadvantages of current
time series similarity
measures, and the application of
similarity measures in the
clustering, classification, and
regression of time series data.

(Zheng-Xin et al., 2017) multivariate time series;
data mining; similarity;
similarity search

Summarize the existing time
series similarity measures, compares
different methods of multivariate
time series similarity searches,
and analyze their advantages and
disadvantages.

Deep
learning

(Langkvist, Karlsson & Loutfi,, 2014) unsupervised feature learning;
deep learning

Review the latest developments
in deep learning and unsupervised
feature learning for time
series problems.

(Xu-Dong, 2019) deep learning; prediction;
classification; anomaly
detection

Summarizes the latest
deep learning methods for
time series prediction,
classification, and anomaly
detection from the aspects
of application, network architecture,
and ideas.

(Lara-Benítez, Carranza-García & Riquelme, 2021) deep learning;
forecasting

Evaluate the performance
of several deep learning
architectures on multiple datasets.

Change
detection

(Zhu, 2017) time series
change detection

A comprehensive review of
the four important aspects of
the Landsat time series-based change
detection research, including
frequency, preprocessing, algorithm,
and application.

(Namoano et al., 2019) online change detection;
anomaly detection;
time series segmentation

Summarize the main techniques
of time series change-point
detection, focusing on
online methods.

Others (Patton, 2012) correlation; reasoning;
multivariate model;
semi parametric estimation

Investigates the estimation,
inference methods, and goodness-
of-fit test based on copula-based
economic and financial
time series models, as well as
the empirical application of copula
in economic and financial time series.

(continued on next page)
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Table 1 (continued)

Theme Related surveys Topic Key contributions

(Sang, 2013) hydrological time series analysis;
wavelet transform

Summarizes and reviews
the research and application
of wavelet transform method
in hydrological time series
from six aspects.

(Nordman & Lahiri, 2014) experience
likelihood

Summarize the progress
of the experience likelihood of
time series data.

(Tang et al., 2015) complexity test Discuss the complexity testing
technology of time
series data.

(Scotto, Wei & Gouveia, 2015) autocorrelation function (ACF);
count; sparse operator

Investigate the development
of the field of integer-valued time
series modeling, and review the
literature on the most relevant
sparse operators proposed in the
analysis of univariate and
multivariate integer-valued
time series with limited or
unlimited support.

(Maçaira et al., 2018) regression analysis;
artificial intelligence;
exogenous variables;
prediction scheme

A systematic literature review
of time series models with
explanatory variables.

(Papo, 2021) irreversibility;
time-reversal symmetry

Review and compare important
algorithms for testing the
irreversibility of time series.

typical stationary time series. However, in real life, non-stationary time series constitute
the majority, with examples like wind intensity.

4. Distribution: Based on the sequence distribution, a time series can be divided into
Gaussian and non-Gaussian time series.

5. Chaos: The generation of a chaotic time series is related to its initial conditions, where
a change in the initial state of the system may lead to a critical state or inflection
point of the interconnected system, significantly impacting on the performance of
interconnected system. For example, the action of opening a window or door will affect
the power consumption of an air conditioning system (Kim, 2017).

Related definitions
To explain time series and its methods in clearer manner, some definitions involving time
series are introduced below.

Definition 1.Univariate time series: A univariate time series, s= t1,t2,...,tL, is an ordered
set of length L.

Definition 2. Multivariate time series: A multivariate time series, X = (x1,x2,...,xT ), is
a sequence vector, where each element xi is a univariate time series, with differing lengths,
X has T variables, with the ith variable being xi.
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Definition 3. Subsequence: Given a time sequence s with length L, ssub= s[m,m+n−1]
is a subsequence with a length n< L. The starting point of the subsequence is the position
m in s, and the position m+n−1 is the end point, represented as ssub = tm,...,tm+n−1,
where, 1≤m≤ L−n+1.

Definition 4. Similarity degree: For two time series, b and s, (assuming |b| ≤ |s|), the
similarity degree for them can be computed by Sim(b,s)=min{dist (b,si)}, where si is an
arbitrary subsequence of s that satisfies the condition |b| = |si|.

Definition 5. Shapelet : A shapelet is a subsequence of time series, s, with the strongest
discriminative ability. Specifically, the shapelet can be represented by p= (b,δ,c), where
b,δ,c are the subsequence, threshold, and class label, respectively. If an unknown time
series satisfies the condition Sim(p,s)≤ δ, then it can be categorized into class c .

Definition 6. Euclidean distance: Euclidean distance is a frequently used distance
measurement to determine the degree of similarity of two different time series. For
sequences b and c , both with length L, the Euclidean distance can be calculated as

dist euclidean=
√∑L

i=1(bi− ci)2.
Definition 7. Dynamic time warping (DTW): DTW is another widely used distance

measurement method. Compared with Euclidean distance, it can compute the minimum
distance between two sequences with different lengths. For its wide application, the
principle will not be explained here, but the calculation is given as distDTW =DTW (s,b).

Basic algorithms
In time series classification and prediction tasks, the most basic and widely used algorithms
are 1NN-DTW (1 nearest neighbor dynamic time warping) and autoregressive (AR) and
moving average (MA) models.

1NN-DTW
The 1NN-DTW model uses DTW as distance measurement, and the simple but effective
algorithm 1NN to find the nearest training sample of the current instance and assigns the
same class label to the instance as the nearest training sample. This model does not require
training of parameters and has high accuracy. The following pseudocode describes the
procedure of 1NN-DTW.

Algorithm 1 1NN-DTW
Require: T : labeled time series dataset, the number of samples is N
Ensure: acc : average 1NN classification accuracy
1: Num= 0
2: for each instance si of T do
3: distance=DTW (si,T− si);
4: assign the closest instance label ypred of T to si;
5: if ypred == y si then
6: Num=Num+1;
7: end if
8: end for
9: acc = Num

N ;
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AR and MA
• AR model

The model is represented as Xt =
∑p

j=1ajXt−j+εt and is called the p-order AR model,
denoted as AR(p), where a time series value can be expressed as a linear function of its
previous value, Xt , and an impact value, εt . This model is a dynamic model that is different
from the static multiple regression model.
•MA model

The model is represented as Xt = εt +
∑q

j=1bjεt−j and is called the q-order MA model,
denoted as MA(q). The time series value, Xt , is the linear combination of the present and
past error or shock value, εt .

TIME SERIES CLASSIFICATION
Unlike traditional classification tasks, the order of the time series variable is related to
the input object, which makes time series classification a more challenging problem.
Based on data label availability, current time series classification research mainly focuses
on supervised and semi-supervised learning. Usually, supervised learning methods with
labeled information show better performances. However, in real life there is a tremendous
amount of unlabeled data. Therefore, some semi-supervised methods have been proposed
to address this situation by constructing models using limited labeled data and a large
amount of unlabeled data. In addition, some specific application scenarios have new
requirements for time series classification tasks, for example, the early diagnosis of a
disease, which results in a better prognosis. Early classification is used in these situations,
and its goal is to classify data as soon as possible with a certain accuracy rate. This is an
important extension of time series classification. This section introduces the development
route of time series classification technology, analyzes the current difficulties and challenges,
and mentions some expected future trends.

Technology developments
Based on the literature reviewed, we discover three development routes: supervised time
series classification, semi-supervised time series classification, and early classification,
which is a critical extension of the time series classification task. Fig. 3 lists the algorithms
of different technology development routes.

Supervised learning
In early time series classification methods, the work mainly focus on the distance-based
algorithm (Ding et al., 2008). The most prominent one being 1NN-DTW, which has
demonstrated excellent performance in multiple tasks and datasets (Ding et al., 2008), and
was once considered as an insurmountable method in time series classification (Xi et al.,
2006; Ye & Keogh, 2009; Rakthanmanon & Keogh, 2013). With the deepening of related
research, some algorithms with better performance, such as Rocket (Dempster, Petitjean
& Webb, 2019), have achieved better results than 1NNDTW on multiple data sets. Even
so, 1NNDTW is worthy of analysis and academic attention. The 1NN-DTW uses 1NN
as a classifier, DTW as distance measurement criteria, and assigns the nearest training
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Figure 3 Technology development routes.
Full-size DOI: 10.7717/peerjcs.982/fig-3

instance class label to a testing instance. This algorithm is simple, and has a high accuracy.
In practice, training on the optimal hyperparameter settings, such as warping windows, is
required to obtain better performance (Dau et al., 2018). However, during the classification
stage, the class label of every testing instance needs to be computed by working through the
entire training dataset, affording it high time complexity. The optimization of 1NN-DTW
mainly concentrated on reducing classification time, by using one of three methods.
• Speed up
The idea of this type of algorithm is that the effectiveness can be improved by reducing

the dataset size and accelerating the computation of DTW. Through numerosity reduction
and dynamic adjustment of the DTW warping window size (Xi et al., 2006), 1NN-DTW
can be sped up while guaranteeing accuracy.
• Shapelets
Geurts (2001) propose that a time series can be represented by its local pattern. Based

on this idea, Ye & Keogh (2009) formally propose the concept of shapelets. The most
important idea of shapelets is to extract the most discriminative subsequence from the
whole sequence, and then making a classification by constructing a decision tree.

The advantages of the shapelet-based method are that it has strong interpretability,
robustness, and low classification time complexity. Although it can be accelerated through
early abandon and entropy pruning methods, the search space and time complexity
of shapelets are still not negligible. Therefore, some acceleration strategies such as
precomputing of reusable distance and allowable pruning (Mueen, Keogh & Young, 2011),
discrete representation of subsequence (Rakthanmanon & Keogh, 2013), early abandoning
Z-normalization, reordering early abandoning, reversing the query/data role, and cascading
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lower bounds (Rakthanmanon et al., 2012), are applied in the search of shapelets. In
addition, some studies use shapelet transform to construct a new dataset from the original
dataset, expecting reduced training time while retaining model interpretability and further
improving accuracy (Lines et al., 2012; Hills et al., 2014). Shapelet transform separates the
search procedure of shapelets and classifier construction (using the distance between
shapelets and the original sequence as a new dataset), and this makes the selection of the
classifier flexible.

Since the advent of shapelet transform, subsequent research has shifted focus to identify
more effective ways of finding shapelets (Wistuba, Grabocka & Schmidt-Thieme, 2015;
Baldán & Bentez, 2018). In contrast to constantly searching for shapelets in existing
sequences, some algorithms (Grabocka et al., 2014; Bagnall et al., 2015; Hou, Kwok &
Zurada, 2016; Zhao, Pan & Tao, 2020) believe that shapelets can be learned, and this
changes the shapelet searching process into a mathematical optimization task, which can
improve the performance of the model. However, somemethods consider the performance
of acceleration technology to be close to the upper bound, so other solutions must be
considered, such as using multiple GPUs and FPGAs to accelerate the DTW subsequence
search process (Sart et al., 2010).
• Constuct of a neural network
This type of algorithm is a feature-based method, and its main idea is to train the

classifier in advance. Iwana, Frinken & Uchida (2020) embed DTW into a neural network
as a kernel function. In this way, the neural network can solve the problem of time series
sequence recognition, such as time distortion and variable pattern length, in feedforward
architecture. There have been many studies devoted to applying deep learning models
to time series classification (Zheng et al., 2014), and Fawaz et al. (2019) provide a detailed
introduction and summary.

Using the results from previous studies, we compare the accuracy of various methods
(as shown in Table 2) with multiple public datasets which are widely used in this field
(Ding et al., 2008; Rakthanmanon & Keogh, 2013; Lines et al., 2012). The performance of
the shapelets learning method (LTS, FLAG, RSLA) is superior. According to the different
principles used in the methods, we divide the algorithms into five categories: 1NN-DTW,
shapelets, shapelets transform, shapelets learning, and neural network. In addition, the
advantages and disadvantages of 1NN-DTW, shapelets, shapelets transform, and shapelets
learning are compared in Table 3.

1NN-DTW is the simplest, high performing method that needs no training and
can correctly classify samples. However, its biggest problem is long classification
times, especially for large training datasets, which makes it unsuitable for certain
applications. The shapelets-based method reduces the sequence length, and thus, has
a faster classification time, and achieves high interpretability and robustness. However,
shapelets are discriminative features that require significant effort to find, and for large
sequence lengths, the search space increases drastically. The shapelet transform method
makes the choice of classifier more flexible, but it still retains the long search time problem.
The shapelet learning method learns the shapelets instead of searching for them through
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Table 2 Comparison of the accuracy of supervised time series classification.

Category 1NN-DTW Shapelets Shapelets transform Shapelets learning

1NN-DTW
(Ding et al., 2008)

Fast shapelets
(Rakthanmanon & Keogh, 2013)

Shapelet transform
(Lines et al., 2012)

COTE
(Bagnall et al., 2015)

LTS
(Grabocka et al., 2014)

FLAG
(Hou, Kwok & Zurada, 2016)

RSLA-LS
(Zhao, Pan & Tao, 2020)

RSLA-LZ
(Zhao, Pan & Tao, 2020)

Adiac 60.0 54.9 29.2 76.9 49.7 74.2 75.4 73.9

Beef 63.3 56.7 50.0 80.0 83.3 80.0 83.3 86.7

Chlorine 64.8 59.1 58.8 68.6 59.4 78.0 75.0 81.4

Coffee 100.0 96.4 96.4 100.0 100.0 100.0 100.0 100.0

Diatom 96.4 87.9 72.2 89.2 96.7 96.4 96.7 97.7

DP_Little 50.3 57.8 65.4 – 71.7 65.7 69.1 69.8

DP_Middle 54.1 59.2 70.5 – 73.5 72.9 72.6 73.8

DP_Thumb 53.0 59.1 58.1 65.4 75.7 72.4 70.7 75.0

ECGFiveDays 78.7 99.5 77.5 99.9 100.0 92.0 100.0 100.0

FaceFour 82.9 92.0 84.1 71.6 95.4 90.9 92.0 95.5

Gun_Point 94.0 94.0 89.3 93.3 100.0 96.7 96.7 99.3

ItalyPower 95.2 90.5 89.2 96.2 95.9 94.6 96.5 96.8

Lighting7 73.9 63.0 49.3 61.6 78.1 76.7 75.3 79.5

Medicallmages 74.3 60.5 48.8 67.1 67.8 72.4 71.4 73.4

MoteStrain 86.8 79.8 82.5 84.0 85.1 88.8 89.5 89.5

MP_Little 55.2 62.1 66.4 – 73.9 71.8 73.6 73.6

MP_Middle 55.2 61.7 71.0 – 77.3 76.6 74.7 78.3

Otoliths 59.3 60.9 – 60.9 67.2 64.1 73.4 71.9

PP_Little 55.2 48.7 59.6 – 72.7 68.5 71.6 70.5

PP_Middle 50.0 56.8 61.4 – 74.9 74.0 72.7 75.2

PP_Thumb 51.2 58.9 60.8 – 70.1 68.4 69.8 70.7

Sony 73.2 68.5 – 87.7 85.3 92.8 93.2 95.3

Symbols 94.1 93.6 78.0 94.7 93.9 87.5 91.3 92.3

SyntheticC 99.3 93.6 94.3 81.0 99.7 99.7 99.7 99.0

Trace 100.0 100.0 98.0 100.0 100.0 99.0 98.0 100.0

TwoLeadECG 89.3 94.6 85.0 91.6 99.7 99.0 99.3 99.3

Notes.
A dash (-) indicates that there is no data available. The bold values represent the highest accuracy for each category.

training data, so the learned shapelets have higher robustness compared to the searched
one. The disadvantage of this type of method is the long training time required.

Semi-supervised learning
Semi-supervised learning methods construct classifiers using a small amount of labeled
data and a large amount of unlabeled data. One of the most frequently used methods
is self-learning: it utilizes a small amount of labeled data to assign class labels to a large
unlabeled dataset.

Wei & Keogh (2006) propose extending training data by 1NN, if the distance between
the labeled data and unlabeled data is close enough, then add the unlabeled data into
the training set. This is a simple and basic semi-supervised learning approach for time
series classification. Based on this, the subsequent advancements can be divided into three
categories.
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Table 3 Comparison of supervised time series classification.

Category Methods Advantages Disadvantages

1NN-DTW 1NN-DTW (Ding et al., 2008)
AWARD (Xi et al., 2006)

Simple, no training needed High time complexity
of classification

Shapelets Ye’s (Ye & Keogh, 2009),
logical-shapelets (Mueen, Keogh & Young, 2011),
fast-shapelets (Rakthanmanon & Keogh, 2013),
Rakthanmanon’s (Rakthanmanon et al., 2012),
Sart’s (Sart et al., 2010)

High interpretability and robustness,
low classification time complexity

High time complexity of shapelets
searching procedure, and for large
length sequences, the time cost
becomes unacceptable

Shapelet transform Line’s (Lines et al., 2012),
Jon’s (Hills et al., 2014),
Ultra-fast shapelets (Wistuba,
Grabocka & Schmidt-Thieme, 2015),
DFST (Baldán & Bentez, 2018)
COTE (Bagnall et al., 2015)

High accuracy and flexible Long shapelets search time

Shapelet learning LTS (Grabocka et al., 2014),
FLAG (Hou, Kwok & Zurada, 2016),
RSLA (Zhao, Pan & Tao, 2020)

High robustness, interpretability,
discriminativeness

Long training time

• Distance
Wei & Keogh (2006) use Euclidean distance as a similarity measurement; because DTW

is a more effective distance in time series classification, it can be used to improve model
performance (Chen et al., 2013). However, the ratio of DTW and Euclidean distance is
proposed to be the proper distance measurement, making the algorithm more suitable for
smaller data sizes and diverse negative samples. This is based on two assumptions: first,
negative samples are diverse, and the negative samples may have a closer distance with
positive samples; second, comparedwith Euclidean distance, DTWmakes the inter-distance
of positive samples closer.
• Label approach
Other than optimizing the distance function, changing the method of adding testing

data into the training dataset can also improve classification results. One possible way is to
cluster negative samples. Because a robust classifier needs to be constructed using limited,
labeled, positive data, partitioning the unlabeled dataset into smaller local clusters, and
identifying the local clusters’ common principal features for classification can make the
algorithm more reliable and productive (Nguyen, Li & Ng, 2011). Hierarchical clustering is
also an effective cluster method (Marussy & Buza, 2013); first, it clusters all sequences into
smaller clusters, and then uses seeds to assign labels to unlabeled data.
• Stopping criterion
If a stopping criterion is too conservative (or too liberal), it is doomed to produce many

false negatives (or false positives) (Begum et al., 2013). Therefore, it is important to propose
a proper stopping criterion to avoid adding negative samples into the positive sample set.
Begum et al. (2013) propose a parameter-free algorithm for finding a stopping criterion
using the minimum description length (MDL) technique. The algorithm is stopped when
the MDL becomes large, improving the classification results by optimizing the stopping
criterion (Rodriguez, Alonso & Bostrom, 2001).

Tong et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.982 15/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.982


Table 4 Comparison of the accuracy of semi-supervised classification methods.

Datasets Class
number

Wei
(Wei & Keogh, 2006)

DTW-D
(Chen et al., 2013)

SUCCESS
(Marussy & Buza, 2013)

Xu
(Xu & Funaya, 2015)

SSSL
(Wang et al., 2019)

Coffee 2 57.1 60.1 63.2 58.8 79.2
CBF 3 99.5 83.3 99.7 92.1 100.0
ECG 2 76.3 95.3 77.5 81.9 79.3
Face four 4 81.8 78.2 80.0 83.3 85.1
Gun point 2 92.5 71.1 95.5 72.9 82.4
ItalyPow.Dem 2 93.4 66.4 92.4 77.2 94.1
Lighting2 2 65.8 64.1 68.3 69.8 81.3
Linghting7 7 46.4 50.3 47.1 51.1 79.6
OSU leaf 6 46.0 70.1 53.4 64.2 83.5
Trace 4 95.0 80.1 100.0 78.8 100.0
WordsSyn 25 59.0 86.3 61.8 63.9 87.5
OliveOil 4 63.3 73.2 61.7 63.9 77.6
StarLight Curves 3 86.0 74.3 80.0 75.5 87.2

The accuracy of different semi-supervised methods is compared in Table 4, as collected
from various studies. The overall performance of the SSSL method is the best, which shows
that the method of learning shapelets through optimization algorithms is still effective
in semi-supervised learning. While shapelets improve accuracy, they also improve the
interpretability of the algorithm, again highlighting the importance and usefulness of
shapelets.

Early classification
The main goal of early classification is to assign class labels as early as possible while
guaranteeing a certain percentage of accuracy. It has great importance in time sensitive
applications, such as the diagnosis of heart disease, as early diagnosis improves prognosis.
In practical applications, due to an unclear description of the issues to be solved, the early
classification of time series may cause false positives in practical applications, and the cost
of false positives is very high. To solve this problem,Wu, Der & Keogh (2021) propose that
the definition of early classification of time series should be clearly defined first, and it is
also very important to obtain real-world publicly available datasets. According to the data
type, there are two technology development routes.
• Univariable
Rodriguez, Alonso & Bostrom (2001) segment a time series into intervals and then

describe these intervals using relative predicates and region-based predicates. It is the first
literature to mention the term early classification of time series. Although it achieves early
classification by using sub-information, it does not consider ways to choose the shortest
prefix to provide reliable classification results. ECTS (Xing, Pei & Yu, 2009) obtains the
shortest prediction length through training, and it uses the sequence prefix to classify
data under the condition of guaranteed accuracy. ECTS achieves a shorter prefix, higher
accuracy, and higher effectiveness by using an accelerating algorithm. Further, Mori et al.
(2016) calculate the shortest classification length for each class, while Mori et al. (2018)
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Table 5 Comparison of univariable accuracy in early classification.

Methods Datasets

Wafer Gun
Point

Two
patterns

ECG Synthetic
control

OliveOil CBF

ECTS (Xing, Pei & Yu, 2009) 99.08 86.67 86.48 89.00 89.00 90.00 85.20
RelaxedECTS (Xing, Pei & Yu, 2012) 99.08 86.67 86.35 89.00 88.30 90.00 85.20
ECDIRE (Mori et al., 2016) 97.00 87.00 87.00 91.00 96.00 40.00 89.00
EDSC (Xing et al., 2011) 99.00 94.00 80.00 85.00 89.00 60.00 84.00

change this task into amathematical optimization problem, using the accuracy and earliness
as mutual optimization goals.

The above methods lack interpretability, which is useful in determining the factor
affecting an object. EDSC (Xing et al., 2011) introduces shapelets and proposes local-
shapelets, using kernel density estimation or Chebyshev inequality to find the threshold
value of each shapelet, and then selecting the best shapelet for classification.
•Multivariable
MSD (Ghalwash & Obradovic, 2012) extends the EDSC algorithm to suit a multivariable

situation. It uses information gain to evaluate the goodness of shapelets, adds shapelet
pruning, and abandons shapelets that has no ability to correctly classify data. This method
has three disadvantages: first, it handles multivariable data in a fixed window, even
though, different variables could have different shapelet positions; second, it cannot
process variables with different lengths; and third, there is no connection between multiple
variables.

To solve these problems, He et al. (2015) propose learning a shapelet for each variable
independently, and constructing a classifier that can use multiple shapelets to classify
data. Moreover, it substitutes information gain with a new measurement (F-measure).
This method can solve the inter-class imbalance problem (a class containing multiple small
classes, or consisting ofmultiple concepts) to a certain degree through inter-class clustering.
Lin et al. (2015) further extend the input variables of the algorithm from continuous
numerical sequences to characterized discrete sequences.He et al. (2019)use downsampling
technology to solve the intra-class imbalance problem, and a clustering method to deal
with the inter-class imbalance problem, which further expands the applicability of the
algorithm.

In contrast, He, Zhao & Xia (2020) mainly focus on the identification of multivariable
class labels as early as possible and ensures the classification accuracy higher than the
probability of true label. Tables 5 and 6 compare the accuracy of some univariate early
classification algorithms and multivariate early classification algorithms, respectively.

Whilemost of the univariable classification algorithms achieve good results (above 85%),
the accuracy of multivariable algorithms do not reach that high (except EPIMTS). This can
be attributed to the fact that it is difficult to consider multiple variables simultaneously and
extracting the interconnection between them correctly. EPIMTS uses an ensemble method
to combine these two important factors into the algorithm, allowing it to achieve the best
performance.
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Table 6 Comparison of multivariable accuracy in early classification.

Methods Datasets

Syn1 Syn2 Wafer ECG

Class number 2 3 2 2
Variable number 3 4 6 2
MSD (Ghalwash & Obradovic, 2012) 0.74 0.34 0.74 0.74
MCFEC-QBC (He et al., 2015) 0.99 0.77 0.9 0.77
MCFEC-Rule (He et al., 2015) 0.98 0.74 0.97 0.78
EPIMTS (He et al., 2019) 0.98 0.99 0.96 0.84

Challenges and future trends
This section discusses the different technology development routes in time series
classification. Mainly, the research covers both traditional supervised learning methods
and semi-supervised learning methods. In particular, an important extension—early
classification—is proposed for specific application situations.

Although the existingwork has achieved good results in time classification tasks, there are
still some problems. In real life, the amount of unlabeled data exceeds that of labeled data,
and its sources are more abundant. Although supervised learning yields better classification
results, labeling data is expensive and time consuming. In some fields such as medical and
satellite data, experts are required to label the data, making the acquisition of labeled data
even more difficult. Therefore, research on semi-supervised or unsupervised methods has
great value. However, according to the research reviewed for this article, very few recent
studies focus on semi-supervised learning methods and unsupervised learning methods
for time series classification (Wei & Keogh, 2006; Chen et al., 2013; Nguyen, Li & Ng, 2011).
Managing large amounts of unlabeled data for classification tasks is a tremendous challenge
we face.

TIME SERIES PREDICTION
Although time series prediction methods have experienced a long period of development,
the rapid increase in data scale has brought severe challenges to traditional time series
prediction methods, and has also seriously affected the efficiency of prediction methods.
Time series prediction methods have gradually developed from simple linear regression
models and nonlinear regression models based on traditional statistics to machine learning
methods represented by neural networks and support vector machines. At the same time,
researchers have also proposed other prediction methods for time series with different
characteristics based on different theoretical foundations. Fuzzy cognitive map can deal
with data uncertainty and maintain a high level of interpretability. To solve the problem of
insufficient labeled data for some practical applications, transfer learning methods can be
used. Two future research avenues are clear; first, dealing with rapid increase in the scale
of time series data; second, choosing the most suitable model for a specific problem.
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Technology developments
According to the reviewed literature, we have defined four technical development routes,
namely, the classic algorithm, neural network, fuzzy cognitive map, and transfer learning.
Figure 4 lists the development directions of the different technical routes and their resulting
algorithms.

Classical methods
The traditional time series prediction methods are mainly used to solve the model
parameters on the basis of determining the time series parameter model and using the
solved model to complete the prediction work, mainly from the perspective of a stationary
series, non-stationary series, or multivariate time series.
• Stationary series
Russian astronomer Slutzky create and propose the moving average (MA) model

(Slutzky, 1937), and British statistician G.U. Yule propose the autoregressive(AR) model
(Yule, 1927)when studying sunspots. TheARmodel is a representation of a randomprocess,
and its output variable depends linearly on its previous value and random conditions. The
purpose of the AR model is to minimize the square error between the predicted results and
the actual results. Box and Jenkins propose a short memory model called autoregressive
moving average (ARMA)model (Box & Jenkins, 1970). The ARMAmodel provide a general
framework for predicting stationary observation time series data. However, it is not suitable
for non-stationary time series data, and only one time series can be modeled at a time.
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• Non-stationary series
Non-stationary time series comprise four trends: long-term trend, cyclic trend, seasonal

trend, and irregular trend. Box and Jenkins propose the autoregressive integrated moving
average (ARIMA) model for non-stationary short memory data with obvious trends (Box
& Jenkins, 1970). The ARIMA model has become one of the most widely used linear
models in time series prediction. This model uses historical data of univariate time series
to analyze its own trends and predict future cycles, but the ARIMA model cannot easily
capture non-linear patterns. One or more time differentiation steps in ARIMA keep the
time series data unchanged. Differentiation operations usually amplify high-frequency
noise in time series data, thereby affecting the accuracy of prediction. When modeling
time series with long memory dependence, a common alternative is autoregressive partial
integration moving average (ARFIMA). The model is based on ARIMA and allows the
difference parameters to be set to non-integer values. On the basis of the ARIMA model,
the autoregressive integrated moving average (ARIMAX) model is obtained by adding
exogenous input (Wangdi et al., 2010).

The exponential smoothing (ES) (Gardner, 1985) model is a time series data smoothing
technique that uses past data points in a time window to smooth current data points. In
contrast to the traditional MA model, the ES model uses an exponential function to assign
more weight to the nearest data point, which is beneficial for processing non-stationary
time series data, and is aimed at series without trend and seasonality. The Holt smoothing
method (Holt, 2004; Winters, 1960), also called double exponential smoothing, is an
extension of ES designed for time series with a trend but no seasonality. Chatfield (1978)
propose the Holt-Winters model, which uses three smoothing steps to predict time series
data. The three smoothing steps are used for level, trend, and seasonality, and are also
called three exponential smoothing. The Holt-Winters model can be used for univariate
time series prediction of seasonal data.
•Multivariate time series
The vector autoregressive (VAR) (Mizon, 1991) model is a natural extension of the

univariate ARmodel over dynamic multivariate time series, providing predictions superior
to univariate time series models and theory-based fine simultaneous equation models. The
vector autoregressive moving average (VARMA) (Athanasopoulos & Vahid, 2008) model
allows several related time series to be modeled together, considering the cross-correlation
and internal correlation of the series. The VARMA model fully considers the influence
of each sequence on another sequence, thereby improving the prediction accuracy. This
makes the predictions generated by the VARMAmodel more reliable for decision-making.

Traditional research methods mostly use statistical models to study the evolution of
time data. For decades, linear statistical methods have dominated the prediction. Although
linear models have many advantages in implementation and interpretation, they have
serious limitations in capturing the nonlinear relationship in the data, which is common
in many complex real-world problems.

Tong et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.982 20/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.982


Neural Network
An artificial neural network (ANN) is a flexible computing framework and general
approximator that can be applied to various time series prediction problems with high
accuracy. The main advantage of a neural network is its flexible nonlinear modeling ability,
without the need to specify a specific model form. The popularity of ANN stems from
being a generalized nonlinear prediction model. Since the advent of the simplest ANN, the
ideas of recursion, nonlinear regression, and convolution continues to develop. According
to the characteristics of real data, the linear and nonlinear models can be combined to
construct a hybrid model to achieve better performance.
• Recursion
Connor & Atlas (1991) apply a recurrent neural network (RNN) to time series prediction,

using the historical information of time series to predict future results. Hochreiter &
Schmidhuber (1996) proposes an improved RNN called long short-term memory (LSTM),
which solves the problem of the vanishing gradient by introducing additional units that can
store data indefinitely, and has shown success in single-step time series analysis. LSTM is
able to address sequences of varying length and capture long-termdependencies without the
same problems as traditional RNN architectures (Wilson et al., 2018). LSTM has gradually
become a popular solution for learning the long-term time-dependent characteristics of
original time series data, and can use a fixed-size time window to solve many time series
tasks that feedforward networks cannot solve.
• Convolution
Convolutional neural network (CNN) is different from RNN, which strictly uses

sequential learning processes. The latter processes one data point each time to generate
data representations, while the former use nonlinear filters based on multiple dataset
learning representation. In each step, a filter is used to extract features from a subset of
local data, so that the representation is a set of extracted features. Liu et al. (2015) use a
CNN combined with time-domain embedding to predict periodic time series values; a
novel model called a time-embedding enhanced convolutional neural network (TeNet), to
learn the repeated occurrences in periodic time series structural elements (called abstract
fragments) that have not been hidden to predict future changes.Mittelman (2015) propose
a non-decimated full convolutional neural network (UFCNN) to deal with time series
problems. UFCNN has no gradient disappearing and gradient explosion problems, so it is
easier to train. It can be implemented more efficiently because it only involves convolution
operations instead of the recursion used by RNN and LSTM.
• Hybrid model
Modeling real-world time series is a particularly difficult task because they usually consist

of a combination of both linear and nonlinear patterns. In view of the limitations of linear
and nonlinear models, hybrid models have been proposed in some studies to improve the
quality of prediction. The ARIMA model, ANN model (Peter & Zhang, 2003; Khashei &
Bijari, 2010; Babu & Reddy, 2014), and multi-layer perceptron(MLP) (de O. Santos Jnior,
de Oliveira & de Mattos Neto, 2019) are combined to construct a hybrid model, which has
been proven by experiments to achieve better performance than a single model.
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Table 7 Performance comparison of different methods.

Methods S&P 500 Index Shanghai Composite Index Hangzhou Temperature

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

ANN 24.22 20.21 0.965 66.25 39.35 0.975 2.95 2.14 0.895
UFCNN (Mittelman, 2015) 24.36 19.84 0.965 93.06 57.77 0.950 2.64 1.97 0.907
LSTM 19.04 14.42 0.978 63.84 38.05 0.976 2.86 2.09 0.901
SeriesNet (Shen et al., 2020) 17.32 13.15 0.982 63.94 38.37 0.976 2.82 2.06 0.903

Notes.
The data are obtained from reference (Shen et al., 2020).

Table 8 Performance comparison of different methods.

Method category Methods Advantages Disadvantages

Classical method AR, MA, ARMA, ARIMA Good at linear problems Cannot handle nonlinear
problems well

Traditional machine
learning

SVM, LS-SVM
(Suykens & Johan, 2002)

Able to solve complex
time series data

Cannot handle nonlinear
problems well

NN ANN, BPNN, DE-BPNN
(Wang, Zeng & Chen, 2015)

Able to handle
nonlinear problems

Long-term dependence
cannot be effectively
preserved

LSTM LSTM Capable of capturing
long-term dependence, structure
is conducive to dealing with
sequence problems

Facing the problem
of gradient disappearance or
gradient explosion, and it is
difficult to train

CNN CNN, UFCNN
(Mittelman, 2015)

Efficient Difficult to capture
long-term dependence

Hybrid model ARIMA-ANN
(Peter & Zhang, 2003;
Babu & Reddy, 2014),
ARIMA-SVM (Pai & Lin, 2005;
Oliveira & Ludermir, 2014), ARIMA-NN
(Khashei & Bijari, 2010), ARIMA-MLP-SVR
(de O. Santos Jnior, de Oliveira & de Mattos Neto, 2019),
SeriesNet (Shen et al., 2020)

Better performance High complexity

Shen et al. (2020) propose SeriesNet, using LSTM and extended random convolution to
extract features with different time intervals from the time series, and combining them.
This can make full use of the characteristics of the time series and help improve prediction
accuracy. Compared with other models, the SeriesNet model has the best prediction
accuracy in nonlinear and non-stationary datasets. In the non-stationary datasets, the error
of SeriesNet decreases slowly as the size of the sliding window increases.

Table 7 compares the root-mean-square error (RMSE), the mean absolute error
(MAE) and the coefficient of determination (R2) of multiple methods. We summarize
the advantages and disadvantages of different methods, and the results are presented in
Table 8. The hybrid model has a stronger advantage when dealing with nonlinear and
non-stationary data.
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Fuzzy cognitive map
Fuzzy cognitive map (FCM) is a dynamic system quantitative modeling and simulation
method proposed by Kosko (1986). It is a simple and powerful tool that is very useful in
dynamic system simulation and analysis. FCM can be useful in time series prediction tasks
that do not need to deal with exact numbers but only need approximate results (Felix et
al., 2019). This method combines the characteristics of fuzzy logic and neural networks,
which can effectively model the states of the system. It can simultaneously deal with the
uncertainty of data and maintain a high level of interpretability. It has been demonstrated
that FCM can be applied to predict time series with univariate (Lu, Yang & Liu, 2014) and
multivariate (Froelich et al., 2012; Papageorgiou & Froelich, 2012a; Papageorgiou & Froelich,
2012b; Stach et al., 2005) variables.

The existing algorithms applied to train FCM belong to two main groups, population-
based and Hebbian-based methods. Population-based algorithms include particle swarm
optimization (PSO) (Homenda, Jastrzebska & Pedrycz, 2015; Salmeron et al., 2017), genetic
algorithm(GA) (Yesil et al., 2013), memetic algorithms(Salmeron, Ruiz-Celma & Mena,
2016), artificial bee colony(ABC) (Yesil et al., 2013), and modified asexual reproduction
optimization (Salmeron et al., 2019). Hebbian-based learning algorithms are seldom used
for time series prediction because of their poor generalization ability.

FCM in the time series prediction domain is mostly composed of two parts, establishing
the structure and learning the weightmatrix. To facilitate an efficient extraction of concepts,
FCM framework is constructed by using fuzzy c-means algorithm (Lu et al., 2014). When
applying standard FCM to time series prediction, most of the literature (Lu, Yang &
Liu, 2014; Poczeta & Yastrebov, 2014; Papageorgiou, Poczeta & Laspidou, 2015; Poczeta,
Yastrebov & Papageorgiou, 2015) assumes that the weights of FCM are adjusted during the
training phase and do not change with time when used for prediction. To improve the
accuracy of prediction and reduce training time, some studies proposed pseudo-inverse
learning and wavelet transform.
• Pseudo-inverse learning
Vanhoenshoven et al. (2020) propose a new FCM learning algorithm based on theMoore

Penrose inverse (FCM-MP). The unique feature of this learning method is that for the
pseudo-inverse learning of the FCMweight matrix, each iteration step calculates a different
set of weights. In this way, different time-varying data segments will affect the weight,
and the weight will change from one iteration to the next. This algorithm improves the
accuracy of prediction, does not require laborious parameter adjustments, and reduces the
processing time required for training the FCM.
•Wavelet transform
Although fuzzy cluster analysis has strong time series modeling capabilities, prediction

methods based on fuzzy cluster analysis cannot handle non-stationary time series, and
evolutionary learning methods are not suitable for large-scale time series. To overcome
these two limitations, Yang & Liu (2018) propose wavelet high-order fuzzy cognitive map
(WHFCM), which uses wavelet transform instead of fuzzy time series, and uses ridge
regression to train. Further, empirical wavelet transform (EWT) is superior to discrete
wavelet transform in time series prediction, because empirical wavelet transform is a
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data-driven signal decomposition algorithm. Gao, Du & Yuen (2020) propose the mixed
time series prediction model based on EWT and FCM. EWT is applied to decompose the
original time series into different levels to capture information of different frequencies, and
to train high-order fuzzy cognitive maps to model the relationship between all generated
subsequences and the original time series.

FCM has been successfully used to model and predict stationary time series. However,
it is still challenging to deal with large-scale non-stationary time series with time trends
and rapid changes over time. The main advantage of the FCM-based model is the human-
centered knowledge representation interface. Therefore, in terms of accuracy, fuzzy
admissible mapping time series modeling may not exceed the classical methods that have
been studied, but FCM provides superior practical characteristics.

Transfer learning
Time series data usually change over time. Hence, samples collected over a long period
of time are usually significantly different from each other. As such, it is generally not
recommended to directly apply old data to the prediction process. For time series prediction
problems, we hope to train an effective model with only a small number of fresh samples
and relatively rich, old data. Therefore, to solve the problem of insufficient labeled data
available in some practical applications, transfer learning methods can be used. Transfer
learning is the reusing and transferring of knowledge in one field to other different but
related fields. Its basic idea is to utilize the data or information of related source tasks to
assist in modeling for the target task. Traditional machine learning techniques try to learn
each task from scratch, while transfer learning techniques try to transfer the knowledge
from some previous tasks to a target task when the latter has less high-quality training data
(Pan & Yang, 2010).

Xiao, He & Wang (2012) propose a transfer learning-based analog complexing model
(TLAC). First, it transfers related time series from the source domain to assist in modeling
the target time series using the transfer learning technique. Ye & Dai (2018) propose
a hybrid algorithm based on transfer learning, combining online sequential extreme
learning machine with kernel (OS-ELMK) and integrated learning (TrEnOS-ELMK). With
TrEnOS-ELMK, a single-source transfer learning algorithm is implemented. Using transfer
learning, the knowledge learned from old data can be effectively used to solve the current
prediction task, bridging the severe challenge brought about by long-term knowledge
transfer. The distribution of time series data usually changes gradually and significantly
over time; therefore, single-source transfer learning algorithmmay also be confronted with
the challenge of negative transfer. To solve this problem, Gu & Dai (2021) propose a new
multi-source transfer learning algorithm, referred to as MultiSrcTL algorithm, and a new
active multi-source transfer learning algorithm, referred to as AcMultiSrcTL algorithm.

Ye & Dai (2021) propose a deep transfer learning method (DTr-CNN) based on the
CNN architecture, which inherites the advantages of CNN and tries to alleviate the problem
of insufficient labeled data. This algorithm considers the similarity between the potential
source dataset and the target dataset, and provides guidance for selecting the appropriate
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source domain. Gupta et al. (2018) propose an approach to leverage deep RNNs for small,
labeled datasets via transfer learning.

At present, there are relatively few studies on the application of transfer learning to time
series prediction. Existing research mainly focuses on the research of pattern classification.
In many practical situations, the lack of labeled data may become an obstacle to time
series prediction. Unlike traditional machine learning algorithms, transfer learning breaks
the assumption that training data and test data must follow the same distribution. For
relevant datasets with sufficiently labeled samples, the use of transfer learning framework
has become a new trend, and the use of knowledge from relevant source datasets on target
dataset effectively solves the problem of insufficient labeled data.

Challenges and future trends
This section discusses the method of time series prediction. Time series data essentially
reflects the changing trend of some random variables over time. The core of the time series
prediction problem is to identify trends from the data, and use it to estimate the future
data and predict occurrences in the next period of time. There is not one best model for all
actual data, only the most suitable model from a reasonable range of models can be chosen
to provide better prediction. The establishment of new time series models is still a problem
that scholars will continue to study in the future, giving direction for further research in
the field of time series prediction.

CONCLUSION
Time series is an important data type and is generated in almost every application domain
at an unprecedented speed and scale. The analysis of time series can help us understand
the essence of various phenomena. We investigate current research regarding time series
and find that there are few reviews for time series algorithms. In this article, we analyze
the prevalent topics of time series and divide them into two categories: classification and
prediction. Further, we extract the important technology development routes for time series
related algorithms, and introduce every original method and its subsequent improvements.
In addition, we compare the performance of different algorithms, analyze and conclude
their advantages and disadvantages, as well as the problems and challenges they face.

Through our investigation, we find that the technological development has three areas:
the traditional method, machine learning method, and deep learning method. In time
series classification, the mainstream methods change from distance-based methods (1NN-
DTW) into feature-based methods (shapelets), and finally they evolve into a mathematical
optimization problem that not only improve the accuracy but also reduce the time
complexity. In time series prediction, owing to the limitations of AR, MA, ARIMA, and
other traditional methods that cannot cope with nonlinear problems well, neural network
methods have become a popular topic, and it is expected to enhance the learning ability of
models through fuzzy cognitive map and transfer learning. Despite the fact that the current
research has obtained some achievements, we find some important problems during our
investigation:
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• For time series classification, the research on semi-supervised and unsupervised
learning algorithms is insufficient. While unlabeled data is ubiquitous and available
in large amounts in real life, labeling it is labor intensive and sometimes requires expert
knowledge.
• For time series prediction, constructing targeted time series models to solve real-world
problems is still an ongoing problem for future researchers.

In view of the current development status of time series research, we believe that there
are still many possible development directions for time series analysis. For example, neural
network is a very popular method for time series analysis. In most cases, its solution
process is a black box, which lacks interpretability, so that the results cannot be intuitively
understood, and clear and targeted optimization scheme cannot be obtained. Exploring the
symbolic expression of time series with stronger interpretability is the possible development
direction of time series in the future. At present, most of the time series analysis is to collect
data offline for offline analysis. When the model built in the offline phase is used in
the online phase, new samples are continuously obtained as the working time increases.
However, most methods do not consider the use of newly obtained data, and the model
cannot be updated in time. Therefore, how to update the model for real-time data is the
future task of time series modeling research.

Time series has attracted much attention because of its important applications in many
fields, such as disease diagnosis and traffic flow prediction. We believe that the study of
time series in this article will provide a valuable reference for related research and inspire
interested researchers and practitioners to invest more in this promising field.
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