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ABSTRACT
Stochastic-based optimization algorithms are effective approaches to addressing opti-
mization challenges. In this article, a new optimization algorithm called the Election-
Based Optimization Algorithm (EBOA) was developed that mimics the voting process
to select the leader. The fundamental inspiration of EBOA was the voting process, the
selection of the leader, and the impact of the public awareness level on the selection of
the leader. The EBOApopulation is guided by the search space under the guidance of the
elected leader. EBOA’s process is mathematically modeled in two phases: exploration
and exploitation. The efficiency of EBOA has been investigated in solving thirty-three
objective functions of a variety of unimodal, high-dimensional multimodal, fixed-
dimensional multimodal, and CEC 2019 types. The implementation results of the
EBOA on the objective functions show its high exploration ability in global search,
its exploitation ability in local search, as well as the ability to strike the proper balance
between global search and local search, which has led to the effective efficiency of the
proposed EBOA approach in optimizing and providing appropriate solutions. Our
analysis shows that EBOA provides an appropriate balance between exploration and
exploitation and, therefore, has better and more competitive performance than the ten
other algorithms to which it was compared.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Science,
Optimization Theory and Computation
Keywords Optimization, Optimization problem, Human-based metahurestic algorithm,
Stochastic algorithms, Population-based algorithms, Applied mathematics, Voting process,
Leader selection, Population matrix, Recurring process

INTRODUCTION
Optimization is an integral part of engineering, industry, technology, mathematics, and
many other applications in science. Decision variables, constraints, and objective function
are the three main parts of any optimization issue, where determining the values of decision
variables while respecting the constraints to optimize the objective function is the main
challenge of optimization (Ray & Liew, 2003).

Optimization problem solving approaches are included in two groups: deterministic
and stochastic (Kozlov, Samsonov & Samsonova, 2016). Deterministic approaches, which
include gradient-based and non-gradient-based techniques, have successful performance
in handling convex and linear optimization problems. However, these approaches fail to
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meet real-world challenges with features such as convex behavior, nonlinear search space,
high number of variables, complex objective function, high number of constraints, as well
as NP-hard problems. Following the inability of deterministic approaches to address these
types of issues, researchers have developed a new approach called stochastic optimization
techniques. Metaheuristic algorithms are one of the most widely used stochastic approach
techniques that are effective in optimization applications by using random operators,
random scanning in the search space, and trial and error (Curtis & Robinson, 2019).

Simplicity of concept, ease of implementation, problem-independent, needlessness of
the derivation process, and efficiency in complex problems are some of the advantages that
have led to the popularity and applicability of metaheuristic algorithms (Gonzalez et al.,
2022).

Metaheuristic algorithms have a nearly identical problem-solving process that begins
with the production of a certain number of candidate solutions at random. Then, in a
repetition-based process, the effect of the algorithm steps on these candidate solutions
improves them. At the end of the implementation, the best-founded candidate solution
is introduced as the solution to the problem (Toloueiashtian, Golsorkhtabaramiri & Rad,
2022).

It is important to note here that there is no guarantee that metaheuristic algorithms will
be able to provide the best optimal solution known as the global optimal. This is due to
the random nature of the search process of these algorithms. For this reason, the solution
obtained from metaheuristic algorithms is called quasi-optimal (Yu, Semeraro & Matta,
2018).

The two indicators of exploration with the concept of global search and exploitation with
the concept of local search are effective in the performance of metaheuristic algorithms in
handling optimization problems and providing better quasi-optimal solutions (Mejahed &
Elshrkawey, 2022). What has led researchers to develop numerous optimization methods
is to achieve better solutions closer to the global optimal.

The main research question is whether there is a need to develop new metaheuristic
algorithms given that countless algorithms have been developed so far. This question is
answered with the concept of the No Free Lunch (NFL) theorem (Wolpert & Macready,
1997). The NFL theorem explains that the effective performance of an algorithm in solving
a set of optimization problems does not create any presuppositions on the ability of that
algorithm to provide similar performance in other optimization applications. In other
words, it cannot be claimed that a particular metaheuristic algorithm performs best in the
face of all optimization problems compared to all other optimization methods. The NFL
theorem is the main incentive for the authors to design new optimization approaches that
perform more effectively in solving optimization problems in a variety of applications.
The NFL theorem has motivated the authors of this article to develop a new metaheuristic
algorithm applicable in optimization challenges that is effective in providing solutions
closer to the global optimization.

The novelty of this article is in introducing and designing a newmetaheuristic algorithm
named Election-BasedOptimization Algorithm (EBOA), which its fundamental inspiration
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is the simulation of the voting process and the popular movement. The main contributions
of this study are as follows:

• A novel human-based Election-Based Optimization Algorithm (EBOA) is proposed.
• The process of public movement and the electoral voting process are examined and
then mathematically modeled in the EBOA design.
• The efficiency of EBOA in optimizing thirty-three objective functions (i.e., unimodal,
high-dimensional multimodal, and fixed-dimensional multimodal, and CEC 2019) is
tested.
• The quality of EBOA results is compared with ten state-of-the-art metaheuristic
algorithms.

The rest of the article is structured in such a way that the literature review is presented
in ‘Lecture Review’. Then in ‘Election-Based Optimization Algorithm’ the proposed EBOA
is introduced and modeled. Simulation studies are presented in ‘Results’. The discussion
is provided in ‘Discussion’. Conclusions and several research directions for future studies
are presented in ‘Conclusions’.

LECTURE REVIEW
Natural phenomena, the behavior of living things in nature, the biological sciences, genetic
sciences, the laws of physics, the rules of the game, human behavior, and any evolutionary
process that has an optimization process have been the source of inspiration in the design
and development of metaheuristic algorithms. Accordingly, metaheuristic algorithms fall
into nine groups: swarm-based, biology-based, physics-based, human-based, sport-based,
math-based, chemistry-based, music-based, and the other hybrid approaches (Akyol &
Alatas, 2017).

Behaviors of living organisms such as animals, birds, and insects have been the main
source of ideas in the development of numerous swarm-based algorithms. The most
common feature used in many swarm-based methods is the ability of living organisms
to search for food sources. The most popular methods developed based on food search
process modeling are the Particle Swarm Optimization (PSO) based on the search behavior
of birds and fish (Kennedy & Eberhart, 1995), Ant Colony Optimization (ACO) based on
ants search for the shortest path to food (Dorigo, Maniezzo & Colorni, 1996), Artificial
Bee Colony (ABC) based on bee colony search behavior (Karaboga & Basturk, 2007),
the Butterfly Optimization Algorithm (BOA) based on search and mating behavior of
butterflies (Arora & Singh, 2019), and the Tunicate Search Algorithm (TSA) based on
search behavior tonics (Kaur et al., 2020). The process of reproduction among bees and the
scout bees searchmechanism to find suitable new places for hives have been employed in the
designing Fitness Dependent Optimizer (FDO) (Abdullah & Ahmed, 2019). Chimpanzee’s
hunting strategy using operators such as emotional intelligence and sexual motivation
has been the main source of inspiration in designing the Chimp Optimization Algorithm
(ChOA) (Khishe & Mosavi, 2020).

Modeling of hunting strategies of living organisms in the wild has been a source of
inspiration in designing various optimization approaches, including Grey Wolf Optimizer
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(GWO) based on gray wolf strategy (Mirjalili, Mirjalili & Lewis, 2014),Whale Optimization
Algorithm (WOA) (Mirjalili & Lewis, 2016) based on humpback whales strategy, and
Pelican Optimization Algorithm (POA) based on pelican behavior (Trojovský & Dehghani,
2022).

Applying the concepts of biology, genetics, and natural selection alongside random
operators such as selection, crossover, and mutation has led to the development of biology-
based algorithms. The process of reproduction, Darwin’s evolutionary theory, and natural
selection are key concepts in the development of two widely used methods, the Genetic
Algorithm (GA) (Goldberg & Holland, 1988) and the Differential Evolution (DE) algorithm
(Storn & Price, 1997). The mechanism of the immune system in the face of diseases, viruses,
and microbes has been the major inspiration in the development of the artificial immune
system (AIS) method (Hofmeyr & Forrest, 2000).

Many phenomena, laws, and forces in physics science have been employed as inspiration
sources for the development of physics-based metaheuristic algorithms. The phenomenon
of melting and cooling of metals, which is known in physics as the refrigeration process,
has been the main inspiration in the development of the Simulated Annealing (SA)
approach (Van Laarhoven & Aarts, 1987). The phenomenon of the water cycle based on its
physical changes in nature has inspired the Water Cycle Algorithm (WCA) (Eskandar et
al., 2012). Gravitational force and Newton’s laws of motion have been the main concepts
employed to introduce the method of Gravitational Search Algorithm (GSA) (Rashedi,
Nezamabadi-Pour & Saryazdi, 2009). The application of Hook’s law and spring tensile
force has been the main inspiration in Spring Search Algorithm (SSA) design (Dehghani
et al., 2020a). Various physical theories and concepts have been the source of inspiration
in the development of physics-based methods such as Multiverse Optimizer (MVO),
inspired from cosmology concepts (Mirjalili, Mirjalili & Hatamlou, 2016), Big Bang-Big
Crunch (BB-BC) inspired from Big Bang and Big Crunch theories (Erol & Eksin, 2006),
Big Crunch Algorithm (BCA) inspired from Closed Universe theory (Kaveh & Talatahari,
2009), Integrated Radiation Algorithm (IRA) inspired from gravitational radiation concept
in Einstein’s theory of general relativity (Chuang & Jiang, 2007), and Momentum Search
Algorithm (MSA) inspired from momentum concept (Dehghani & Samet, 2020).

Behavior, thought, interactions, and collaborations in humans have been designed
ideas in the development of human-based approaches. The most widely used human-
based method is the Teaching-Learning-Based Optimization (TLBO) algorithm, which
mimics the classroom learning environment and the interactions between students and
teachers (Rao, Savsani & Vakharia, 2011). The competition between political parties and
the efforts of parties to seize control of parliament is the source of inspiration in designing
the Parliamentary Optimization Algorithm (POA) (Borji & Hamidi, 2009). The economic
activities of the rich and the poor to gainwealth in society have been themain inspiration for
the Poor and Rich Optimization (PRO) approach (Moosavi & Bardsiri, 2019). Influencing
people in the community from the best successful people in the community has been
the main idea of the Following Optimization Algorithm (FOA) (Dehghani, Mardaneh &
Malik, 2020). The mechanism of admission of high school graduates to the university
and the process of improving the educational level of students has been the main idea in
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designing the Learner Performance-based Behavior (LPB) algorithm (Rahman & Rashid,
2021). The cooperation of the members of a team to improve the performance of the
team in performing their tasks and achieving the goal has been the main inspiration of the
Teamwork Optimization Algorithm (TOA) (Dehghani & Trojovský, 2021). The efforts of
human society to achieve felicity by changing and improving the thinking of individuals
has been employed in the design of the Human Felicity Algorithm (HFA) (Veysari, 2022).
The strategic movement of army troops during the war, using attack, defense, and troop
relocation operations, has been a central idea in the design of War Strategy Optimization
(WSO) (Ayyarao et al., 2022).

The rules governing various games, both individual and group, along with the activities
of players, referees, coaches, and influential individuals, have been the main source of
inspiration in the development of sport-based methods. The effort of the players in the
tug-of-war competition have been the main idea in designing the Tug ofWar Optimization
(TWO) technique (Kaveh & Zolghadr, 2016). The use of volleyball club interactions and the
coaching process has been instrumental in designing the Volleyball Premier League (VPL)
approach (Kaveh & Zolghadr, 2016). The players’ effort to find a hidden object was the
main idea used in Hide Object Game Optimization (HOGO) (Dehghani et al., 2020b). The
strategy that players and individuals use to solve the puzzle and arrange the puzzle pieces
to complete it has been the source of inspiration in designing the Puzzle Optimization
Algorithm (POA) (Zeidabadi & Dehghani, 2022).

Matheuristics (Boschetti et al., 2009) and the Base Optimization Algorithm (BOA)
(Salem, 2012) are among math-based methods. Chemical Reaction Optimization (CRO)
(Lam & Li, 2009) and the Artificial Chemical Reaction Optimization Algorithm (ACROA)
(Alatas, 2011) are among chemistry-based methods. The Harmony Search Algorithm
(HSA) (Geem, Kim & Loganathan, 2001) ismusic-basedmethod. In addition, by combining
metaheuristic algorithms with each other, researchers have developed hybrid metaheuristic
approaches, including: the Sine-Cosine and Spotted Hyena-based Chimp Optimization
Algorithm (SSC) (Dhiman, 2021) and the Hybrid Aquila Optimizer with Arithmetic
Optimization Algorithm (AO-AOA) (Mahajan et al., 2022).

The literature review shows that numerous metaheuristic algorithms have been
developed so far. However, according to the best knowledge of the literature, the voting
process to determine the leader of the community has not yet been used in the design of
any algorithm. This research gap motivated the authors of this article to develop a new
human-based metaheuristic algorithm based on mathematical modeling of the electoral
process and public movement.

ELECTION-BASED OPTIMIZATION ALGORITHM
This section is dedicated to introducing the proposed Election-Based Optimization
Algorithm (EBOA) and then mathematical modeling of it.

Inspiration
An election is a process by which individuals in a community select a person from among
the candidates. The person elected as the leader influences the situation of all members
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of that society, even those who did not vote for him. The more aware the community
members are, the better they will be able to choose and vote for the better candidate. These
expressed concepts of the election and voting process are employed in the design of the
EBOA.

Algorithm initialization
EBOA is a population-based metaheuristic algorithm whose members are community
individuals. In the EBOA, each member of the population represents a proposed solution
to the problem. From a mathematical point of view, the EBOA population is represented
by a matrix called the population matrix using Eq. (1).

X =



X1
...

Xi
...

XN


N×m

=



x1,1 ··· x1,j ··· x1,m
...

. . .
... . ..

...

xi,1 ··· xi,j ··· xi,m
... . ..

...
. . .

...

xN ,1 ··· xN ,j ··· xN ,m


N×m

, (1)

where X refers to the EBOA population matrix, Xi refers to the ith EBOA member (i.e.,
the proposed solution), xi,j refers to the value of the jth problem variable specified by the
ith EBOA member, N refers to EBOA population size, and m refers to number of decision
variables.

The initial position of individuals in the search space is determined randomly according
to Eq. (2).

xi,j = lbj+ r ·
(
ubj− lbj

)
, i= 1,2,...,N ,j = 1,2,...,m, (2)

where lbj and ubj refer to the lower bound and upper bound of the jth variable, respectively,
and r is a random number in the interval [0,1].

Based on the values proposed by each EBO member for the problem variables, a value
can be evaluated for the objective function. These evaluated values for the objective function
of the problem are specified using a vector according to Eq. (3).

OF =



OF1
...

OFi
...

OFN


N×1

=



OF(X1)
...

OF(Xi)
...

OF(XN )


N×1

, (3)

where OF refers to the vector of obtained objective function values of EBOA population
and OFi refers to the obtained objective function value for the ith EBOA member. The
values of the objective function are the criterion for measuring the quality of the proposed
solutions in such a way that the best value of the objective function specifies the best
member while the worst value of the objective function specifies the worst member.
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Mathematical model of EBOA
The main difference between metaheuristic algorithms is how members of the population
are updated and the process that improves the proposed solutions in each iteration. The
process of updating the algorithm population in EBOA has two phases of exploration and
exploitation, which are discussed below.

Phase 1: Voting process and holding elections (exploration).
EBOA members, based on their awareness, participate in the election and vote for one

of the candidates. People’s awareness can be considered as dependent on the quality and
goodness of the value of the objective function. Accordingly, the awareness of individuals in
the community is simulated using Eq. (4). In this awareness simulation process, individuals
with better values of the objective function are more aware.

Ai=


OFi−OFworst
OFbest−OFworst

, OFbest 6=OFworst;

1, else,
(4)

where Ai is the awareness of the ith EBOA member, OFbest and OFworst are the best and
worst values of the objective function, respectively. It should be noted that in minimization
problems, OFbest is related to the minimum value of the objective function and OFworst is
related to the maximum value of the objective function, while in maximization problems,
OFbest is related to the maximum value of the objective function and OFworst is related to
the minimum value of the objective function.

Among the members of the society, 10% of the most awareness individuals in the
society are considered as election candidates. In the EBOA, it is assumed that the minimum
number of candidates (NC) is equal to 2 (i.e., NC ≥ 2), meaning that at least two candidates
will register for the election.

The implementation of the voting process in EBOA is such that the level of awareness
of each person is compared to a random number, if the level of awareness of a person is
higher than that random number, the person is able to vote for the best candidate (known
as C1). Otherwise, that person randomly votes for one of the other candidates. This voting
process is mathematically modeled in Eq. (5).

Vi=

{
C1, Ai> r;
Ck, else,

(5)

where Vi refers to the vote of the ith person in the community, C1 refers to the best
candidate, and Ck refers to the k th candidate, where k isa randomly selected number from
the set {2,3,...,NC}.

At the end of the voting process, based on the counting of votes, the candidate who
has received the highest number of votes is selected as elected (leader). This elected leader
affects the situation of all members of the society and even those who did not vote for him.
The position of individuals in the EBOA is updated under the influence and guidance of the
elected leader. This leader directs the algorithm population to different areas in the search
space and increases the EBOA’s exploration ability in the global search. The process of
updating the EBOA population is led by the leader in such a way that firstly a new position
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is generated for each member. The newly generated position is acceptable for updating
if it improves the value of the objective function. Otherwise, the corresponding member
remains in the previous position. This update process in the EBOA is modeled using Eqs.
(6) and (7).

xnew,P1i,j =

{
xi,j+ r · (Lj− I ·xi,j), OFL<OFi;
xi,j+ r · (xi,j−Lj), else,

(6)

Xi =

{
Xnew.P1
i , OFnew,P1

i <OFi;
Xi, else,

(7)

where Xnew.P1
i refers to a new generated position for the ith EBOA member, xnew,P1i,j is

its jth dimension, OFnew,P1
i is its value of the objective function, I is an integer selected

randomly from the values 1 or 2, L refers to the elected leader, Lj is its jth dimension, and
OFL is its objective function value.

Phase 2: Public movement to raise awareness (exploitation).
The awareness of the people of the society has a great impact on their correct decisions

in the election and voting process. In addition to the leader’s influence on people’s
awareness, every person’s thoughts and activities can increase that person’s awareness.
From a mathematical point of view, a better solution may be identified based on a local
search adjacent to any proposed solution. Thus, the activities of community members to
increase their awareness, lead to an increase in the EBOA’s exploitation ability in the local
search and find better solutions to the problem. To simulate this local search process, a
random position is considered in the neighborhood of each member in the search space.
The objective function of the problem is then evaluated based on this new situation to
determine if this new situation is better than the existing situation of that member. If the
new position has a better value for the objective function, the local search is successful
and the position of the corresponding member is updated. Improving the value of the
objective function will increase that person’s awareness for better decision-making in the
next election (in the next iteration). This update process to increase people’s awareness in
the EBOA is modeled using Eqs. (8) and (9).

xnew,P2i,j = xi,j+(1−2r) ·R ·
Å
1−

t
T

ã
·xi,j, (8)

Xi =

{
Xnew,P2
i , OFnew,P2

i <OFi;
Xi, else,

(9)

where Xnew.P2
i refers to a new generated position for the ith EBOA member, xnew,P2i,j is its

jth dimension, OFnew,P2
i is its value of the objective function, R is the constant equals to

0.02, t refers to iteration contour, and T refers to maximum number of iterations.
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Repetition process, pseudocode, and flowchart of EBOA
An EBOA iteration is completed after updating the status of all members of the population.
The EBOA enters the next iteration with the newly updated values, and the population
update process is repeated based on the first and second phases according to Eqs. (4) to
(9) until the last iteration. Upon completion of the full implementation of the algorithm,
EBOA introduces the best proposed solution found during the algorithm iterations as the
solution to the problem. The EBOA steps are summarized as follows:

Start.
Step 1: Specify the given optimization problem information: objective function,

constraints, and a number of decision variables.
Step 2: Adjust the number of iterations of the algorithm (T ) and the population size

(N ).
Step 3: Initialize the EBOA population at random and evaluate the objective function.
Step 4: Update the best and worst members of the EBOA population.
Step 5: Calculate the awareness vector of the community.
Step 6: Determine the candidates from the EBOA population.
Step 7: Hold the voting process.
Step 8: Determine the elected leader based on the vote count.
Step 9: Update the position of EBOA members based on elected leader guidance in the

search space.
Step 10: Update the position of EBOA members based on the concept of local search

and public movement to raise awareness.
Step 11: Save the best EBOA member as the best candidate solution so far.
Step 12: If the iterations of the algorithm are over, go to the next step, otherwise go back

to Step 4.
Step 13: Print the best-obtained candidate solution in the output.
End.
The flowchart of all steps of implementation of the EBOA is specified in Fig. 1 and its

pseudocode is presented in Algorithm 1.

Computational complexity of EBOA
This subsection is devoted to examining the computational complexity of the EBOA. The
computational complexity of EBOA initialization, including randompopulation generation
and initial evaluation of the objective function, is equal to O(Nm)where N is the size of
the EBOA population andm is the number of problem variables. Holding the election and
updating the EBOA population in the first phase has the computational complexity equal
to O(NmT ) where T is the number of iterations. Population update based on the second
phase of EBOA to increase people’s awareness is equal to O(NmT ). Accordingly, the total
computational complexity of EBOA is equal to O(Nm(1+2T )).

RESULTS
This section is dedicated to analyzing EBOA performance in optimization and its ability
to provide solutions to problems. Thirty-three objective functions of different types have
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Figure 1 Flowchart of EBOA.
Full-size DOI: 10.7717/peerjcs.976/fig-1
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Pseudocode of EBOA. Algorithm 1.

Start EBOA.
Input problem information: variables, objective function, and con-
straints.

Set EBOA population size (N ) and iterations (T ).
Generate the initial population matrix at random.
Evaluate the objective function.

For t = 1 to T
Update best and worst population members.
Phase 1: Voting process and holding elections (exploration).
Calculate A using Eq. (4).
Determine candidates based on awareness criteria.
Simulate holding election and voting using Eq. (5).
Count the votes and determine the election winner as leader.
For i= 1 to N

Calculate Xnew,P1
i using Eq. (6).

Update Xi using Eq. (7).
Phase 2: Public movement to raise awareness (exploitation).
Calculate Xnew,P2

i using Eq. (8).
Update Xi using Eq. (9).

end
Save best proposed solution so far.

end
Output best quasi-optimal solution obtained with the EBOA.

End EBOA.

been selected to evaluate different aspects of the proposed approach. Information and
details of these benchmark functions are specified in Tables 1, 2, 3 and 4. The reasons
for selecting these objective functions are as follows: functions F1 to F7 are selected as a
unimodal type. These types of functions have only one extremum in their search space and
are suitable in this regard to evaluate the EBOA’s exploitation ability in local search and
converge to this optimal position. Therefore, the reason for choosing unimodal functions
is to evaluate the exploitation potential of EBOA. The high-dimensional multimodal
functions F8 to F13 include numerous local extremums in their search space in addition
to the main extremum. These local optimal situations may cause the algorithm to fail.
This feature has adapted the functions F8 to F13 to analyze the EBOA’s exploration ability
in global search and determine whether the proposed approach is able to bypass local
optimal locations and identify the original optimal location. Therefore, the reason for
choosing high-dimensional multimodal functions is to evaluate the EBOA exploration
capability. Fixed-dimensional multimodal functions F14 to F23 have fewer local optimal
locations in their search space. These types of functions are great criteria for simultaneously
measuring exploration and exploitation in optimization methods. Therefore, the reason
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Table 1 Information of unimodal objective functions.

Objective function Range Dimensions Fmin

1. F1(x)=
∑m

i=1x
2
i [−100,100] 30 0

2. F2(x)=
∑m

i=1 |xi|+
∏m

i=1 |xi| [−10,10] 30 0

3. F3(x)=
∑m

i=1

(∑i
j=1xi

)2
[−100,100] 30 0

4. F4(x)=max{|xi|,1≤ i≤m} [−100,100] 30 0

5. F5(x)=
∑m−1

i=1

î
100
(
xi+1−x2i

)2
+(xi−1)2

ó
[−30,30] 30 0

6. F6(x)=
∑m

i=1([xi+0.5])
2 [−100,100] 30 0

7. F7(x)=
∑m

i=1ix
4
i + random(0,1) [−1.28,1.28] 30 0

Table 2 Information of high-dimensional multimodal objective functions.

Objective function Range Dimensions Fmin

8. F8(x)=
∑m

i=1−xi sin(
√
|xi|) [−500,500] 30 −1.2569E+04

9. F9(x)=
∑m

i=1[x
2
i −10cos(2πxi)+10] [−5.12,5.12] 30 0

10. F10(x)=−20exp
Ä
−0.2
»

1
m

∑m
i=1x

2
i

ä
−

exp
(

1
m

∑m
i=1cos(2πxi)

)
+20+e

[−32,32] 30 0

11. F11(x)= 1
4000

∑m
i=1x

2
i −
∏m

i=1cos
Ä

xi√
i

ä
+1 [−600,600] 30 0

12.

F12(x)=
π

m

{
10sin

(
πy1
)

+

∑m

i=1

(
yi−1

)2[
1+10sin2

(
πyi+1

)]
+
(
yn−1

)2©
+

∑m

i=1
u(xi,10,100,4)

u(xi,a,i,n)=

{
k(xi−a)n,xi>−a;
0,−a≤ xi≤ a;
k(−xi−a)n,xi<−a.

[−50,50] 30 0

13. F13(x)
= 0.1{sin2(3πx1) +

∑m
i=1(xi−1)

2

[1 + sin2(3πxi + 1)] + (xn−1)2

[1+ sin2(2πxm)]}+
∑m

i=1u(xi,5,100,4)

[−50,50] 30 0

for choosing fixed-dimensional multimodal functions is to evaluate the EBOA’s ability to
strike the balance between the powers of exploration and exploitation. In addition to the
twenty-three classic F1 to F23 objective functions, EBOA performance on ten complexes
CEC 2019 suite test functions (known as the 100-Digit Challenge Test Functions) is also
tested. More information and details about CEC 2019 test functions are available in Price
et al. (2018).

The quality of the EBOA optimization results is compared with ten state-of-the-art
metaheuristic algorithms including (i) the most widely used and oldest methods: GA, PSO,
(ii) most cited methods from 2009 to 2014: GSA, TLBO, GWO, (iii) Recently published
and widely used methods from 2016 to 2021: WOA, MPA, LPB, FDO, and TSA. As noted
in the literature, numerous optimizationmethods have been developed to date. Comparing
the proposed EBOA approach with all of these methods, while possible, generates a hug
deal of data. Among the metaheuristic algorithms developed, some methods have attracted
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Table 3 Information of fixed-dimensional multimodal objective functions.

Objective function Range Dimensions Fmin

14. F14(x)=
Å

1
500 +

∑25
j=1

1

j+
∑2

i=1(xi−aij)
6

ã−1
[−65.53,65.53] 2 0.998

15. F15(x)=
∑11

i=1

[
ai−

x1(b2i +bix2)

b2i +bix3+x4

]2
[−5,5] 4 0.00030

16. F16(x)= 4x21 −2.1x
4
1 +

1
3x

6
1 +x1x2−4x

2
2 +4x

4
2 [−5,5] 2 −1.0316

17. F17(x)=
(
x2− 5.1

4π2 x21 +
5
π
x1−6

)2
+10

(
1− 1

8π

)
cosx1+10 [−5,10]×[0,15] 2 0.398

18. F18(x)=
[
1+(x1+x2+1)2

(
19−14x1+3x21 −14x2+6x1x2+3x

2
2

)]
×

[30+(2x1−3x2)2× (18−32x1+12x21 +48x2−36x1x2+27x
2
2 )]

[−5,5] 2 3

19. F19(x)=−
∑4

i=1ciexp(−
∑3

j=1aij
(
xj−Pij

)2
) [0,1] 3 −3.86

20. F20(x)=−
∑4

i=1ciexp(−
∑6

j=1aij
(
xj−Pij

)2
) [0,1] 6 −3.22

21. F21(x)=−
∑5

i=1

[
(X−ai)(X−ai)T +6ci

]−1
[0,10] 4 −10.1532

22. F22(x)=−
∑7

i=1

[
(X−ai)(X−ai)T +6ci

]−1
[0,10] 4 −10.4029

23. F23(x)=−
∑10

i=1

[
(X−ai)(X−ai)T +6ci

]−1
[0,10] 4 −10.5364

Table 4 Information on complex CEC 2019 objective functions.

Objective function Range Dimensions Fmin

1. Storn’s Chebyshev Polynomial Fitting Problem [−8192,8192] 9 1
2. Inverse Hilbert Matrix Problem [−16384,16384] 16 1
3. Lennard-Jones Minimum Energy Cluster [−4,4] 18 1
4. Rastrigin’s Function [−100,100] 10 1
5. Griewangk’s Function [−100,100] 10 1
6. Weierstrass Function [−100,100] 10 1
7. Modified Schwefel’s Function [−100,100] 10 1
8. Expanded Schaffer’s F6 Function [−100,100] 10 1
9. Happy Cat Function [−100,100] 10 1
10. Ackley Function [−100,100] 10 1

more attention due to their high efficiency. For this reason, in this study, the ten mentioned
metaheuristic algorithms that have been most considered and used have been selected to
compare with the performance of EBOA. The values set for the control parameters of these
metaheuristics are listed in Table 5.

The EBOA and ten competitor metaheuristics are each employed in twenty independent
implementations to solve the objective functions F1 to F23, while each implementation
contains 1,000 repetitions. The termination condition can be based on various criteria
such as number of iterations, number of function evaluations, the error between several
consecutive iterations, and other cases. In this study, the termination condition is
considered based on the number of iterations. The experiments are performed in the
Matlab R2020a version in the environment of Microsoft Windows 10 with 64 bits on the
Core i-7 processor with 2.40GHz and 6GBmemory. Simulation results and performance of
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Table 5 Adjusted values for competitor metaheuristic algorithms.

Algorithm Parameter Value

GA
Type Real coded.
Selection Roulette wheel (Proportionate).
Crossover Whole arithmetic (Probability= 0.8, α ∈ [−0.5,1.5])
Mutation Gaussian (Probability= 0.05).

PSO
Topology Fully connected.
Cognitive and social constant (C1,C2)= (2,2).
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range.

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO
TF : teaching factor TF = round [(1+ rand)],
Random number rand is a random number in interval [0,1].

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.

WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.
r r is a vector of random numbers in [0,1].
l l is a random number in [−1,1].

TSA
Pmin and P max 1 and 4
c1,c2,c3 Random numbers lie in the range from 0 to 1.

MPA
Constant number P = 0.5,
Random vector R is a vector of uniform random numbers in the interval [0,1].
Fish Aggregating Devices (FADs) FADs= 0.2
Binary vector U = 0 or 1

FDO
Weight factor wf wf is either 0 or 1
r r is a vector of random numbers in 0,1.

LPB
Crossover Percentage pc = 0.6,
Number of Offsprings (Parnets) nc = 2 ·round(pc · nPop/2),
Mutation Percentage pm = 0.3,
Number of Mutants nm = round(pm · nPop),
Mutation Rate mu = 0.03,
Divide probability dp = 0.5,

beta = 8
gamma = 0.05
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metaheuristic algorithms are reported using five indicators: mean, best proposed solution,
standard deviation (std), median, and rank.

Evaluation unimodal objective function
The results of applying EBOA and ten competitor metaheuristic algorithms to optimize
F1 to F7 unimodal functions are reported in Table 6. The optimization outputs show the
EBOA has provided the global optimal in solving the F1, F3, and F6 functions. EBOA is
the first best optimizer in solving F2, F4, F5, and F7. The simulation results show that
in handling the F1 to F7 functions, the EBOA performed better than the ten competitor
metaheuristic algorithms and ranked first.

Evaluation of high-dimensional multimodal objective functions
The optimization results of F8 to F13 functions obtained from the implementation of
EBOA and ten competing metaheuristic algorithms are released in Table 6. EBOA is able to
converge to the global optimum in handling F9 and F11 functions. In optimizing the F10,
F12, F13, and F14 functions, what is evident from the simulation results is that EBOA is the
first best optimizer in these functions. In optimizing the F8 function, after GA and TLBO,
the proposed EBOA is the third best optimizer of this function. What can be deduced from
the results of Table 7 is that EBOA has a higher capability in optimizing high-dimensional
multimodal functions compared to ten competitor algorithms and is ranked first as the
best optimizer in functions 8 to F13.

Evaluation of fixed-dimensional multimodal objective functions
The results obtained from the implementation of EBOA and ten competitor metaheuristic
algorithms on F14 to F23 functions are presented in Table 8. What emerges from the
simulation output is that EBOA is the first best optimizer to handle F14 to F23 functions.
Analysis and comparison of the obtained results indicate that the proposed EBOA approach
has a superior performance over ten metaheuristic algorithms and among them, it has the
first rank of the best optimizer.

The performance of the EBOA and the ten competitor metaheuristic algorithms
implemented on the F1 to F23 objective functions are shown in Fig. 2 as the boxplot.
For visual analysis of the ability to achieve the searched solution, Figs. 3 to 11 show the
convergence curves of the EBOA and ten other competing algorithms in optimizing a
number of objective functions.

Statistical analysis
Capability analysis of metaheuristic algorithms in terms of mean, best, std, median, and
rank indices provides valuable information to compare their performance. However, a
very small probability can be considered for the chance superiority of one method over
another. In this study, the Wilcoxon rank sum test (Wilcoxon, 1992) and non-parametric
t -test (Kim, 2015) are used to determine whether the superiority of the EBOA over any of
the competing metaheuristic algorithms was statistically significant. The results of applying
Wilcoxon rank sum test and non-parametric t -test on EBOA performance and competitor
metaheuristic algorithms are released in Tables 9 and 10, respectively. In cases where the

Trojovský and Dehghani (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.976 15/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.976


Table 6 Optimization results of EBOA and competitor metaheuristics on the unimodal function.

EBOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

Mean 0 1.27E−31 0.6059539 1.71E−18 8.21E−33 1.59E−09 1.09E−58 1.34E−59 2.03E−17 1.77E−05 13.24063

Best 0 3.29E−34 0.1656726 5.92E−26 1.14E−62 1.09E−16 7.73E−61 9.36E−61 8.20E−18 2.00E−10 5.59388

std 0 1.96E−31 0.2883118 6.76E−18 2.53E−32 3.22E−09 4.09E−58 2.05E−59 7.10E−18 5.86E−05 5.72729

Median 0 2.61E−32 0.552771 1.63E−19 6.83E−40 1.09E−09 1.08E−59 4.69E−60 1.78E−17 9.93E−07 11.04546

F1

Rank 1 5 10 6 4 8 3 2 7 9 11

Mean 1.30E−261 3.26E−16 0.2088937 2.78E−09 5.02E−39 0.538136 1.30E−34 5.55E−35 2.37E−08 0.341139 2.479432

Best 8.30E−271 3.19E−17 0.1002184 4.25E−18 8.26E−43 0.461308 1.55E−35 1.32E−35 1.59E−08 0.001741 1.591248

std 0 3.87E−16 0.0757105 1.08E−08 1.72E−38 0.048065 2.20E−34 4.71E−35 3.96E−09 0.669594 0.642843

Median 3.50E−265 1.79E−16 0.1831153 3.18E−11 8.26E−41 0.545056 6.38E−35 4.37E−35 2.33E−08 0.130114 2.463873

F2

Rank 1 5 8 6 2 10 4 3 7 9 11

Mean 0 0.8016065 5116.4258 0.377013 3.20E−19 9.94E−08 7.41E−15 7.01E−15 279.3468 589.4942 1536.915

Best 0 0.0148424 2992.3972 0.032038 7.29E−30 1.74E−12 4.75E−20 1.21E−16 81.91242 1.614937 1014.689

std 0 1.8545893 1727.1652 0.201758 9.90E−19 3.87E−07 1.90E−14 1.27E−14 112.3057 1524.007 367.2108

Median 0 0.2027959 5275.2084 0.378658 9.81E−21 1.74E−08 1.59E−16 1.86E−15 291.441 54.15445 1510.715

F3

Rank 1 7 11 6 2 5 4 3 8 9 10

Mean 5.30E−260 0.8309008 2.9453299 3.66E−08 2.01E−22 5.10E−05 1.26E−14 1.58E−15 3.25E−09 3.963461 2.094271

Best 3.10E−266 0.211467 2.0418994 3.42E−17 1.87E−52 7.34E−06 3.43E−16 6.42E−16 2.09E−09 1.604522 1.389849

std 0 0.5440558 0.5030838 6.45E−08 5.96E−22 5.74E−05 2.32E−14 7.14E−16 7.50E−10 2.204083 0.337011

Med 2.10E−262 0.7476137 2.8820789 3.03E−08 3.13E−27 3.45E−05 7.30E−15 1.54E−15 3.34E−09 3.260791 2.09854

F4

Rank 1 8 10 6 2 7 4 3 5 11 9

Mean 25.91771 45.546797 163.70642 42.49778 28.76746 41.15923 26.86099 145.6667 36.10723 50.26311 310.4313

Best 24.94581 19.180105 95.107228 41.58682 28.53831 39.3088 25.21377 120.7932 25.83811 3.647051 160.5013

std 0.433265 37.836937 41.043291 0.615521 0.364773 0.489502 0.884088 19.73905 32.46252 36.52379 120.4473

Median 26.13112 22.222915 166.09256 42.49068 28.54102 41.3088 26.70967 142.8987 26.07475 28.69395 279.5174

F5

Rank 1 7 10 6 3 5 2 9 4 8 11

Mean 0 4.93E−21 0.05 0.390872 3.84E−20 2.53E−09 0.642334 0.45 0 20.2502 14.5501

Best 0 1.92E−23 0 0.274582 6.74E−26 1.95E−15 1.57E−05 0 0 5 6.00042

std 0 9.71E−21 0.2236068 0.080282 1.50E−19 4.05E−09 0.301088 0.510418 0 12.77311 5.835177

Median 0 1.41E−21 0 0.406648 6.74E−21 1.95E−09 0.621487 0 0 19 13.5

F6

Rank 1 2 5 6 3 4 8 7 1 10 9
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Table 6 (continued)
EBOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

Mean 4.77E−05 0.8072237 0.0718038 0.002182 0.000276 0.01946 0.000819 0.00313 0.020692 0.113415 0.00568

Best 9.87E−07 0.2679768 0.0318638 0.001429 0.000104 0.002027 0.000248 0.001362 0.01006 0.029593 0.002111

std 4.40E−05 0.3625883 0.0221458 0.000466 0.000123 0.004115 0.000503 0.001351 0.01136 0.045868 0.002433

Median 3.56E−05 0.8273515 0.0719665 0.00218 0.000367 0.020272 0.000629 0.002912 0.016996 0.107872 0.005365

F7

Rank 1 11 9 4 2 7 3 5 8 10 6

Sum rank 7 45 63 40 18 46 28 32 40 66 67

Mean rank 1 6.4285 9 5.7142 2.5714 6.5714 4 4.5714 5.7142 9.4285 9.5714

Total rank 1 6 8 5 2 7 3 4 5 9 10
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Table 7 Optimization results of EBOA and competitor metaheuristics on the high-dimensional multimodal function.

EPOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

Mean −7149.45 −6742.4711 −11057.297 −3652.09 −5669.56 −1633.55 −5885.02 −7803.47 −2849.03 −6908.54 −8184.3

Best −8600.95 −7688.9971 −11972.938 −4419.9 −5706.3 −2358.57 −7227.05 −9103.77 −3969.23 −8500.59 −9717.68

std 720.2391 385.42421 340.85937 474.608 21.84579 374.5924 984.4547 986.5806 540.379 836.6452 795.1826

Median −7123.95 −6794.0493 −11028.692 −3632.65 −5669.63 −1649.72 −5774.63 −7735.22 −2671.33 −7098.95 −8117.25

F8

Rank 4 6 1 9 8 11 7 3 10 5 2

Mean 0 12.106148 0.4418522 152.6934 0.005888 3.666025 8.53E−15 10.67763 16.26778 57.06189 62.41204

Best 0 5.7972799 0.0558848 128.2306 0.004776 1.78099 0 9.873963 4.974795 27.85883 36.86623

std 0 4.3697476 0.2628465 15.18316 0.000696 1.07177 2.08E−14 0.397117 4.658816 16.51737 15.21563

Median 0 10.939576 0.3549152 154.6214 0.005871 3.78099 0 10.88657 15.42242 55.22468 61.67858

F9

Rank 1 7 4 11 3 5 2 6 8 9 10

Mean 1.24E−15 8.76E−12 0.2378952 8.31E−10 6.38E−11 0.279162 1.71E−14 0.263208 3.57E−09 2.154699 3.221863

Best 8.88E−16 1.22E−13 0.1155122 1.68E−18 8.14E−15 0.013128 1.51E−14 0.156316 2.64E−09 1.155151 2.757203

std 1.09E−15 2.47E−11 0.0933506 2.80E−09 2.60E−10 0.146961 3.15E−15 0.072865 5.27E−10 0.549446 0.361797

Median 8.88E−16 2.53E−12 0.2136625 1.05E−11 1.10E−13 0.312835 1.51E−14 0.261541 3.64E−09 2.170083 3.120322

F10

Rank 1 3 7 5 4 9 2 8 6 10 11

Mean 0 0.0167647 0.5041482 0 1.55E−06 0.105702 0.003753 0.587689 3.737598 0.046293 1.230221

Best 0 0 0.2403442 0 4.23E−15 0.08107 0 0.310117 1.519288 7.29E−09 1.140551

std 0 0.0174995 0.19818 0 3.38E−06 0.007345 0.007344 0.169117 1.670282 0.051834 0.062756

Median 0 0.0091183 0.4827497 0 8.77E−07 0.10701 0 0.582026 3.424268 0.029473 1.227231

F11

Rank 1 4 7 1 2 6 3 8 10 5 9

Mean 2.71E−07 0.027568 0.0050244 0.082559 0.050164 1.557746 0.037211 0.020551 0.036283 0.480672 0.047027

Best 1.63E−07 9.02E−23 0.0003721 0.077912 0.035428 0.56726 0.019295 0.002031 5.57E−20 0.000145 0.018364

std 5.25E−08 0.0463417 0.009498 0.002386 0.009855 0.4596 0.013875 0.028645 0.060866 0.602582 0.028483

Median 2.70E−07 3.21E−07 0.0010168 0.082111 0.050935 1.56726 0.032991 0.015181 1.48E−19 0.1556 0.04179

F12

Rank 1 4 2 9 8 11 6 3 5 10 7

Mean 3.88E−06 5.49E−05 0.0307545 0.565254 2.658778 0.338392 0.576327 0.329124 0.002085 0.508412 1.208556

Best 2.00E−06 4.55E−21 0.0064812 0.280295 2.63175 0.332688 0.297822 0.038266 1.18E−18 9.99E−07 0.49809

std 9.01E−07 0.000202 0.0215577 0.187817 0.009796 0.001343 0.170359 0.198939 0.005476 1.251681 0.333754

Median 3.79E−06 2.09E−17 0.0276489 0.579874 2.66175 0.338688 0.578323 0.282784 2.14E−18 0.043997 1.218096

F13

Rank 1 2 4 8 11 6 9 5 3 7 10
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Table 7 (continued)
EPOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

Sum rank 9 26 25 43 36 48 29 33 42 46 49

Mean rank 1.5 4.3333333 4.1666667 7.1666667 6 8 4.8333333 5.5 7 7.6666667 8.1666667

Total rank 1 3 2 8 6 10 4 5 7 9 11
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Table 8 Optimization results of EBOA and competitor metaheuristics on the fixed-dimensional multimodal functions.

EBOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

Mean 0.998004 1.3459133 0.998004 0.998998 1.798757 1.043798 3.740858 2.264292 3.591435 2.173601 0.99867

Best 0.998004 0.9980038 0.998004 0.998137 0.998004 0.998004 0.998004 0.998391 0.999508 0.998004 0.998004

std 9.23E−14 0.4864376 1.10E−10 0.000324 0.527414 0.204528 3.969726 1.149621 2.778791 2.936536 0.002471

Median 0.998004 0.9980038 0.998004 0.999138 1.912608 0.998004 2.982105 2.275231 2.986658 0.998004 0.998027

F14

Rank 1 5 1 3 6 4 10 8 9 7 2

Mean 0.000308 0.0003138 0.0085214 0.003936 0.000408 0.003719 0.00637 0.003169 0.002402 0.001684 0.005395

Best 0.000307 0.0003075 0.0004878 0.00027 0.000264 0.000441 0.000307 0.002206 0.000805 0.000307 0.000775

std 3.30E−07 2.61E−05 0.0092568 0.005051 7.59E−05 0.001248 0.009401 0.000394 0.001195 0.004932 0.0081

Median 0.000308 0.0003075 0.0022942 0.0027 0.00039 0.00441 0.000308 0.003185 0.002311 0.000307 0.002074

F15

Rank 1 2 11 8 3 7 10 6 5 4 9

Mean −1.03163 −1.0316285 −1.0316273 −1.03157 −1.03158 −1.03158 −1.03161 −1.03161 −1.03161 −1.03161 −1.0316

Best −1.03163 −1.0316285 −1.0316285 −1.0316 −1.03161 −1.0316 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

std 1.14E−10 7.75E−10 2.19E−06 4.42E−05 4.09E−05 3.78E−05 3.78E−05 3.78E−05 3.78E−05 3.78E−05 4.92E−05

Median −1.03163 −1.0316285 −1.0316281 −1.0316 −1.0316 −1.0316 −1.03163 −1.03163 −1.03163 −1.03163 −1.03162

F16

Rank 1 2 3 7 6 6 4 4 4 4 5

Mean 0.397887 0.3978875 0.3979073 0.399302 0.400093 0.405055 0.397894 0.397892 0.397892 0.785448 0.436972

Best 0.397887 0.3978874 0.3978875 0.39757 0.398052 0.399405 0.397887 0.397887 0.397887 0.397887 0.397888

std 3.28E−09 3.04E−07 2.95E−05 0.003672 0.00448 0.003664 1.02E−05 1.02E−05 1.02E−05 0.721752 0.140745

Median 0.397887 0.3978874 0.3978944 0.39782 0.399052 0.40466 0.397888 0.397887 0.397887 0.397915 0.397925

F17

Rank 1 2 5 6 7 8 4 3 3 10 9

Mean 3 3 3.0000232 3.000032 3.093107 3.000228 3.000042 3.000031 3.000031 3.000031 4.359425

Best 3 3 3.0000003 3 2.999974 3.000149 3 3 3 3 3.000001

std 0 1.49E−11 2.64E−05 7.69E−05 0.031851 0.000126 7.76E−05 7.69E−05 7.69E−05 7.69E−05 6.035694

Median 3 3 3.0000109 3 3.103419 3.000149 3.000007 3 3 3 3.001083

F18

Rank 1 1 2 4 7 6 5 3 3 3 8

Mean −3.86278 −3.86278 −3.86278 −3.86264 −3.80654 −3.8616 −3.86211 −3.86132 −3.86272 −3.86272 −3.85428

Best −3.86278 −3.86278 −3.86278 −3.8627 −3.8366 −3.86276 −3.86278 −3.8625 −3.86278 −3.86278 −3.86278

std 3.38E−07 5.74E−06 2.05E−07 0.000142 0.015257 0.003062 0.001704 0.001374 0.000142 0.000142 0.014852

Median −3.86278 −3.86278 −3.86278 −3.8627 −3.8066 −3.86266 −3.86275 −3.86187 −3.86278 −3.86278 −3.86226

F19

Rank 1 1 1 3 8 5 4 6 2 2 7

Mean −3.322 −3.3219846 −3.274437 −3.32105 −3.31947 −3.23224 −3.25234 −3.20112 −3.32195 −3.2619 −2.82386

Best −3.322 −3.321995 −3.3219951 −3.3213 −3.3212 −3.31342 −3.32199 −3.26174 −3.322 −3.322 −3.31342

std 9.99E−08 1.16E−05 0.0597588 0.000147 0.003069 0.035652 0.076565 0.031823 0.000122 0.070623 0.385958

Median −3.322 −3.3219895 −3.3219932 −3.3211 −3.32058 −3.2424 −3.26231 −3.20744 −3.322 −3.32166 −2.96828

F20

Rank 1 2 6 4 5 9 8 10 3 7 11

Mean −10.1532 −10.150391 −5.642384 −9.95429 −5.40202 −7.40498 −9.64509 −9.19003 −5.14855 −5.38916 −4.30394

Best −10.1532 −10.153199 −10.153196 −10.1532 −7.50209 −7.48159 −10.1532 −9.66387 −10.1532 −10.1532 −7.82781

std 2.33E−06 0.003942 3.4984609 0.532557 0.967922 0.03346 1.561937 0.120744 3.054458 3.019762 1.740798

Median −10.1532 −10.152212 −3.8690264 −10.1532 −5.50209 −7.40159 −10.1526 −9.1532 −3.64784 −5.10077 −4.16197

F21

Rank 1 2 7 3 8 6 4 5 10 9 11

Mean −10.4029 −10.134399 −7.01164 −10.2858 −5.9134 −8.6996 −10.4024 −10.0485 −10.0846 −7.63218 −5.11734

Best −10.4029 −10.402939 −10.402941 −10.4029 −9.06249 −10.4029 −10.4028 −10.4029 −10.4029 −10.4029 −9.11064

(continued on next page)
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Table 8 (continued)

EBOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

std 2.18E−06 1.1783516 3.5358695 0.245334 1.754912 1.356173 0.000474 0.398327 1.423122 3.541608 1.969599

Median −10.4029 −10.401725 −7.7657081 −10.4027 −5.06249 −8.81649 −10.4025 −10.1836 −10.4029 −10.4019 −5.0294

F22

Rank 1 4 9 3 10 7 2 6 5 8 11

Mean −10.5364 −10.532661 −6.4463091 −10.1407 −9.80971 −10.0215 −10.1301 −9.26415 −10.5363 −6.16472 −6.56203

Best −10.5364 −10.536408 −10.536409 −10.5364 −10.3683 −10.5364 −10.5363 −10.534 −10.5364 −10.5364 −10.2216

std 3.63E−06 0.0062871 3.8555684 1.140111 1.606403 0.355828 1.814366 1.676549 0.000386 3.734897 2.617187

Median −10.5364 −10.535362 −4.5055122 −10.5364 −10.3613 −10.0003 −10.5359 −9.67172 −10.5364 −4.50535 −6.5629

F23

Rank 1 3 10 4 7 6 5 8 2 11 9

Sum rank 10 24 55 45 67 64 56 59 46 65 82

Mean rank 1 2.4 5.5 4.5 6.7 6.4 5.6 5.9 4.6 6.5 8.2

Total rank 1 2 5 3 10 8 6 7 4 9 11

p-value is less than 0.05, it can be concluded that there is a significant difference between
the two compared groups. What is clear from the results of theWilcoxon rank sum test and
non-parametric t -test is that the EBOA has a significant superiority in terms of statistical
analysis over all ten competing algorithms in all objective function groups.

Sensitivity analysis
The proposed EBOAapproach is a population-basedmetaheuristic algorithm that addresses
optimization problems in a repetitive-based process. Thus, the two parameters of EBOA,
population number (N ) and the maximum number of iterations of the algorithm (T ),
affect EBOA performance. This subsection is dedicated to the sensitivity analysis of EBOA
to changes in N and T parameters.

EBOA sensitivity analysis to parameterN has been studied by applying it to the handling
of functions F1 to F23 for different values of parameter N equal to 20, 30, 50, and 80. The
results of EBOA sensitivity analysis to parameter N are released in Table 11. The effect of
the parameter N changes on EBOA convergence curves and how to achieve the solution is
shown in Fig. 12. The simulation results reveal the fact that increasing the EBOA population
size increases the search power of this algorithm, as it can be seen that by increasing the
values of parameter N , the proposed EBOA achieves better solutions and as a result, the
values of all objective functions decrease.

EBOA sensitivity analysis to the parameter T has been tested by implementing it on the
handling of F1 to F23 functions for the parameter T equal to 100, 500, 800, and 1,000. The
outputs of the EBOA sensitivity analysis for the T parameter value are shown in Table 12. In
addition, the EBOA convergence curves, which show how to achieve the optimal solution
under changes in the T parameter, are shown in Fig. 13. What can be understood from
the simulation results is that increasing the number of iterations gives the EBOA more
opportunity to be able to identify the main optimal area more accurately and to converge
more towards the global optimal, which this reduced the values of the objective functions.
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Figure 2 (A–W) Boxplot diagram of EPOA and tenmetaheuristic algorithms performances on F1 to
F23.

Full-size DOI: 10.7717/peerjcs.976/fig-2
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Figure 3 Convergence curves of EPOA and competitor algorithms on F1.
Full-size DOI: 10.7717/peerjcs.976/fig-3

Evaluation of CEC 2019 suite objective functions
The implementation of EBOA on the functions F1 to F23 indicated the high ability of
EBOA in optimization applications. In this subsection, the performance of the EBOA is
evaluated in addressing the CEC 2019 objective functions, which consist of ten functions
of CEC01 to CEC10. The optimization results of CEC 2019 functions using EBOA and
competitor algorithms are presented in Table 13. EBOA is the first best optimizer in
addressing the functions cec02, cec03, cec07, cec08, cec09, and cec10. The results of the
Wilcoxon rank-sum test and t -test are reported in Table 14. In cases where the p-value
in this table is less than 0.05, the proposed EBOA approach has a statistically significant
superiority over the corresponding algorithm. Analysis of the simulation results shows that
the proposed EBOA approach has a superior performance over competitor algorithms in
handling most cases of CEC 2019 test functions.

DISCUSSION
Exploitation and exploration are very influential on the performance of metaheuristic
algorithms in finding optimal solutions to problems. Exploitation is the notion of local
search capability around existing solutions that enables the algorithm to converge to
better solutions that may be located in situations close to existing solutions. The impact of
exploitation on the ability of metaheuristic algorithms is especially evident in dealing with
problems that have only one main peak. The results of optimizing the functions F1 to F7
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Figure 4 Convergence curves of EPOA and competitor algorithms on F3.
Full-size DOI: 10.7717/peerjcs.976/fig-4

(with only the main peak) show that the EBOA has the high exploitation ability in local
search and convergence to the global optimal solution. The high exploitation of the EBOA
is especially evident in the handling of the functions F1, F3, and F6, which has converged
to the global optimal.

Exploration is the concept of global search capability in all areas of the problem-solving
space that enables the algorithm to identify the main optimal area containing the global
optimal in the presence of local optimal areas. The effect of exploration on the ability
of metaheuristic algorithms is especially evident in handling problems that have several
non-optimal peaks in addition to the main peak. The results of optimizing the F8 to F13
functions (with several non-optimal peaks) show that the EBOA has acceptable exploration
power in the global search and identification of themain optimal area. The high exploration
capability of EBOA, especially in handling F9 and F11, has led to the accurate identification
of the main optimal area and the success of the algorithm in achieving the global optimum.

In addition to having high capabilities in exploration and exploitation, the conditions
that predispose metaheuristic algorithms to success in achieving solutions are the proper
balance between these two indicators. Objective functions F14 to F23 have fewer non-
optimal peaks than functions F8 to F13, and are good criteria for analyzing the ability of
optimization algorithms to have the proper balance between exploration and exploitation.
The results of optimization of F14 to F23 functions indicate that EBOA has a high
potential for balancing exploration and exploitation to identify the main optimal region
and converge towards the global optimal. An overall analysis of the results of optimizing
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Figure 5 Convergence curves of EPOA and competitor algorithms on F5.
Full-size DOI: 10.7717/peerjcs.976/fig-5

Figure 6 Convergence curves of EPOA and competitor algorithms on F9.
Full-size DOI: 10.7717/peerjcs.976/fig-6
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Figure 7 Convergence curves of EPOA and competitor algorithms on F10.
Full-size DOI: 10.7717/peerjcs.976/fig-7

Figure 8 Convergence curves of EPOA and competitor algorithms on F15.
Full-size DOI: 10.7717/peerjcs.976/fig-8
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Figure 9 Convergence curves of EPOA and competitor algorithms on F20.
Full-size DOI: 10.7717/peerjcs.976/fig-9

Figure 10 Convergence curves of EPOA and competitor algorithms on F22.
Full-size DOI: 10.7717/peerjcs.976/fig-10
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Figure 11 Convergence curves of EPOA and competitor algorithms on F23.
Full-size DOI: 10.7717/peerjcs.976/fig-11

Table 9 Results of applyingWilcoxon rank sum test on performances of EBOA and competitor meta-
heuristic algorithms.

Compared algorithm Objective function type

Unimodal High-dimensional
multimodal

Fixed-dimensional
multimodal

EBOA vs. GA 1.01E−24 4.02E−18 1.04E−22
EBOA vs. PSO 1.01E−24 2.42E−20 3.74E−34
EBOA vs. GSA 9.78E−25 1.89E−21 1.28E−32
EBOA vs. TLBO 9.3E−21 3.51E−12 4.35E−33
EBOA vs. GWO 6.49E−23 6.96E−08 1.46E−24
EBOA vs.WOA 1.07E−13 4.58E−11 0.018214
EBOA vs. TSA 1.78E−20 2.37E−12 0.044185
EBOA vs.MPA 1.01E−24 5.53E−06 1.44E−34
EBOA vs. LPB 1.35E−21 0.0002 7.37E−31
EBOA vs. FDO 6.98E−12 6.05E−07 6.24E−15

Trojovský and Dehghani (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.976 28/40

https://peerj.com
https://doi.org/10.7717/peerjcs.976/fig-11
http://dx.doi.org/10.7717/peerj-cs.976


Table 10 Results of applying non-parametric t-test on performances of EBOA and competitor meta-
heuristic algorithms.

Compared algorithm Objective function type

Unimodal High-dimensional
multimodal

Fixed-dimensional
multimodal

EBOA vs. GA 0.018107 0.019062 0.034177
EBOA vs. PSO 6.78E−06 4.4E−06 1.45E−09
EBOA vs. GSA 1.25E−06 2.9E−06 0.015419
EBOA vs. TLBO 5.47E−06 3.01E−05 2.5E−13
EBOA vs. GWO 1.61E−06 4.42E−06 1.17E−11
EBOA vs.WOA 7.43E−06 0.00133 0.001565
EBOA vs. TSA 4.73E−06 0.031683 1.12E−10
EBOA vs.MPA 9.96E−06 5.93E−06 2.5E−07
EBOA vs. LPB 0.024004 0.075963 4.85E−11
EBOA vs. FDO 6.64E−08 0.001498 9.29E−13

Table 11 Results of EBOA sensitivity analysis to parameter N.

Objective
functions

Number of population members

20 30 50 80

F1 0 0 0 0
F2 2.4E−210 1.3E−261 1.2E−291 0
F3 0 0 0 0
F4 4.2E−214 5.3E−260 1.1E−284 3.4E−304
F5 26.39773 25.91771 25.51165 24.81
F6 0 0 0 0
F7 6.73E−05 4.77E−05 3.04E−05 1.99E−05
F8 −7006.16 −7149.45 −7477.15 −7491.36
F9 0 0 0 0
F10 2.49E−15 1.24E−15 8.88E−16 8.88E−16
F11 0 0 0 0
F12 4.4E−07 2.71E−07 1.77E−07 1.1E−07
F13 0.001125 3.88E−06 2.87E−06 1.6E−06
F14 2.432658 0.998 0.998 0.998
F15 0.000379 0.000308 0.000307 0.000307
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.397887 0.397887 0.397887 0.397887
F18 3 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.31004 −3.322 −3.322 −3.322
F21 −9.64339 −10.1532 −10.1532 −10.1532
F22 −10.1371 −10.4029 −10.4029 −10.4029
F23 −9.98805 −10.5364 −10.5364 −10.5364
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Figure 12 (A–T) EBOA convergence curves in the study of sensitivity analysis to population size N
changes.

Full-size DOI: 10.7717/peerjcs.976/fig-12
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Table 12 Results of EBOA sensitivity analysis to parameter T.

Objective
functions

Maximum number of iterations

100 500 800 1,000

F1 3.52E−47 4.5E−263 0 0
F2 1.09E−22 1.4E−125 8.9E−209 1.3E−261
F3 1.08E−41 3.3E−231 0 0
F4 9.21E−24 2.6E−127 3.9E−206 5.3E−260
F5 28.41803 27.17727 26.53139 25.91771
F6 0 0 0 0
F7 0.000665 9.19E−05 5.67E−05 4.77E−05
F8 −6297.42 −6741.15 −6801.7 −7149.45
F9 0 0 0 0
F10 2.15E−15 2.14E−15 2.13E−15 1.24E−15
F11 0 0 0 0
F12 0.001396 2.55E−06 1.02E−06 2.71E−07
F13 0.068494 2.27E−05 2.04E−05 3.88E−06
F14 0.998 0.998 0.998 0.998
F15 0.000924 0.002341 0.001376 0.000308
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.397889 0.397887 0.397887 0.397887
F18 3 3 3 3
F19 −3.8582 −3.86278 −3.86278 −3.86278
F20 −3.27088 −3.29773 −3.30403 −3.322
F21 −9.47147 −9.53358 −9.64336 −10.1532
F22 −9.60492 −10.4029 −10.4029 −10.4029
F23 −10.2011 −10.4668 −10.5364 −10.5364

the F1 to F23 objective functions frees the inference that the proposed EBOA approach
has a high potential for exploration and exploitation as well as a balance between the two
capabilities.

CONCLUSIONS
Metaheuristic algorithms are one of the most widely used and effective stochastic methods
for solving optimization problems. In this study, a new human-based algorithm called
the Election Based Optimization Algorithm (EBOA) was proposed. The fundamental
inspiration of the EBOA is the voting and election process in which people vote for
their preferred candidate to elect the leader of the population. The EBOA steps in two
phases of (i) exploration, including election holding and (ii) exploitation, including
raising public awareness for better decision-making are mathematically modeled. The
efficiency of EBOA in providing solutions to optimization problems was tested on
thirty-three standard benchmark functions of a variety of unimodal, high-dimensional
multimodal, fixed-dimensional multimodal, CEC 2019 types. The optimization results
of unimodal functions indicated the high exploitation ability of EBOA in local search.
The optimization results of high-dimensional multimodal functions showed the EBOA
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Figure 13 (A–W) EBOA convergence curves in the study of sensitivity analysis to maximum number
of iterations T changes.

Full-size DOI: 10.7717/peerjcs.976/fig-13
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exploration capability in the global search of problem-solving space. In addition, the results
obtained from the optimization of fixed-dimensional multimodal functions concluded
that EBOA, by creating the proper balance between exploration and exploitation, has an
effective efficiency in providing solutions to this type of problems. The implementation
of EBOA on the complex CEC2019 suite test functions indicated the effectiveness of the
proposed approach in dealing with complex optimization problems. The quality of the
results delivered by the EBOA is compared against the performance of ten state-of-the-art
metaheuristic algorithms. Comparing the simulation results, it can be found that EBOA
has provided better optimization results and is much more competitive than the ten
metaheuristic algorithms. The findings of simulation, statistical analysis, and sensitivity
analysis indicate the high capability and efficiency of the EBOA in dealing with optimization
issues.

The proposed EBOA approach enables several future directions, the most specific of
which are the development of the EBOA binary version for discrete space applications,
and the design of the EBOA multi-objective version to handle multi-objective
optimization problems. The EBOA is applied to solve optimization problems in
various sciences as well as real-world applications are other suggestions for future
directions.

The proposed EBOA approach is a stochastic-based solving method. So, the main
limitation of EBOA, similar to all stochastic-based approaches, is there is no guarantee
that EBOA will achieve the optimal global solution. In addition, EBOA may fail to address
some optimization applications because, according to the NFL theorem, there is no
presumption that a metaheuristic algorithm is successful or not. Another limitation
of EBOA is that it is always possible to develop newer algorithms that perform better
than existing algorithms and EBOA. However, the optimization results show that the
EBOA has provided solutions that are very close to the global optimal and, in some
cases, precisely the global optimal. This EBOA capability is particularly evident in
optimizing the F1, F3, F6, F9, F11, and F18 because it has made available the optimal global
solution.
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Table 13 Optimization results of EBOA and competitor metaheuristics on CEC 2019 suite test.

EBOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

Mean 31397.63 15232289 2.89E+10 31395.7 1.65E+08 2.12E+10 79199216 4.33E+08 3.24E+12 4.6E+08 5.52E+10
Best 31395.7 187157.2 1.57E+09 31395.7 39799.58 1773823 45782.62 101859.5 6.80E+11 4374858 6.23E+09
std 5.282375 22511868 2.09E+10 0.000292 4.16E+08 2.76E+10 1.1E+08 7.95E+08 2.05E+12 1.36E+09 4.6E+10
Median 31395.79 4646710 2.52E+10 31395.7 2266337 8.34E+09 35900762 1.01E+08 2.94E+12 69939138 4.1E+10

cec01

Rank 2 3 9 1 5 8 4 6 11 7 10
mean 17.34286 17.34286 27.70728 17.34286 18.34769 17.34508 17.34332 17.37083 14774.91 17.34286 53.56418
Best 17.34286 17.34286 17.34892 17.34286 17.34803 17.34302 17.34311 17.35692 7679.092 17.34286 19.23928
std 0 2.61E−09 13.66182 7.89E−12 0.808127 0.001867 0.000124 0.008292 4550.232 3.05E−15 31.00016
Median 17.34286 17.34286 21.74086 17.34286 18.17572 17.34464 17.3433 17.36932 14635.08 17.34286 41.51365

cec02

Rank 1 4 9 3 8 6 5 7 11 2 10
mean 12.7024 12.7024 12.7024 12.7024 12.70296 12.7024 12.7025 12.70241 12.7024 12.7024 12.70241
Best 12.7024 12.7024 12.7024 12.7024 12.7024 12.7024 12.7024 12.70241 12.7024 12.7024 12.7024
std 3.65E−15 1.50E−11 5.55E−08 3.65E−15 0.001339 5.24E−07 0.000415 9.08E−06 3.65E−15 2.08E−15 1.85E−06
Median 12.7024 12.7024 12.7024 12.7024 12.70247 12.7024 12.7024 12.70241 12.7024 12.7024 12.7024

cec03

Rank 1 3 4 1 9 5 8 7 1 2 6
mean 29.40091 25.8849 79.20654 8.011005 4244.962 253.3125 264.7791 230.9865 6.51698 67.58687 134.1774
Best 12.93446 7.960353 20.97703 0.00017 74.23499 110.3315 13.37336 161.5526 2.984877 10.94454 38.25033
std 14.08728 8.968979 47.08096 4.384481 2404.606 154.3524 581.9962 52.66575 2.247511 116.2151 59.15384
Median 26.36631 25.30171 70.53092 8.470501 4468.768 215.8693 57.17001 225.0158 6.964711 29.8487 135.3556

cec04

Rank 4 3 6 2 11 9 10 8 1 5 7
mean 1.160508 1.111998 1.226455 1.050818 2.999024 1.576271 1.266711 1.857917 1.00948 1.193098 1.602569
Best 1.051728 1.040138 1.048986 1.014772 1.871421 1.201734 1.058202 1.658814 1 1.063978 1.288733
std 0.065115 0.038701 0.133284 0.032407 1.072619 0.251901 0.208595 0.138394 0.010012 0.208163 0.214074
Median 1.137767 1.121755 1.193437 1.044283 2.632057 1.576226 1.189335 1.8488 1.007396 1.145125 1.552622

cec05

Rank 4 3 6 2 11 8 7 10 1 5 9
mean 2.106428 8.140997 5.623278 1.818019 10.42986 8.978288 10.42138 10.59729 1.000105 3.993241 8.647723
Best 1.15137 5.874072 4.320987 1.114883 9.163213 7.276666 9.009652 9.853189 1.000073 1.228136 5.785451
std 0.660714 0.661779 0.807592 0.744312 0.692189 1.124288 0.783399 0.434776 1.97E−05 1.907946 1.341339
Median 1.929794 8.217592 5.516918 1.404095 10.3353 8.741017 10.26319 10.6044 1.000105 4.0335 9.229273

cec06

Rank 3 6 5 2 10 8 9 11 1 4 7
mean 112.4807 143.7672 237.0939 174.3536 617.3397 616.2879 418.7292 623.5747 187.8737 165.1417 124.3327
Best 14.75369 90.65738 61.10223 110.9085 246.6122 148.1279 79.03335 304.7375 82.15282 10.37837 12.09356
std 79.22918 32.18216 140.8724 45.33848 259.8789 349.1442 300.5297 178.8176 90.5322 132.6008 92.31307
Median 112.4599 144.3338 215.906 152.9829 597.9233 632.1518 334.0758 603.1046 180.2679 148.4302 120.9174

cec07

Rank 1 3 7 5 10 9 8 11 6 4 2

(continued on next page)
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Table 13 (continued)

EBOA FDO LPB MPA TSA WOA GWO TLBO GSA PSO GA

mean 2.546949 4.300242 5.419414 3.869595 6.139661 5.839999 4.761854 5.360152 5.372261 5.021396 5.04118
Best 1.289734 3.083263 3.559119 2.708939 4.895428 4.841095 2.925632 4.301028 4.363495 3.633744 4.04053
std 0.727627 0.610021 0.598187 0.616791 0.472164 0.523359 0.942676 0.737183 0.499415 0.644997 0.466454
Median 2.703282 4.336097 5.419597 4.034933 6.234195 5.892174 4.984088 5.222119 5.35066 5.112039 5.042585

cec08

Rank 1 3 9 2 11 10 4 7 8 5 6
mean 2.343608 2.367272 3.13243 2.359083 440.234 4.575637 4.416888 19.60514 3.14272 2.549543 3.668416
Best 2.33839 2.346984 2.720081 2.341292 2.896331 3.582951 3.596261 4.652537 2.576973 2.395394 2.819678
std 0.005293 0.015551 0.288009 0.022234 591.7603 0.891569 0.651956 61.46722 0.494874 0.131925 0.509679
Median 2.341382 2.362613 3.144558 2.35069 279.8453 4.582947 4.431976 5.863226 3.011512 2.514102 3.538552

cec09

Rank 1 3 5 2 11 9 8 10 6 4 7
mean 5.313416 20.00304 20.03576 17.11663 20.4158 20.16707 20.43476 19.50824 18.64584 20.00118 19.3639
Best 8.88E−16 19.91337 20.01024 0.000229 20.26639 20.04477 20.29121 9.348959 3.25E−09 19.99751 7.534284
std 8.723522 0.041617 0.019828 7.057655 0.069939 0.102794 0.082589 2.869468 4.639721 0.006276 3.0762
Median 1.15E−14 19.99981 20.03535 20 20.40561 20.14991 20.44391 20.38098 19.99088 19.99974 20.24951

cec10

Rank 1 7 8 2 10 9 11 5 3 6 4

Sum rank 19 38 68 22 96 81 74 82 49 44 68
Mean rank 1.9 3.8 6.8 2.2 9.6 8.1 7.4 8.2 4.9 4.4 6.8
Total rank 1 3 5 2 10 8 7 9 5 4 6
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Table 14 Results of applying theWilcoxon rank sum test and non-parametric t -test on CEC 2019 test
functions.

Compared algorithm Test type

Wilcoxon rank sum test t -test

EBOA vs. GA 1.21E−23 0.000446
EBOA vs. PSO 1.4E−12 0.14247
EBOA vs. GSA 1.01E−08 0.000112
EBOA vs. TLBO 9.19E−34 0.028878
EBOA vs. GWO 5.17E−26 0.007451
EBOA vs.WOA 2.66E−34 0.005366
EBOA vs. TSA 1.44E−34 0.09192
EBOA vs.MPA 0.244915 0.048768
EBOA vs. LPB 3.89E−27 0.000215
EBOA vs. FDO 4.12E−16 0.010523
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