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ABSTRACT

The pervasive adoption of GPS-enabled sensors has lead to an explosion on the amount

of geolocated data that captures a wide range of social interactions. Part of this data

can be conceptualized as event data, characterized by a single point signal at a given

location and time. Event data has been used for several purposes such as anomaly

detection and land use extraction, among others. To unlock the potential offered by

the granularity of this new sources of data it is necessary to develop new analytical tools

stemming from the intersection of computational science and geographical analysis.

Our approach is to link the geographical concept of hierarchical scale structures with

density based clustering in databases with noise to establish a common framework for

the detection of crowd activity hierarchical structures in geographic point data. Our

contribution is threefold: first, we develop a tool to generate synthetic data according

to a distribution commonly found on geographic event data sets; second, we propose

an improvement of the available methods for automatic parameter selection in density-

based spatial clustering of applications with noise (DBSCAN) algorithm that allows its

iterative application to uncover hierarchical scale structures on event databases and,

lastly, we propose a framework for the evaluation of different algorithms to extract

hierarchical scale structures. Our results show that our approach is successful both as a

general framework for the comparison of crowd activity detection algorithms and, in

the case of our automatic DBSCAN parameter selection algorithm, as a novel approach

to uncover hierarchical structures in geographic point data sets.

Subjects Algorithms and Analysis of Algorithms, Data Science, Network Science and Online

Social Networks, Social Computing, Spatial and Geographic Information Systems

Keywords Clustering, Crowd activity, Hierarchical scales, Point pattern analysis, GIS

INTRODUCTION

Spatio-temporal analysis is a rapidly growing field within geographical information science

(GIScience). The rate of increase in the amount of information gathered every day, the

pervasiveness of Global Positioning System (GPS) enabled sensors, mobile phones, social

networks and the Internet of Things (IoT), demand for robust and efficient analysis

techniques that can help us find meaningful insights from large spatio-temporal databases.

This diversity of digital footprints can be aggregated and analyzed to reveal significant

emerging patterns (Arribas-Bel, 2014), but its accidental nature, produced as a side-

effect of the daily operations of individuals, government agencies and corporations,

How to cite this article Salazar JM, López-Ramírez P, S. Siordia O. 2022. Detection of hierarchical crowd activity structures in geographic
point data. PeerJ Comput. Sci. 8:e978 http://doi.org/10.7717/peerj-cs.978

https://peerj.com/computer-science
mailto:msalazar@centrogeo.edu.mx
mailto:plopez@centrogeo.edu.mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.978
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.978


and not according to scientific criteria, calls for new analysis methods and theoretical

approaches (Zhu et al., 2017; Kitchin, 2013; Arribas-Bel, 2014; Liu et al., 2015).

Within these new data sources, of special interest are those that can be characterized

as spatio-temporal events data (Kisilevich et al., 2010), observations consisting of points

in space and time and possibly with attribute information associated. Geo social media

messages, cell phone calls, emergency services (911 reports), public service reports and

criminal investigations are examples of this kind of data. Event data is linked to the

social patterns of activity, they represent breadcrumbs that, when aggregated, can help us

understand the underlying dynamics of the population. The production of this kind of

event data is mediated by the activities people are undertaking and the geographic structure

of space (Jiang & Ren, 2019).

The granularity of event data allows the researcher to generate arbitrary aggregations

and analyze the data with different zoning schemes and scales (Robertson & Feick, 2018;

Zhu et al., 2017). However, this freedom to build arbitrary aggregations comes at a cost, for

example, the modifiable areal unit problem (MAUP) (Openshaw, 1984) links the results

of analysis to the specific system of scales and zones used. Another closely related but

different problem is the uncertain point observation problem (Robertson & Feick, 2018),

which states the uncertainty of the assignation of a point observation to a given contextual

area. As Wolf et al. (2021) points out, there have been important analytic developments to

tackle the issues associated with MAUP, but this developments represent empirical answers

to a problem that, as has been evident in the work of Robertson & Feick (2018) and Kwan

(2012), is in reality theoretically oriented: solving the MAUP through the development

of optimal zoning schemes (Bradley, Wikle & Holan, 2017) does not automatically relate

those zones to any geographically significant process or structure.

From a Computer Science perspective, the problem of aggregating individual

observations into a system of zones has been tackled mainly through clustering

algorithms (Kisilevich et al., 2010; Frias-Martinez et al., 2012; Frias-Martinez & Frias-

Martinez, 2014; Khan & Shahzamal, 2020; Liao, Yeh & Jeuken, 2019; Steiger, Resch & Zipf,

2016). Clustering individual observations is, in the language of Robertson & Feick (2018), an

assignation of points into areal support and as such it implicitly involves a conceptualization

of how the individual behaviors are structured to produce the patterns revealed by

clusterization. In this sense, this data driven algorithms can be thought as belonging to

the same empirical family of methods of optimal zoning algorithms, lacking theoretical

support. As argued by O’Sullivan (2017) and O’Sullivan & Manson (2015), this lack of

grounding on formal geographic knowledge can often lead to spurious or irrelevant

conclusions and, in general, hinder the advance of knowledge and the exploitation of new

data sources for geographic analysis (Arribas-Bel, 2014).

One avenue of research, proposed in Singleton & Arribas-Bel (2021), to tackle the

problem of the use of data driven algorithms for the development of sound geographic

analysis is to develop explicitly spacial algorithms that exploit our knowledge about the

processes and structures that organize the spatial activity patterns of society. In our work,

we tackle the problem of developing an algorithm that, through the theoretical concept of
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hierarchical scales, is able to detect patterns that are geographically relevant and not only

data driven.

Our contribution is hence threefold. First, since there is often no ground truth available

to compare different clustering algorithms on geographical events data, we developed

an algorithm to generate synthetic hierarchically structured data; second, we developed

an algorithm for the automatic selection of the ε parameter in DBSCAN that allows its

use for the detection of density based hierarchical structures in geographic point data;

and third, we propose a framework to compare the performance of different clustering

algorithms. Our work sits at the intersection of computer science and geography, proving

that approaching data driven problems from a theory oriented perspective, provides robust

analysis frameworks.

The rest of the paper is organized as follows: In ‘Detection of crowd activity scales

and zones’ we present the problem of detecting hierarchical crowd activity structures in

geographic events databases; in ‘Synthetic data’, we describe the algorithm to generate

synthetic samples to test different algorithms; in ‘Clustering Algorithms’ we describe the

algorithms we are going to use; ‘Experimental setting’ describes the experimental setting

used to compare different clustering algorithms; ‘Evaluation’ describes the metrics used to

evaluate the performance of the clustering methods; in ‘Results and discussion’ we present

our main results and finally in ‘Conclusions and Further Work’ we conclude and propose

further research.

DETECTION OF CROWD ACTIVITY SCALES AND ZONES

In the context of spatio-temporal events, as described by Kisilevich et al. (2010), we are

going to refer as crowd activity to the collective aggregated patterns observed in some

spatio-temporal events data sets, specially in data describing some aspect of the behavior

of human populations. Although not formally defined, this concept underpins most of the

work that we are going to review in the rest of this section.

There is a substantial body of work on techniques for event detection using the geolocated

Twitter feed (in this context, event refers to real world occurrences that unfold over space

and time, which is different to the use of the term on spatio-temporal databases). Atefeh

& Khreich (2015) present a survey of such techniques. Within this field, we are specially

interested in works that use only the spatio-temporal signature of events and don’t rely on

attribute or content information (such as the content of Twitter messages), because this

renders the methods easily translatable across different databases. Along this line, in Lee,

Wakamiya & Sumiya (2011), the authors propose a technique for detecting unusually

crowded places by extracting the regular activity patterns performing K-means clustering

over the geolocated tweets and then characterizing each cluster by the number of users, the

amount of messages and a measure of the mobility of users in each cluster.

Another interesting research avenue is the detection of land use by accounting for the

spatio temporal signature of events data sets. For example, in Frias-Martinez & Frias-

Martinez (2014), the authors develop a technique to extract, through self organized

maps (Kohonen, 1990) and spectral clustering, different land uses in urban zones;
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while Lenormand et al. (2015) use a functional, network based, approach to detect land use

through cell phone records. Along the same line, Lee, Wakamiya & Sumiya (2012) develop

a technique to extract significant crowd behavioural patterns and through them generate a

characterization of the urban environment.

From this brief review we can infer some generalities involved in the extraction of crowd

activity patterns from spatial spatio-temporal events data:

• Time is segmented in intervals and the definition of this intervals is arbitrary and not

extracted from the data. In Frias-Martinez & Frias-Martinez (2014), each day is divided

in 20min intervals; in Lee, Wakamiya & Sumiya (2011), each day is segmented in four six

hours intervals, while in Lenormand et al. (2015) each day is divided in hourly intervals.

• The geographic space is partitioned in a single scale tessellation of space.

Our work will focus on the second general characteristic: the way in which the space

is partitioned to obtain crowd activity zones. In the reviewed works, the partitioning

algorithm returns a single scale tessellation around the cluster centroids identified. This

partition reflects the differences in point density across the whole space but, since it is

flat (it has a single scale) it cannot represent the structures found at different scales, this

means that such partitions mix the whole range of scales of the underlying data generating

processes into a single tessellation.

However, when addressing crowd activity patterns from a geographic perspective, the

issue of scale is evident: the underlying processes that generate the observed spatio-temporal

distribution of events is organized as a hierarchy of scales, closely related to the urban

fabric (Jiang & Miao, 2015; Arcaute et al., 2016; Van Meeteren & Poorthuis, 2018). This

suggests the use of techniques for detecting crowd activity zones explicitly incorporating

the concept of hierarchical scales. Along this line of work, in Jiang & Ren (2019) the

authors prove that a hierarchical structure, based on the Natural Cities algorithm (Jiang

& Miao, 2015), is able to predict the location of Twitter messages, while in López-Ramírez,

Molina-Villegas & Siordia (2019), the authors use a hierarchical structure to aggregate

individual Twitter messages into geographical documents as input to latent topic models.

This demonstrates the need to develop further methods to extract hierarchical crowd

activity patterns from spatio-temporal events data.

Conceptually, hierarchical crowd activity detection algorithms are similar to hierarchical

clustering algorithms. Crowd activity is characterized by arbitrary shaped agglomerations in

space with potentially noisy samples, so the computational task is similar to the one tackled

by DBSCAN (Ester et al., 1996). The main difference is that in the case of hierarchical

crowd activity detection, one needs to find structures within structures to uncover the

whole hierarchical structure. Notice that this problem is different from the problem of

hierarchical clustering as approached by HDBSCAN (McInnes, Healy & Astels, 2017) or

OPTICS (Ankerst et al., 1999), where the task is to find the most significative structures

present in a data set, this will be further explained in ‘Clustering Algorithms’.

A central problem to the development of algorithms to detect hierarchical crowd

activity patterns is the lack of ground truth to test the results. For example, in Arcaute

et al. (2016) and Jiang & Ren (2019), the authors are interested in providing alternative,
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tractable, definitions of cities and perform only qualitative comparisons with available

data. In López-Ramírez, Molina-Villegas & Siordia (2019), the authors extract regular

activity patterns from the geolocated Twitter feed and also perform only a qualitative

comparison to the known urban activity patterns. To provide an alternative that allows

the quantitative evaluation of different algorithms to detect hierarchical crowd activity

patterns, in the next section we describe an algorithm to generate synthetic data that aims

to reproduce the most important characteristics found in real world event data.

SYNTHETIC DATA

In order to test different hierarchical crowd activity detection algorithms, we developed a

tool to generate synthetic data. The algorithm creates and populates a hierarchical cluster

structure that reproduces the main characteristics of the structures we described in the

previous sections. Our synthetic data generator creates a hierarchical structure by first

creating a cluster tree where every node represents a cluster of points within a region

delimited by a random polygon, within this polygon, a random number of clusters are

generated, this procedure is carried on iteratively. For every level in the hierarchy we fill

the space with noise points. Figure 1 shows an example of the tree structure generated by

our algorithm as well as the polygons and points.

Geographic distributions that exhibit hierarchical structure have a characteristic heavy-

tailed size distribution (Jiang, 2013; Arcaute et al., 2016; Jiang & Ren, 2019), having many

more small objects than large. To show that our synthetic data exhibits this same property,

we perform a Delaunay triangulation with the points as vertex, then obtain the lengths

of the edges and sort them in descending order. We then proceed to select the length

values larger than the mean (the Head) and the values smaller than the mean (the Tail),

keeping only the latter in order to perform the Head-Tails break described in Jiang (2013).

Figure 2 shows three iterations of the Head-Tails break, each of them clearly exhibiting

the heavy-tailed distribution characteristic of hierarchical scales. For each iteration we also

calculate the HT-index (Jiang & Yin, 2014) and show that it corresponds with the level in

the cluster tree as expected.

To facilitate research with our synthetic data generator, we developed a series of helper

tools. For example, we include a tool to easily obtain the tags (to which cluster and level

a point belongs) for every point and another tool to generate visualizations of the whole

structure such as shown in Fig. 1. Our synthetic data can be used to test different clustering

or aggregation algorithms in terms of their ability to detect the hierarchical structure

in geographic point data sets. To allow the reproductibility of our research and make

our methods available to other researchers, we published all our algorithms in a publicly

available library in Salazar, López-Ramrez & Sánchez-Siordia (2021).

Our clusters tree data structure can also be used to tag hierarchical clusters structures

obtained by different algorithms. Instead of generating synthetic data, we can pass a

hierarchical clusterization on a points sample to create a cluster tree by using the points

and the clustering labels. Our helper tools simplify the process of comparison between

different hierarchical crowd activity detection algorithms.
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(a)

(b)

Figure 1 Clusters obtained using the synthetic data generator (A) and the corresponding tree struc-

ture (B).Nodes in (A) correspond with clusters in (B), the colors represent the different hierarchical lev-

els.

Full-size DOI: 10.7717/peerjcs.978/fig-1
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Figure 2 Length of the edges in the Delaunay triangulation for three successive levels in a synthetic

data sample. (A) First iteration of the Head-Tails break. The plot shows the length of the edges of the De-

launay triangulation obtained from the points. The edges are sorted according to the length value. (B) Sec-

ond iteration of the Head-Tails break. The plot shows the length of the edges of the Delaunay triangula-

tion obtained from the points. The edges are sorted according to the length value. (C) Third iteration of

the Head-Tails break. The plot shows the length of the edges of the Delaunay triangulation obtained from

the points. The edges are sorted according to the length value.

Full-size DOI: 10.7717/peerjcs.978/fig-2

CLUSTERING ALGORITHMS

There are several clustering algorithms available in the literature. For this research, based on

the geographic considerations described in ‘Detection of crowd activity scales and zones’,

we will focus on density based algorithms. This family of unsupervised learning algorithms

identify distinctive clusters based on the idea that a cluster is a contiguous region with a

high point density. Of special importance for our research is the ability of density based

clustering algorithms to distinguish between cluster points and noise (Ester et al., 1996).

The result of a clustering algorithm strongly depends on parameter selection, thus, a

common goal in the Computer Science literature has been the development of algorithms

that use the least amount of free parameters, this has lead to the development of algorithms

like OPTICS (Ankerst et al., 1999) and HDBSCAN (Campello, Moulavi & Sander, 2013;

McInnes, Healy & Astels, 2017) that can detect hierarchical cluster structures with very little

free parameters, this allows the automatic extraction of patterns from data without input

from the researcher.

Hierarchical clustering algorithms focus on the task of detecting the most relevant

density structures regardless of the scale. To illustrate this point, in Fig. 3 we show the

original density clusters produced by our synthetic data generator together with the

clusters obtained with HDBSCAN (‘HDBSCAN’) and our proposed Adaptative DBSCAN

(‘Adaptative DBSCAN’). As can be seen in the Figure, HDBSCAN detects the highest

density clusters possible, this becomes even clearer by looking at the Condensed Tree, where

the detected structures correspond to the deepest leafs in the tree: the most persisting

across scales density structures. This focus on identifying persistent structures makes these

algorithms unsuited for the task of detecting structures within structures because, as can

be seen in the Figure, the intermediate scale levels are not detected since they do not persist

in the Condensed Tree.
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Figure 3 Cluster structure obtained with: synthetic data generator, Adaptative DBSCAN and HDB-

SCAN. Bottom left figure shows the HDBSCAN condensed tree.Original clusters produced with our

synthetic data generator together with the clusters identified with HDBSCAN and Adaptative DBSCAN.

The HDBSCAN Condensed Tree (bottom left) shows the depth of the structures detected, the two blue

clusters shown in HDBSCAN results correspond to the leftmost and rightmost leafs.

Full-size DOI: 10.7717/peerjcs.978/fig-3

Closely related to density based clustering, we have algorithms that extract hierarchical

structures in point data by imposing thresholds to the distance between points. Hierarchical

Percolation (Arcaute et al., 2016) and Natural Cities (Jiang & Miao, 2015) are examples of

this kind of algorithms. The goal in this case is to explicitly extract the hierarchical structure

implied by a heavy tailed distance distribution.

In the following Sections we present a brief description of the clustering and hierarchical

scales extraction algorithms we are going to compare.

Natural cities

The Natural Cities algorithm proposed in Jiang & Miao (2015) looks to objectively define

and delineate human settlements or activities at different scales from large amounts of

geographic information. The algorithm exploits the heavy tailed distribution of sizes
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present in geographic data and uses Head-Tails breaks (Jiang, 2013) to iteratively extract

the structures at successive scales. The algorithm can be summarized as follows:

• Use all the points and generate a Triangulated Irregular Network (TIN) using the

Delaunay triangulation algorithm.

• Extract the edges of the triangulation and obtain their lengths.

• Calculate the average length.

• Use the average as a threshold to split the edges in two categories, the Head with those

segments larger than the mean, and the Tail, with the segments smaller than the mean.

• Remove the Head.

• Generate the least amount of continuous polygons from the union of Tail edges.

• The points that are inside the obtained polygons are kept and the ones outside are

consider noise.

• Repeat the procedure iteratively for each resulting polygon until the size distribution

does not resemble a heavy tailed distribution.

At the end of the procedure, a hierarchical structure is obtained that contains structures

within structures. This algorithms has been used to examine the spatial structure of road

networks and their relation to social media messages (Jiang & Ren, 2019) and the evolution

of Natural Cities from geo-tagged social media (Jiang & Miao, 2015).

DBSCAN

DBSCAN is an algorithm designed to detect arbitrarily shaped density clusters in databases

with noise (Ester et al., 1996). In the following we provide a brief description of the

algorithm along with its core assumptions. The definitions established here will serve as

basis to the description of OPTICS (‘OPTICS’), HDBSCAN (‘HDBSCAN’) and Adaptative

DBSCAN (‘Adaptative DBSCAN’).

DBSCAN uses a threshold distance (epsilon distance ε) and a minimum number

of points minPts as initial parameters. From this, DBSCAN makes the following basic

definitions:

Definition (Neighborhood). Let p∈ P be a point in the data set P and ε > 0 a threshold

distance, then the epsilon-neighborhood of p is

Nε(p)= {x|d(x,p)< ε}

for x ∈ P

Definition (Reachable). A point q∈ P is a reachable point from a point p∈ P if there is a

path of points {p1,...pn −1,q} ⊂ P such that the distance between consecutive points is

less than ε (d(pi,pi+1)< ε).

Definition (Core). Let P be a set of points, a point p is a core point of P with respect to ε

and minPts if |Nε(p)| ≥minPts where Nε ⊂ P .

Definition (Density reachable). A point p is density reachable from a point q with respect

of ε and minPts within a set of points P if there is a path {p1,...pn −1,q} ⊂ P such that

pi ∈ P are core points of P and pi+1 ∈Nε(pi).
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Definition (Density connected). A point p is density connected to a point q with respect to

ε and minPts if there is a point o such that both, p and q are density reachable from o with

respect to ε and minPts.

Definition (Cluster). A cluster C ⊂ P with respect to ε and minPts is a non empty subset

of P that satisfies the following conditions:

1. ∀p,q∈ P : if p∈C and q is density connected from p with respect to ε and minPts,

then q∈C .

2. ∀p,q∈C p is density connected to q with respect to ε and minPts.

Definition (Noise). Let C1,...,Ck be the clusters of a set of points P with respect to ε and

minPts. The noise is defined as the set of points in P that do not belong to any cluster Ci.

Using the above definitions we can summarize the algorithm to cluster a set of points P

as:

• Consider the set PC = {p1,...pm} ⊂ P of core points of P with respect to ε and minPts.

• For a point p ∈ PC take all the density connected points as part of the same cluster,

remove these points from P and PC .

• Repeat the step above until PC is empty.

• If a point can not be reached from any core point is considered as noise.

In order to fit our aim of detecting structures within structures, we apply DBSCAN

recursively to each of the discovered clusters. It is important to consider that the ε

parameter in DBSCAN is related to the relative point density of noise with respect to

clusters, this means that in each recursive application one needs to set an appropriate value

for ε; preserving the same value across iterations would not uncover density structures

within clusters since those structures would, by definition, be of higher density than

the encompassing cluster. In López-Ramírez et al. (2018), ε is decreased by a constant

arbitrary factor on each iteration, in ‘Adaptative DBSCAN’ we propose a novel method for

automatically selecting ε for each cluster and iteration that overcomes this limitation.

OPTICS

The OPTICS algorithm is fully described in Ankerst et al. (1999), here we will make a brief

presentation of its main characteristics, adapted to our research problem. OPTICS works

in a similar fashion to DBSCAN and can be seen as an extension of it. The algorithm uses

the notion of density-based cluster ordering to extract the corresponding density-based

cluster for each point. OPTICS extends the definitions used in DBSCAN by adding:

Definition (Core distance). The core distance (dcore(p,ε,minPts)) of a point p with respect

to ε and minPts, is the smallest distance ε′ < ε such that p is considered a core point with

respect to minPts and ε′. If |Nε(p)| <minPts then the core distance is undefined.

Definition (Reachability distance). Let p and o be points in a set P and take Nε(o). The

reachability-distance (reach−dist(ε,minpts)(p,o)) is undefined if |Nε(o)| <minPts, else is

max(dcore(p,ε,minPts),d(p,o)).

Let P be a set of points, and set values for ε and minPts. The OPTICS algorithm can be

summarized as following:
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• For each point p∈ P set the reachability-distance value as UNDEFINED (Lreach−dis(p)=

UNDEFINED ∀p∈D).

• Set a empty processed list LPro.

• Set a empty priority queue S

• For each unprocessed point p in P do:

– Obtain Nε(p)

– Mark p as processed (add p to LPro)

– Push p priority queue S

– If dcore(p,ε,minPts) is UNDEFINEDmove to the next unprocessed point. If not then:

∗ Update the queue S based on the rechability-distance by the update function and

use Nε(p), p, ε, and minPts as input parameters.

∗ For each q in S do:

· Obtain Nε(q)

· Mark q as processed (add q to LPro).

· Push q in the priority queue S.

· If the dcore(p,ε,minPts) is not UNDEFINED, use the update function with the

Nε(q), q, ε, and minPts as parameters to update S.

– The algorithm expands S until no points can be added.

The update function for a priority queue S, uses as parameters a neighborhood Nε(p),

the center of the neighborhood p, and the ε and minPts values, and is defined as:

• Get the core-distance of p (dcore(p,ε,minPts)).

• For all o∈Nε(p) if o is not processed, then

– Define a new reachability-distance as newreach−dis =max(dcore(p,ε,minPts),d(p,o))

– If Lreach−dis(o) is UNDEFINED (is not in S) then Lreach−dis(o)= newreach−dis and insert

o in S with value newreach−dis.

– If Lreach−dis(o) is not UNDEFINED (o is already in S), then if newreach−dis < Lreach−dis(o)

update the position of o in S moving forward with the new value newreach−dis.

After this, we have reachability-distance values (Lreach−dis :D→R∪UNDEFINED) for

every point in P and an ordered queue S with respect to ε andminPts. Using this queue, the

clusters are extracted using ε′ < ε distance andminPts by assigning the cluster membership

depending on the reachability-distance.

To decide whether a given point is noise or the first computed element in a cluster, is

necessary to define that UNDEFINED> ε > ε′. After this, the assignation of the elements

of S is performed as:

• Set the ClusterID =NOISE.

• Consider the points p∈ S.

• If Lreach−dis(p)> ε′ then,

– If dcore(p,ε
′,minPts)≤ ε′, the value of ClusterID is set to the next value, and the cluster

for the element p is set as ClusterID.
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– If dcore(p,ε
′,minPts)≥ ε′, the point p is consider as NOISE.

• If Lreach−dis(p)≤ ε′, the cluster for the element p is ClusterID.

The order of S guarantees that all the elements in the same cluster are close. The

Lreach−dis values allow us to distinguish between clusters, these clusters will depend on the

ε′ parameter.

In our work we use a recursive application of OPTICS to uncover the hierarchical scale

structure, in the same fashion as López-Ramírez et al. (2018).

HDBSCAN

The algorithmDensity Based Clustering based on Hierarchical Density Estimates is presented

in Campello, Moulavi & Sander (2013). The main intuition behind HDBSCAN is that the

most significant clusters are those that are preserved along the hierarchical distribution.

Before developing an explanation of HDBSCAN we need the following definitions:

Definition (Core k-distance). Let p be a point in space, the core distance dcorek (p) of k is

defined by dcorek (p)=max({d(x,p)|x ∈ k-NN(p) if x 6= p}) where k-NN(p) is the set of the

k-nearest neighbors of p for a specific k ∈N.

Definition (Core k-distance point). A point p is a Core k-distance point with respect to ε

andminPts, if the number of elements in the core neighborhood of p (Ncorek (p,ε,minPts)=

{x|dcore(x,p)< ε}) is greater or equal than minPts. Where ε is greater or equal to the core

distance of p for a given k value.

Definition (Mutual Reachability Distance). For every p and q the Mutual Reachability

Distance is dmreach(p,q)=max({dcorek (p),dcorek (q),d(p,q)})

Consider the weighted graph with every point as vertices and the mutual reachability

distance as weights. The resulting graph will be strongly connected, the idea is to find

islands within the graph that will be consider clusters.

To classify the vertices of the graph in different islands its easier to determine which do

not belong to the same island. This is done by removing edges with larger weights than

a threshold value ε, by reducing the threshold the graph will start to disconnect and the

connected components will be the islands (clusters) to consider. If a vertex in the graph

is disconnected from the graph or the connected component doesn’t have the minPts, the

corresponding vertex are considered noise. The result will depend on ε.

To reduce computing time HDBSCAN finds a Minimum spanning tree (MST) of the

complete graph. The tree is built one edge at a time by adding the edge with the lowest

weight that connects the current tree to a vertex not yet in the tree.

Using the MST and adding a self edge to all the vertices in the graph with a distance core

value(MSText ), a dendrogram with a hierarchy is extracted. The HDBSCAN hierarchy is

extracted using the following rules (Campello, Moulavi & Sander, 2013):

• For the root of the tree assign all objects the same label (single cluster)

• Iteratively remove all edges fromMSText in decreasing order of weights (in case of ties,

edges must be removed simultaneously):

– Before each removal, set the dendrogram scale value of the current hierarchical level

as the weight of the edge(s) to be removed.
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– After each removal, assign labels to the connected component(s) that contain(s) the

end vertex(-ices) of the removed edge(s), to obtain the next hierarchical level: assign

a new cluster label to a component if it still has at least one edge, else assign it a null

label (noise).

The clusters thus obtained from the dendrogramdepend on the selection of aλparameter

based on the estimation of the stability of a cluster. This is done using a probability density

function approximated by the k-nearest neighbors.

Once again, instead of relying on the hierarchical structure obtained from HDBSCAN,

to discover our structures within structures we apply the algorithm recursively to every

cluster.

Adaptative DBSCAN

In López-Ramírez et al. (2018) the authors propose the recursive application of DBSCAN

as a suitable algorithm to uncover the hierarchical structure present in spatio-temporal

events data sets. The main drawbacks of this proposal are, on the one hand, the need to

select appropriate ε and minPts values for each recursive application of DBSCAN and, on

the other hand, that once this values are selected they are used for every cluster in a given

hierarchical level, thus assuming that every cluster has the same intrinsic density properties.

In this paper we propose an algorithm to automatically select ε values for each cluster, this

algorithm draws on methods proposed in the available literature and adapts them to the

problem of identifying clusters on hierarchically structured geographical data.

Before explaining our algorithm, let us review how minPts and ε values are estimated.

For the minPts parameter, the general rule is to select it so minPts≥D+1, where D is the

dimension of the data, so in the recursive application of DBSCAN this parameter is fixed.

In general, the problem of selecting ε is solved heuristically by the following procedure:

• Select appropriate minPts.

• For each point in the data get the kth-nearest neighbors using minPts as the value of K .

• The different distances obtained are sorted smallest to largest (Fig. 4, K-Sorted distance

graph).

• Good values of ε distance are those where there is a big increment in the distance. This

increment will correspond to an increment on the curvature in the plot, this point is

called the elbow.

An automatic procedure to select ε is presented in Starczewski, Goetzen & Er (2020),

where the authors propose a mathematical formulation to obtain the elbow value of the

K-Sorted distance graph once minPts is given. This formulation tends to find the highest

density clusters present in the data, so when applied recursively to hierarchically structured

data it will tend to find the clusters in the deepest hierarchical level and will label as noise

points belonging to intermediate hierarchical levels.

To overcome this limitation, we propose an alternative procedure to automatically

select ε that leads to larger distance values and thus less dense clusters in each recursive

application of DBSCAN. First, notice that either on the heuristic described above or in

the procedure by Starczewski, Goetzen & Er (2020), the ε value depends on the selection

Salazar et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.978 13/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.978


Figure 4 K-sorted distance graph forK = 5. K-sorted distance graph (for k = 5) showing with a dotted

line the location of the elbow value obtained by the procedure outlined in Satopaa et al. (2011).

Full-size DOI: 10.7717/peerjcs.978/fig-4

of K , larger values of K will in general lead to larger ε values, although not in a strictly

monotonic way as seen in Fig. 5. In principle it is possible to select K as the maximum

number of points in the data set and obtain a suitable ε value, the problem is that for large

data sets this is not feasible due to computational constraints.

To reduce the computational cost of finding appropriate ε values, we observe in Fig. 6

the similarities in the K-Sorted distance graph for a range of K values, it can be seen that the

elbow value is similar for close values of K . Using this observation we obtain the K-Sorted

distance graph only for a sample Ks ⊂ {1,...,N }, where N is the number of points, instead

of every possible value, thus reducing the time and computational cost needed to obtain a

suitable ε distance value.

To find the elbow value for a given k ∈ Ks, we use the library developed in Satopaa

et al. (2011). The algorithm is O(n2) so reducing the points involved in this step is also

important. For each k, the algorithm takes as input theN ∗k distances. To limit the number

of distances passed to the algorithm, we average the N ∗k distances in bins of size k, thus

we only use N values to calculate the elbow.

Our adaptative DBSCAN algorithm can be summarized as follows:

• Let N be the number of points in the data set.
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Figure 5 Relationship between ε and the number of neighbors. ε values obtained by applying the pro-

cedure outlined in Satopaa et al. (2011) to a synthetic data set for every possible value of K .

Full-size DOI: 10.7717/peerjcs.978/fig-5

• For every step k in the range {minPts,...,⌊N
10

⌋} obtain the following:

– For each point p, obtain the distances to the k nearest neighbors.

– Sort the distances.

– Divide the distance interval in bins of size k and obtain the average for each bin.

– Get the elbow value for all the average bins as in Satopaa et al. (2011).

• Take ε as the maximum of all elbow values from the previous step.

This algorithm for calculating a suitable ε value for each identified cluster allow us to

find clusters with intermediate densities (correspondingly to intermediate hierarchical

levels) and, at the same time, do it in a computationally efficient manner.

EXPERIMENTAL SETTING

In order to develop a common framework for the comparison of the different clustering

algorithms considered, we use the synthetic data generation algorithm described in

‘Synthetic data’ to generate random scenarios with 3, 4 and 5 levels, for each number of

levels we carried out at least 100 experiments. By definition, each random scenario has a

different number of clusters per level and thus different numbers of children per cluster,

this provides the algorithms with a wide range of situations to tackle. Each one of the
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Figure 6 K-Sorted distance graphs for a range of K values. The red dots show the elbow value calculated

as in Satopaa et al. (2011). Notice how close values of K, produce similar ε values.

Full-size DOI: 10.7717/peerjcs.978/fig-6

scenarios is passed trough the algorithms described in ‘Clustering Algorithms’ to generate

statistically significant evaluations of each algorithm along every metric. The algorithms

are evaluated using the metrics described in ‘Evaluation’.

For the DBSCAN andOPTICS algorithms, the implementations used are from Pedregosa

et al. (2011). The HDBSCAN used is based on McInnes, Healy & Astels (2017), and the

Natural cities and adaptive-DBSCAN are our own implementations.

For all the algorithms the stopping conditions (in the recursive application) are the

same: when the number of points in a cluster falls below a fixed minPoints, no further

iterations are performed for said cluster.

EVALUATION

We will evaluate the performance of the clustering algorithms along three complementary

tasks: first, as global (across levels) classification algorithms, evaluating the ability of each

algorithm to distinguish globally between cluster and noise points; second as per level

classification algorithms, evaluating the ability to distinguish, for each level, noise and

cluster points; finally, we will introduce a metric to compare the resulting shapes of the

clusters obtained at each level. These three tasks are all important in the detection of

hierarchical crowd activity structures: the first inform us about the global distinction
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between activity and noise; the second does a similar job but at each level, while the last

is very important from a geographical pattern point of view since it inform us about the

similarity in the shapes of the activity structures detected.

Global evaluation

To evaluate the performance of the different clustering algorithms as global classification

algorithms, we label the obtained clusters using our tree cluster structure. In Fig. 7

we show an example output for the different algorithms. For every level we label

points as either belonging to a cluster or as noise. This labeling has the property

that when a point is labeled as noise in level n, then for every level n+ j with j ≥ 1

the point will be tagged as noise. Thus we can obtain a label for every point as the

concatenation of NOISE,SIGNAL tags. For example, in a three level cluster tree, the

possible labels are the following: SIGNAL_SIGNAL_SIGNAL, SIGNAL_SIGNAL_NOISE ,

SIGNAL_NOISE_NOISE , NOISE_NOISE_NOISE .

To evaluate the algorithms, we will use the Normalized Mutual Information (NMI )

between the algorithm classification and the ground truth. NMI has the advantage of

being independent of the number of classes (Vinh, Epps & Bailey, 2009), thus giving a fair

evaluation of the performance of the algorithms across experiments.

Definition (Normalized Mutual Information). NMI is defined as:

NMI (X ,Y )=
2I (X ,Y )

H (X)+H (Y )

where P(x) is the probability to get the label x , H (X) is the Shannon entropy of the set of

labels X and I (X ,Y ) is the mutual information between the sets of labels X an Y .

Definition (Shannon entropy). The Shannon entropy of a set of labels X is defined as:

H (X)= −
∑

x∈X

P(x)logP(x)

where P(x) is the probability of label x .

Definition (Mutual information). Let X = {X1,...,Xl} and Y = {Y1,...Yn} be two sets of

labels for the same set of points (N ), the mutual information between the two set of labels

is calculated as:

I (X ,Y )=

|X |
∑

i=1

|Y |
∑

j=1

P(i,j)∗ log

(

P(i,j)

P(i)∗P ′(j)

)

where P(i) = |Xi|/|N | is the probability of a random point belonging to class Xi,

P ′(j) = |Yi|/|N |. And P(i,j) =
|Xi∩Yj |

|N |
is the probability that a random point belongs

to both classes Xi and Yj .

Per level evaluation

To reflect the iterative clustering process, we evaluate the classification obtained for each

level. In order to carry out this evaluation, we label, for each level, the points as either

SIGNAL for points belonging to a cluster or NOISE otherwise. For each level n we include

only the points that have the SIGNAL label in n−1 level since those are the only points seen
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Figure 7 Results of different hierarchical clustering algorithms on a synthetic data set. The clusters ob-

tained with the different algorithms are represented by colored polygons (each hierarchical level is repre-

sented by a single color), the points shown the corresponding noise in each level.

Full-size DOI: 10.7717/peerjcs.978/fig-7

by the algorithm at each recursive iteration. Using this approach, the per level evaluation

corresponds to the clusters obtained on level n and is performed only for the points that

correspond to each level.

In general, the labels obtained for each level are unbalanced with more samples of the

noise class. Therefore for the evaluation we use the Balanced Accuracy (BA) for binary

classification (Brodersen et al., 2010) on each level.
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Definition (Balanced accuracy). Let X be the ground truth labels in a point set N and Y

the set of predicted labels in the same set. The balanced accuracy for a binary labeling is

defined as:

BA(X ,Y )=
1

2

(

TP

TP+FN
+

TN

TN +FP

)

where TP is the true positive set of labels, TN the true negative set of labels, FN is the false

negative set of labels, and FP is the false positive set of labels.

Shape evaluation

For geographic applications such as those described in ‘Detection of crowd activity scales

and zones’, it is important to also evaluate the shape of the clusters obtained. Therefore we

propose a measure that compares the shapes of the clusters obtained by each algorithm.

Our Similarity Shape Measure (SSM) compares the shapes of the Concave Hulls of

each cluster, obtained by the optimal alpha-shape of the point set (Edelsbrunner, 1992;

Bernardini & Bajaj, 1997). Thus, for our SSM, each cluster is represented by a polygon.

A simple way to compare polygon shapes is the Jaccard Index, mostly used in computer

vision to compare detection algorithms.

Definition. (Jaccard Index) The Jaccard Index or Jaccard Similarity Coefficient between

polygons P and Q is defined as:

Jacc(P,Q)=
Area(P∩Q)

Area(P∪Q)

where Area is the area of the polygon.

The main issue in implementing a shape similarity measure is in determining which

polygons to compare in each level. As can be seen in Fig. 7, every algorithm outputs

different number and shapes of polygons in each level so there is no straightforward way of

assigning corresponding polygons across algorithms (or the ground truth). To overcome

this issue, our Similarity Shape Measure compares, using the Jaccard Index, the polygons

produced by an algorithm with the polygons in the ground truth, weighting the index by

the number of points in each polygon and its corresponding intersections.

Definition (Similarity Shape Measurement). Let PO
i = {PO

0 ,...PO
n } be the set of polygons

for the clusters on the i− th level in the ground truth and QC
i = {QC

0 ,...QC
m} the polygons

to evaluate for the same level, then the similarity between PO
i and QC

i is:

SSM (PO
i ,QC

i )=

∑

PO
l ∈PO

i Q
C
k ∈QC

i
|PO

l ∩QC
k |∗ Jacc(PO

l ,QC
k )

∑

P∈PO
i
|P|+

∑

Q∈Qnot
|Q|

where Qnot = {Q|Q∩PO
i = ∅}⊂QC

i for all PO
i ∈PO

i .

The SSM takes values in [0,1], the maximum value corresponds to the case when

all polygons that intersect across the evaluation sample and the ground truth satisfy

Jacc(PO
l ,QC

k )= 1, all the points within the polygons PO
l are in a corresponding polygon

QC
k and the family Qnot is empty. Conversely, SSM takes the value 0 when no polygons

intersect across the evaluated algorithm and the ground truth.
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Figure 8 Normalized mutual information score for the different algorithms. Results for the normalized

mutual information (NMI) for the experiments with 3, 4 and 5 levels. Bars height represent the mean NMI

value while the black lines correspond to the 95% confidence interval.

Full-size DOI: 10.7717/peerjcs.978/fig-8

If the polygons have a large Jaccard Similarity and the number of points in the

intersections is large, then SSM will also be large. On the contrary, if the polygons have

low Jacacard similarity then a penalization will occur and the SSM will have a lower value

even if the cardinality of the intersection is large. This means that our measure will penalize

clusterizations that over or under separate points in different clusters with respect to the

ground truth.

SSM will penalize for points that belong to a Pl for some l ∈ {0,...,n}, that are not

inside any Q∈QC
i . Also a penalization will occur for the points that belong to Qk for some

k ∈ {0,...,m} that not belong to any P ∈PO
i . This is important to ensure that algorithms

that properly classify a grater number of points as signal are not penalized.

Thus our SSM allows for the direct comparison between the polygons in the ground

truth and those produced by an arbitrary algorithm, producing a global similarity measure

for each level that captures not only how similar the polygons are, but also, how many

points are in the most similar polygons.

RESULTS AND DISCUSSION

Results for the NMI metric are shown in Fig. 8, displaying the mean NMI values along

with the 95% confidence intervals. These results clearly show the poor performance of

HDBSCAN and OPTICS as global classification algorithms, that is, they are not able to

distinguish, across hierarchical levels, between noise and signal points. This behavior can

be explained by the fact that those algorithms are intended to discover structures that

are persistent trough the whole clustering hierarchy, which is different from the problem

of finding the nested cluster structure, as explained in ‘Clustering Algorithms’. On the

other hand, Natural Cities, DBSCAN and Adaptative DBSCAN consistently perform better

across the three number of levels tested. In general the performance of Natural Cities

and Adaptative DBSCAN is better than DBSCAN and this later exhibits larger confidence
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Table 1 PairwiseWelch’s t-tests for the difference of the experimental means for the NMImetric for

all three levels considered. Values of t -test above 2 indicate a significative difference between the ob-

served means.

Number of Levels 3 4 5

t -test t -test t -test

Algorithms

Natural_C vs DBSCAN −0.46 9.37* 2.89*

Natural_C vs OPTICS 108.72* 68.45* 79.07*

Natural_C vsHDBSCAN 60.97* 36.48* 44.71*

Natural_C vs Adap_DBSCAN −9.08* 0.63* −3.54*

DBSCAN vs OPTICS 54.59* 27.14* 30.91*

DBSCAN vsHDBSCAN 32.65* 12.12* 18.06*

DBSCAN vs Adap_DBSCAN −5.77* −8.08* −4.92*

OPTICS vsHDBSCAN −102.13* −43.45* −55.77*

OPTICS vs Adap_DBSCAN −95.49* −49.31* −67.92*

HDBSCAN vs Adap_DBSCAN −59.50* −27.76* −41.45*

Notes.

An asterisk (*) indicates significative at the 95% confidence level.

intervals, so its results are less consistent across experiments with the same number of

levels. It is also interesting to notice that the results are in general consistent across the

number of levels tested. In Table 1 we show the results of the pairwise Welch’s t -test for the

differences in the mean NMI values between algorithms. As can be seen, the test indicates

that all differences, except that between Natural Cities and Hierarchical DBSCAN are

significant.

Results for the balanced accuracy (BA) metric are shown in Fig. 9. Once again, the

performance of DBSCAN, Natural Cities and Adaptative DBSCAN is generally better than

the performance of OPTICS and HDBSCAN. Adaptative DBSCAN and Natural Cities are

the best algorithms at separating signal from noise on a level by level basis, having a similar

performance across levels for the three numbers of levels considered. The wider confidence

interval of BA values for DBSCAN reflects the rigidity in the way the algorithm selects ε,

using the same value for all clusters at the same level, as compared to Adaptative DBSCAN

which adapts ε for each cluster and Natural Cities whose heads-tails break is also computed

for each cluster. Table 2 shows the results of the pairwise Welch’s t -test for the differences

in the mean BA values between algorithms. Most of the differences are significative, except

for Natural Cities vs Adaptative DBSCAN at levels 0, 3 and 4 and OPTICS vs HDBSCAN

at level 4.

Finally, in Fig. 10 we show the results for the Shape Similarity Measure (SSM). In this

case we begin our comparisons in the first hierarchical level, since the level 0 polygons are

the same for all algorithms. This results also show the poor performance of OPTICS and

HDBSCAN. In this case Adaptative DBSCAN consistently outperforms Natural Cities and

DBSCAN, specially as the number of levels increase. The local nature of ε in Adaptative

DBSCAN, coupled with the capacity of DBSCAN to find arbitrarily shaped density based

clusters, allows the algorithm to better reproduce the cluster shapes in the ground truth

data. Table 3 shows the results of the pairwise Welch’s t -test for the differences in the mean
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Figure 9 Balanced accuracy score for the different algorithms. Results for the balanced accuracy (BA)

for the experiments with 3, 4 and 5 levels, the Level axis indicates the BA value for that specific level. Bars

height represent the mean BA value while the black lines correspond to the 95% confidence interval.

Full-size DOI: 10.7717/peerjcs.978/fig-9

Table 2 PairwiseWelch’s t-tests for the difference of the experimental means for the BAmetric for

each level across all experiments. Values of the t -test above 2 indicate a significative difference between

the observed means.

Level 0 1 2 3 4

t -test t -test t -test t -test t -test

Algorithms

Natural_C vs DBSCAN 23.33* 32.28* 32.08* 11.11* 6.15*

Natural_C vs OPTICS 182.09* 130.86* 111.64* 18.34* 11.40*

Natural_C vsHDBSCAN 79.84* 59.88* 88.08* 17.36* 10.92*

Natural_C vs Adap_DBSCAN −0.53 −3.49* −2.05* −0.82 0.54

DBSCAN vs OPTICS 27.48* 20.89* 27.42* 8.23* 5.88*

DBSCAN vsHDBSCAN 7.93* −2.77* 14.13* 6.78* 5.26*

DBSCAN vs Adap_DBSCAN −23.24* −32.41* −27.64* −11.46* −5.61*

OPTICS vsHDBSCAN −41.51* −54.73* −32.20* −1.61* −0.69

OPTICS vs Adap_DBSCAN −168.32* −102.33* −67.58* −18.55* −10.92*

HDBSCAN vs Adap_DBSCAN −76.72* −52.18* −53.55* −17.59* −10.43*

Notes.

An asterisk (*) indicates significance at the 95% confidence level.

SSM values between algorithms, again, most of the differences are significant, except for

Natural Cities vs DBSCAN at level 2, which is clear from the plot on Fig. 10.

Application on real-world data

As a use case of the proposed technique we will extract the crowd activity patterns for the

geolocated Twitter feed for Central Mexico. The test database consists of all geolocated

tweets for 2015-01-20, there are 10,366 tweets for this day. Based on the discussion on

‘Detection of crowd activity scales and zones’ and ‘Clustering Algorithms’ we will only

compare the results obtained with Natural Cities, recursive DBSCAN and Adaptative-

DBSCAN. In order to qualitatively compare the results of the algorithms we will focus on
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Figure 10 Similarity shape measure for the different algorithms. Results for the similarity shape mea-

sure (SSM) for the experiments with 3, 4 and 5 levels, the Level axis indicates the SSM value for that spe-

cific level. Bars height represent the mean SSM value while the black lines correspond to the 95% confi-

dence interval.
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Table 3 PairwiseWelch’s t-tests for the difference of the experimental means for the BAmetric for

each level across all experiments. Values of the t -test above 2 indicate a significative difference between

the observed means.

Level 1 2 3 4

t -test t -test t -test t -test

Algorithms

Natural vs DBSCAN −3.82* −0.10 −5.34* −7.97*

Natural vs OPTICS 11.00* 9.98* 5.35* 2.87*

Natural vsHDBSCAN 10.70* 9.85* 5.33* 2.87*

Natural vs Adap_DBSCAN −14.62* −22.24* −30.38* −40.76*

DBSCAN vs OPTICS 14.85* 10.45* 9.17* 9.05*

DBSCAN vsHDBSCAN 14.59* 10.31* 9.16* 9.05*

DBSCAN vs Adap_DBSCAN −10.39* −22.35* −23.77* −23.84*

OPTICS vsHDBSCAN −7.72* −3.56* −2.85* 2.21*

OPTICS vs Adap_DBSCAN −28.00* −32.18* −34.37* −43.09*

HDBSCAN vs Adap_DBSCAN −27.75* −32.09* −34.36* −43.09*

Notes.

An asterisk (*) indicates significance at the 95% confidence level.

two tasks: first the detection of the greatest cities within the region and, second, the detection

of the Central Business District (CBD) structure of Mexico City, widely described in the

literature (Escamilla, Cos & Cárdenas, 2016; Suarez & Delgado, 2009). The idea behind this

qualitative comparison is to understand how the different algorithms detect known crowd

activity patterns at different scales.

Figure 11 through Fig. 13 show the results for the different clustering algorithms. In the

larger hierarchical levels, the figures compare our results with the official delimitation of

the metropolitan areas, while in the smaller scales, we show the job to housing ratio as an

indicator of potential crowd activity. The first thing to notice is that, although the three
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Figure 11 Levels clusters polygons obtained with Natural Cities compared with metropolitan delimi-

tation and compared with job to housing ratio at the city block level. The left side shows, in a dark color,

the polygons obtained with Natural Cities and in clear the official delimitation of metropolitan areas. On

the right side, the dark polygons are obtained with Natural Cities and the underlying coloring corresponds

to the job to housing ratio at the city block level, darker color indicates a higher job to housing ratio.

Full-size DOI: 10.7717/peerjcs.978/fig-11

algorithms are able to separate the input points into the metropolitan areas, Natural Cities

tends to detect the inner cores on the first hierarchical level, while hierarchical DBSCANand

Adaptative-DBSCAN detect larger metropolitan structures. Another interesting finding

is that Natural Cities detects the T-shaped pattern of Mexico City’s CBD (Escamilla, Cos

& Cárdenas, 2016; Suarez & Delgado, 2009) in two iterations, while hierarchical DBSCAN

and Adaptative DBSCAN require 4 and 8 iterations respectively. This means that both

DBSCAN based algorithms are detecting intermediate scale structures, while Natural Cities

is more aggressively reducing the size of the clusters. Another interesting quality in the

clusters detected by Natural Cities in contrast to those detected by the other two algorithms

is that Natural Cities tends to detect many small clusters at both levels, qualitatively these

small clusters do not seem to correspond with any known structure in the city.

For the deeper levels, both in Hierarchical DBSCAN and Adaptative DBSCAN, the

patterns detected seem to closely follow the job to housing ratio, this is a good qualitative

indicator that the structures detected correspond with the known geographic activity

patterns. To further stress this point, in Fig. 14 we show the different clusters detected

with the three algorithms for afternoons (14:00 to 18:00) and evenings (18:00 to 22:00),

all figures exhibit more concentrated patterns for the evenings, reflecting people gathered

at their workplaces. It is also interesting that all algorithms seem to follow the T-shaped

pattern of the CBD and also detect some smaller job centers to the South and West, but

Natural Cities detects many smaller clusters that do not seem to correspond with relevant

geographic structures.
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Figure 12 Levels cluster polygons obtained with DBSCAN compared with metropolitan delimitation

and compared with job to housing ratio at the city block level. Cluster polygons obtained with DBSCAN

compared with the metropolitan delimitation and job to housing ratio at the city block level. (A) The dark

polygons are the clusters obtained with DBSCAN and the gray polygons are the official delimitation of

metropolitan areas. (B) The dark polygons are the clusters obtained with DBSCAN at Level 2 and the gray

polygons are the official delimitation of metropolitan areas. (C) The blue polygons are obtained with DB-

SCAN at Level 3 and the coloring corresponds to the job to housing ratio at the city block level. Red rep-

resents higher jobs to housing ratio. (D) The blue polygons are obtained with DBSCAN at Level 4 and the

underlying coloring corresponds to the job to housing ratio at the city block level. Red represents higher

jobs to housing ratio.

Full-size DOI: 10.7717/peerjcs.978/fig-12

Salazar et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.978 25/31

https://peerj.com
https://doi.org/10.7717/peerjcs.978/fig-12
http://dx.doi.org/10.7717/peerj-cs.978


100.0 99.5 99.0 98.5 98.0
18.50

18.75

19.00

19.25

19.50

19.75

20.00

20.25

100.0 99.8 99.6 99.4 99.2 99.0 98.8 98.6

19.0

19.2

19.4

19.6

19.8

20.0

Level 1 Level 2

99.3 99.2 99.1 99.0 98.9

19.3

19.4

19.5

19.6

19.7

99.3 99.2 99.1 99.0

19.3

19.4

19.5

19.6

19.7

99.3 99.2 99.1 99.0

19.3

19.4

19.5

19.6

19.7

Level 3 Level 4 Level 5

99.3 99.2 99.1 99.0

19.25

19.30

19.35

19.40

19.45

19.50

19.55

19.60

99.3 99.2 99.1 99.0

19.25

19.30

19.35

19.40

19.45

19.50

19.55

19.60

99.3 99.2 99.1

19.30

19.35

19.40

19.45

19.50

Level 6 Level 7 Level 8

Figure 13 Level clusters polygons obtained with Adaptative DBSCAN compared with metropolitan

delimitation and at lower scale compared with job to housing ratio at the city block level. (A) The blue

polygons are the clusters obtained with Adaptative DBSCAN and the grey polygons are the official delim-

itation of metropolitan areas. (B) The blue polygons are the clusters obtained with Adaptative DBSCAN

and the grey polygons are the official delimitation of metropolitan areas. (C) The blue polygons are ob-

tained with Adaptative DBSCAN and the coloring corresponds to the job to housing ratio at the city block

level. Red represents higher jobs to housing ratio. (D) The blue polygons are obtained with Adaptative

DBSCAN and the coloring corresponds to the job to housing ratio at the city block level. Red represents

higher jobs to housing ratio. (E) The blue polygons are obtained with Adaptative DBSCAN and the col-

oring corresponds to the job to housing ratio at the city block level. Red represents higher jobs to housing

ratio. (F) The blue polygons are obtained with Adaptative DBSCAN and the coloring corresponds to the

job to housing ratio at the city block level. Red represents higher jobs to housing ratio. (G) The blue poly-

gons are obtained with Adaptative DBSCAN and the coloring corresponds to the job to housing ratio at

the city block level. Red represents higher jobs to housing ratio. (H) The blue polygons are obtained with

Adaptative DBSCAN and the coloring corresponds to the job to housing ratio at the city block level. Red

represents higher jobs to housing ratio.

Full-size DOI: 10.7717/peerjcs.978/fig-13
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Figure 14 Clusters obtained using Natural Cities, DBSCAN, and Adaptative DBSCAN on data for the

evening and afternoon. (A) The clusters obtained using Natural Cities with data for the evening (18:00

to 22:00). (B) The clusters obtained using DBSCAN with data for the evening (18:00 to 22:00). (C) The

clusters obtained using Adaptative DBSCAN with data for the evening (18:00 to 22:00). (D) The clusters

obtained using Natural Cities with data for the afternoon (14:00 to 18:00). (E) The clusters obtained us-

ing DBSCAN with data for the afternoon (14:00 to 18:00). (F) The clusters obtained using Adaptative DB-

SCAN with data for the afternoon (14:00 to 18:00). The figures focus on the levels showing the Central

Business District area and display in red tones the job to housing ratio.

Full-size DOI: 10.7717/peerjcs.978/fig-14

CONCLUSIONS AND FURTHER WORK

In this article we presented a synthetic data generator that reproduces structures commonly

found on geographical events data sets; introduced a new method, based on the recursive

application of DBSCAN coupled with an adaptative algorithm for selecting appropriate

values for ε for each cluster, for detecting hierarchical structures within structures; and

presented a general evaluation framework for the comparison of hierarchical crowd

activity structures detection algorithms. The results presented in ‘Results and discussion’

show the poor performance of OPTICS and HDBSCAN for iteratively finding structures

within structures in hierarchically structured data. This result shows that the task of

finding a hierarchical structure on geographical data is different from the task of finding

the most significant cluster structures, confirming the need to develop and evaluate

methods specifically tailored to find such structures. The performance of Natural Cities

and Adaptative DBSCAN when compared to that of DBSCAN show the importance of

considering the local properties of data.
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Testing the algorithms against synthetic data allows us to have a fair and objective

comparison instead of relying on qualitative and probably subjective evaluations, we

believe this is an important step in the further development of tools to uncover hierarchical

structures on geographical data. However, in ‘Application on real-world data’ we tested

Natural Cities, Adaptative and Hierarchical DBSCAN against a real world dataset of

geolocated Twitter messages, showing that the three algorithms are able to detect the

known activity patterns in Mexico City.

In the future we will use the Adaptative DBSCAN algorithm presented in ‘Adaptative

DBSCAN’ to process data such as 911 geolocated calls (police reports) and 311 reports

(public service requests) to develop unusual activity detection algorithms, able to capture

unusual activity at different scales. Another interesting avenue for further research is the

incremental training of the algorithms, finding structures incrementally as more data is fed

into the algorithms. Finally, it is also necessary to explicitly incorporate the time dimension

and develop algorithms to uncover hierarchical spatio-temporal structures.
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