
Investigating the impact of vulnerability
datasets on deep learning-based
vulnerability detectors
Lili Liu*, Zhen Li*, Yu Wen and Penglong Chen

School of Cyber Security and Computer, Hebei University, Baoding, Hebei Province, China
* These authors contributed equally to this work.

ABSTRACT
Software vulnerabilities have led to system attacks and data leakage incidents, and
software vulnerabilities have gradually attracted attention. Vulnerability detection
had become an important research direction. In recent years, Deep Learning (DL)-
based methods had been applied to vulnerability detection. The DL-based method
does not need to define features manually and achieves low false negatives and false
positives. DL-based vulnerability detectors rely on vulnerability datasets. Recent
studies found that DL-based vulnerability detectors have different effects on different
vulnerability datasets. They also found that the authenticity, imbalance, and
repetition rate of vulnerability datasets affect the effectiveness of DL-based
vulnerability detectors. However, the existing research only did simple statistics, did
not characterize vulnerability datasets, and did not systematically study the impact of
vulnerability datasets on DL-based vulnerability detectors. In order to solve the above
problems, we propose methods to characterize sample similarity and code features.
We use sample granularity, sample similarity, and code features to characterize
vulnerability datasets. Then, we analyze the correlation between the characteristics of
vulnerability datasets and the results of DL-based vulnerability detectors. Finally, we
systematically study the impact of vulnerability datasets on DL-based vulnerability
detectors from sample granularity, sample similarity, and code features. We have the
following insights for the impact of vulnerability datasets on DL-based vulnerability
detectors: (1) Fine-grained samples are conducive to detecting vulnerabilities. (2)
Vulnerability datasets with lower inter-class similarity, higher intra-class similarity,
and simple structure help detect vulnerabilities in the original test set. (3)
Vulnerability datasets with higher inter-class similarity, lower intra-class similarity,
and complex structure can better detect vulnerabilities in other datasets.

Subjects Artificial Intelligence, Software Engineering
Keywords Vulnerability dataset, Deep learning, Vulnerability detection

INTRODUCTION
Software vulnerabilities refer to specific flaws in software that enable attackers to carry out
malicious activities. The threat of system attacks and data leakage make software security
vulnerabilities a vital issue (Chen et al., 2019; Zhu et al., 2017; Zhu et al., 2020). Using
source code is effective in open-source code vulnerability detection because it can uncover
vulnerabilities from a root cause. Source code static vulnerability detection involves code
similarity-based methods (Kim et al., 2017; Li et al., 2016; Jang, Agrawal & Brumley, 2012)

How to cite this article Liu L, Li Z, Wen Y, Chen P. 2022. Investigating the impact of vulnerability datasets on deep learning-based
vulnerability detectors. PeerJ Comput. Sci. 8:e975 DOI 10.7717/peerj-cs.975

Submitted 25 November 2021
Accepted 18 April 2022
Published 11 May 2022

Corresponding authors
Lili Liu, liulili2847@gmail.com
Zhen Li, lizhenhbu@gmail.com

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.975

Copyright
2022 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.975
mailto:liulili2847@�gmail.�com
mailto:lizhenhbu@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.975
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

and pattern-based methods (Yamaguchi et al., 2013; Neuhaus et al., 2007; Yamaguchi,
Lottmann & Rieck, 2012; Grieco et al., 2016). Code similarity-based methods have a high
rate of false positives and false negatives (Johnson et al., 2013). Pattern-based methods
include rule-based methods and machine learning-based methods. Machine learning-
based methods include traditional machine learning-based methods and Deep Learning
(DL)-based methods. Rule-based methods and traditional machine learning-based
methods rely on experts to manually extract features (Zhen et al., 2018). The DL-based
method does not require a manual definition of features and has a low rate of false
negatives and false positives.

In this article, we studied DL-based vulnerability detectors. DL methods automatically
capture and determine features from the training set and then learn to identify
vulnerabilities. DL-based vulnerability detectors rely on vulnerability datasets. This paper
explored C/C++ vulnerability datasets. The existing C/C++ vulnerability datasets mainly
include artificially synthesized data (Black, 2018; Zhen et al., 2018; Li et al., 2021c),
artificially modified data (Booth, Rike & Witte, 2013; Zhen et al., 2018; Li et al., 2021c),
and real-world open-source code (Russell et al., 2018; Fan et al., 2020; Wang et al., 2020;
Zhou et al., 2019; Lin et al., 2019a).

A recent study (Chakraborty et al., 2020) found that the authenticity, imbalance, and
repetition rate of the vulnerability dataset will affect the results of the DL-based
vulnerability detector. However, the existing research on vulnerability datasets is not
comprehensive. There is no characterization of vulnerability datasets or systematic
evaluation of the impact of vulnerability datasets on DL-based vulnerability detectors.

Challenges
The major challenges of investigating the impact of vulnerability datasets on DL-based
vulnerability detectors are as follows:

� The challenge of characterizing vulnerability datasets. Vulnerability datasets are
different from text, image, and other datasets. The internal structure of the code in the
dataset is more complex. It is characterized by a very abstract concept that is difficult to
represent with intuitive data.

� The challenge of vulnerability dataset evaluation methods. The criterion for evaluating
the quality of a vulnerability dataset is its impact on the results of the vulnerability
detector. However, for the same vulnerability dataset, using different DL-based
vulnerability detectors generates significantly different results. Therefore, it is also
difficult to study the quality of the dataset by stripping the impact of the performance of
DL-based vulnerability detectors.

Contributions
We characterized vulnerability datasets according to three aspects: sample granularity,
sample similarity, and code features. We studied the impact of C/C++ vulnerability
datasets on DL-based vulnerability detectors to obtain insights. Based on these insights, we

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 2/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

provide suggestions for the creation and selection of vulnerability datasets. Our main
contributions are as follows:

� We proposed methods to characterize the sample similarity and code features. We
calculated the distance between the sample vectors to obtain the inter-class and intra-
class distance. We used the inter-class and intra-class distance to express the similarity
between the classes and the similarity across the class of samples. We selected five
features to characterize code and measure sample complexity, sample size, and
subroutine call-related information.

� We used sample granularity, sample similarity, and code features to characterize
vulnerability datasets. Then we analyzed the characteristics of vulnerability datasets and
the results of DL-based vulnerability detectors to study the impact of the vulnerability
datasets on DL-based vulnerability detectors.

� We selected four vulnerability datasets, three methods of representation, and four DL-
based vulnerability detectors for experiments. We found that the sample granularity,
sample similarity, and code features of the dataset impacted DL-based vulnerability
detectors in the following ways: (1) Fine-grained samples were conducive to detecting
vulnerabilities; (2) vulnerability datasets with higher inter-class similarity, lower intra-
class similarity, and simple structure were conducive to detecting vulnerabilities in the
original test set; and (3) vulnerability datasets with lower inter-class similarity, higher
intra-class similarity, and complex structure helped detect vulnerabilities in other
datasets.

RELATED WORK
This article studies the impact of the vulnerability dataset on DL-based vulnerability
detectors. The following is related information on three aspects: vulnerability detectors,
vulnerability datasets, and research on vulnerability datasets.

Vulnerability detectors
Source code vulnerability detection involves methods based on code similarity (Kim et al.,
2017; Li et al., 2016; Jang, Agrawal & Brumley, 2012) as well as pattern-based methods
(Yamaguchi et al., 2013; Neuhaus et al., 2007; Yamaguchi, Lottmann & Rieck, 2012; Grieco
et al., 2016). Code similarity-based methods can detect vulnerabilities due to code cloning,
but these methods have a high false-positive rate and false-negative rate (Johnson et al.,
2013). The rule-based method is a pattern-based method that relies on experts manually
extracting features. Machine learning-based methods are also pattern-based methods
that include traditional machine learning-based methods and DL-based methods.
Traditional machine learning-based methods also rely on experts to manually extract
features. The method of manually extracting features is time-consuming and laborious,
and it is not easy to entirely extract the features (Zhen et al., 2018). DL-based methods
automatically extract features with a low rate of false positives and false positives.
DL-based vulnerability detection methods are divided into the following three types
according to their feature extraction method.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 3/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

The first type is sequence-based vulnerability detection. This type of research uses
Deep Neural Networks (DNNs) to extract feature representations from sequence code
entities, mainly text sequence and function call sequence. The text sequence mainly
contains source code text (Sestili, Snavely & VanHoudnos, 2018; Choi et al., 2017; Peng
et al., 2015; Li et al., 2021b), assembly instructions (Le et al., 2019), and source code
processed by the code lexer (Russell et al., 2018). The function call sequence includes static
calls and dynamic calls (Grieco et al., 2016;Wu et al., 2017). Additionally, they allow neural
networks to capture flow-based patterns and advanced features (Zhen et al., 2018; Zou
et al., 2019; Li et al., 2021c; Cheng et al., 2021).

The second type is Abstract Syntax Tree (AST)-based code vulnerability detection. AST
retains the hierarchical structure of sentence and expression organization. It contains a
relatively large amount of code semantics and syntax. Therefore, AST can be a valuable
source for learning feature representations related to potentially vulnerable patterns. This
type of method first extracts the ASTs of the code and then combines them with the
seq2seq (Dam et al., 2017), bidirectional long short-term memory (BLSTM) (Farid et al.,
2021; Lin et al., 2018), or other networks (Wang, Liu & Tan, 2016; Lin et al., 2017) to
extract the semantic features of the code.

The third type is graph-based vulnerability detection. These studies use DNN to learn
feature representations from different types of graph-based program representations,
including AST, Control Flow graphs (CFGs), Program Dependency graphs (PDGs), data-
dependent graphs (DDGs), and combinations of these graphs (Shar & Tan, 2013; Duan
et al., 2019; Dong et al., 2018; Harer et al., 2018; Lin et al., 2019b) as input to DNNs for
learning deep feature representations. Based on this, some studies have used multiple types
of composite graphs to express richer semantic information (Zhou et al., 2019;
Chakraborty et al., 2020; Wang et al., 2020). This paper focuses on these three types of
DL-based vulnerability detectors.

Vulnerability datasets
The existing C/C++ vulnerability datasets are mainly divided into the following three types
according to the collection method. The first type is artificially synthesized data using
known as vulnerability patterns, such as Software Assurance Reference Dataset (SARD)
(Black, 2018; Zhen et al., 2018; Li et al., 2021c). This type of data is relatively simple and has
a single vulnerability pattern. The second type is original data that has been manually
modified, such as National Vulnerability Dataset (NVD) (Booth, Rike & Witte, 2013; Zhen
et al., 2018; Li et al., 2021c; Bhandari, Naseer & Moonen, 2021) and other vulnerability
databases. They annotate and modify the collected data to indicate vulnerabilities. The
third type are real-world open-source datasets, such as open-source repositories like
GitHub (Russell et al., 2018; Fan et al., 2020; Wang et al., 2020; Wang et al., 2021) and
open-source software (Zhou et al., 2019; Lin et al., 2019a; Zheng et al., 2021). This type
of data involves a wide range of vulnerabilities and different structures, reflecting
real-world software vulnerabilities. Generally, the unpatched version is regarded as
vulnerability data, and the patched version is regarded as non-vulnerability data. This
paper studies these three types of C/C++ vulnerability datasets.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 4/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

Research on vulnerability datasets
Previous studies have explored which code changes are more prone to contain
vulnerabilities in datasets (Bosu et al., 2014), and have analyzed the dependencies between
vulnerabilities (Li et al., 2021a) and the vulnerability distribution (Liu et al., 2020). A
recent study (Chakraborty et al., 2020) calculated the authenticity of existing vulnerability
datasets, the proportion of data with and without vulnerabilities, and repeated samples.
That study also found that low authenticity is not conducive to detecting real-world
vulnerabilities. Unbalanced datasets usually make DL-based vulnerability detectors
ineffective. Vulnerability datasets with high repeated sample rates may help detect certain
vulnerabilities but not others. The current research does not characterize vulnerability
datasets or the impact of the vulnerability dataset on DL-based vulnerability detectors.

DESIGN
The purpose of this paper is to study the impact of vulnerability datasets on DL-based
vulnerability detectors. This paper explores the impact of vulnerability datasets on
DL-based vulnerability detectors from three aspects: granularity, similarity, and code
features. The following are our research motivations:

Granularity
When we studied at SySeVR (Li et al., 2021c), we found that there were differences in the
results obtained at the slice-level dataset and function-level dataset. And the slicing
technology extracts the information related to the vulnerability. Therefore, we believe that
granularity will have an impact on the results of vulnerability detectors and do research on
granularity in this paper.

Similarity
Vulnerability detection is a binary classification problem of deep learning. The deep
learning model learns the characteristics of the two types of samples through vectors. So
the inter- and intra-class similarity of input vectors will affect the learning of the deep
learning model. If the two classes of vectors are very different, it is easier to learn
discriminative features. If the same-class vector differences are small, it is easier to learn the
features of each class. The vectors come from samples, and the difference between the
vectors is not only the representation method but also the difference of samples. Therefore,
we believe that the similarity between the samples themselves may have an impact on
the effectiveness of vulnerability detectors. In this paper, we investigate the effect of inter-
class similarity and intra-class similarity on vulnerability detector performance.

Code features
A study (Chakraborty et al., 2020) found that the effects of artificially synthesized datasets
and real-world datasets showed differences. We argue that the difference between synthetic
and real datasets lies not in their origin, but code features, such as code complexity.
Therefore, this paper comprehensively analyzes the code features and studies the impact of
code features on the effect of vulnerability detectors.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 5/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

We achieved insights by answering the following research questions:
RQ1: How does the granularity of vulnerability dataset samples affect DL-based

vulnerability detectors? The sample granularity of vulnerability datasets is mainly divided
into function level and slice level (Li, Wang & Nguyen, 2021). The source code files are
divided by function at the function level and labelled as vulnerable or non-vulnerable. In
the slice set, the slices are labelled according to whether there are vulnerable lines in the
slices. We processed the same dataset into different granularities. Then, we studied the
impact of sample granularity on DL-based vulnerability detectors.

RQ2: How does the similarity of vulnerability dataset samples affect DL-based
vulnerability detectors? Vulnerability datasets are divided into two categories: vulnerable
data and non-vulnerable data. We consider that sample similarity has two aspects: inter-
class similarity and intra-class similarity. Inter-class similarity refers to the similarity
between two classes of samples. Intra-class similarity refers to the similarity between
samples of the same class. We studied the impact of sample similarity between classes and
within classes on DL-based vulnerability detectors from the vectors.

RQ3: How do the code features of vulnerability dataset samples affect DL-based
vulnerability detectors? The code sample has features that cannot be expressed intuitively,
such as code complexity, code amount, and subroutine call-related information. We
characterized code features by selecting five features for comprehensive analysis and
measured sample complexity, sample size, and subroutine call-related information.
Then, we studied the impact of code features on DL-based vulnerability detectors.

To study the impact of the vulnerability dataset on the DL-based vulnerability detectors
from the above three aspects, we first extracted the characteristics of vulnerability datasets
to characterize the vulnerability datasets. Then, we used vulnerability datasets to train
DL-based vulnerability detectors and get the test results of DL-based vulnerability
detectors. We then performed association analysis on the characteristics of the
vulnerability datasets and the results of DL-based vulnerability detectors. Finally, we
gain insights into the impact of vulnerability datasets on DL-based vulnerability detectors
from sample granularity, sample similarity, and code features. Figure 1 briefly introduces
the main research process of this paper. We used steps I–III to characterize the
vulnerability dataset according to these three aspects: sample granularity, sample
similarity, and code features.

STEP I: Generating code samples
This step was to adapt the vulnerability dataset to the input format requirements of the
vulnerability detector. We generated a set of vulnerable code samples A = {A1, A2,…, Am}
and a set of non-vulnerable code samples B = {B1, B2,…, Bn} from the vulnerability
dataset, where m and n were the number of vulnerable code samples and non-vulnerable
code samples. We generated code samples with two granularities: function-level and slice-
level.

When generating function-level code samples, we divided the code files into function
units. Then, we labelled the functions according to the information provided by the
vulnerability dataset. The labelling method should be determined according to the

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 6/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

requirements of the vulnerability detector. Usually, vulnerable functions are labelled “1”,
and non-vulnerable functions are labelled “0”.

When generating slice-level code samples, the first step is determining whether the
vulnerability dataset contains vulnerability line information. This is because we needed
vulnerability line information to determine whether the slice contained vulnerability data,
and then we could label slices. For a vulnerability detector, only the labelled training set is
meaningful. We then generated a PDG diagram of the source code and generated
corresponding program slices for the code elements in the PDG. Finally, we labelled
the slices according to the vulnerability line information provided by the vulnerability
dataset. The slices containing the vulnerability lines were labelled as vulnerable data, and
those that did not contain the vulnerability lines were labelled as non-vulnerable data.

STEP II: Characterizing sample similarity
This step was to characterize the sample similarity of the vulnerability dataset. We
considered two types of sample similarities: inter-class similarity and intra-class similarity.
In order to enable the DL model to learn features better, it was necessary to simplify
the complex original data and express the original data as vectors. We represented
vulnerable code samples set A and non-vulnerable code samples set B as multi-
dimensional vectors sets VA = {VA1, VA2,…, VAm} and VB = {VB1, VB2,…, VBn}.

The methods for representing codes as vectors were mainly divided into sequence-
based, AST-based, and graph-based. Sequence-based representation means that the code is
treated as text sequences, regardless of the internal structure of the code. For example,
word2vec (Mikolov et al., 2013) encodes tokens in the code. AST-based representation is a
tree representation of the abstract syntax structure of the source code. First, it decomposes
the code into a set of paths in the corresponding AST. Then, it uses the neural network
to learn the representation of each path and how to integrate the representation of all

Figure 1 The overview of this paper: vulnerability datasets and DL-based vulnerability detectors as input. Steps I–III characterized
the characteristics of vulnerability datasets. The characteristics of vulnerability datasets and the results of DL-based vulnerability detectors were used
for association analysis to obtain the answers to RQ1-3. Insights were achieved through the above analysis.

Full-size DOI: 10.7717/peerj-cs.975/fig-1

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 7/22

http://dx.doi.org/10.7717/peerj-cs.975/fig-1
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

paths. Abstract Syntax Tree Neural Network (ASTNN) (Zhang et al., 2019) and code2vec
(Alon et al., 2019) are two representations based on AST. Graph-based representation is
based on multiple graphs that explicitly encode different control dependencies and data
dependencies as edges of heterogeneous graphs. This kind of representation is more
concerned with control flow and data flow information, such as Gated Graph Neural
Networks (GGNN) (Zhou et al., 2019).

After representing the code samples as vectors sets VA and VB, we reduced their
dimensions to two-dimensional vectors sets vA = {vA1, vA2,…, vAm} and vB = {vB1, vB2,…,
vBn}. We represented the similarity between classes by the distance between classes. We
calculated this by averaging the average distance between two types of samples, denoted by
Dinter,

Dinter ¼ 1
m � n

Xm

i¼1

Xn

j¼1

DðvAi; vBjÞ: (1)

D(v1, v2) represents the cosine distance between v1 and v2 (Chakraborty et al., 2020),

Dðv1; v2Þ ¼ 1� j v1 � v2
jjv1jj � jjv2jj j: (2)

We represent the similarity within the class by the distance within the class. We
calculated the sum of the average distance between each type of sample, denoted by Dintra,

Dintra ¼ 1
m2

Xm

i¼1

Xm

j¼1

DðvAi; vAjÞ þ 1
n2

Xn

i¼1

Xn

j¼1

DðvBi; vBjÞ: (3)

The larger the Dinter and Dintra, the lower the corresponding similarity.
We also used relative entropy to measure sample similarity. En(a,b) represents the

relative entropy between two samples a and b. The inter-class relative entropy is calculated
as the average relative entropy between two types of samples, denoted as Eninter,

Eninter ¼ 1
m � n

Xm

i¼1

Xn

j¼1

EnðAi;BjÞ: (4)

The intra-class relative entropy is calculated as the sum of the average relative entropy
between samples of each class, denoted as Enintra,

Enintra ¼ 1
m2

Xm

i¼1

Xm

j¼1

EnðAi;AjÞ þ 1
n2

Xn

i¼1

Xn

j¼1

EnðBi;BjÞ: (5)

The larger the Eninter and Enintra, the lower the corresponding similarity.

STEP III: Characterizing code features

This step was to characterize the code features of the vulnerability dataset, such as code
complexity, sample size, and subroutine call-related characteristics. In order to

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 8/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

characterize the code features of vulnerability datasets listed above, we chose five features
from SciTools: https://scitools.org.uk. AvgCyclomatic, AvgEssential, AvgLine,
AvgCountInput and AvgCountOutput. Table 1 describes these features. AvgCyclomatic
and AvgEssential are used to indicate the complexity of the code. AvgLine represents the
sample size. AvgCountInput and AvgCountOutput are used to indicate the subroutine calls
of the code.

EXPERIMENTAL SETUP
Implementation
We used Pytorch 1.4.0 with Cuda version 10.1 and TensorFlow 1.15 (or 1.12) to
implement models. We ran our experiments on double Nvidia Geforce 2080Ti GPU, Intel
(R) Xeon(R) 2.60 GHz 16 CPU. The time to train a single vulnerability detection model
was between 4 h and 17 h.

Vulnerability datasets
We choose four datasets to conduct experiments: SySeVR (Li et al., 2021c), FUNDED
(Wang et al., 2020), Devign (Zhou et al., 2019), and REVEAL (Chakraborty et al., 2020).
Table 2 contains an overview of these four vulnerability datasets. Here are the reasons for
choosing them:

� In order to study the impact of granularity on vulnerability detectors, it is necessary
to generate slice-level and function-level data for the same vulnerability dataset.
Therefore, we selected two vulnerability datasets containing vulnerability line
information: SySeVR (Li et al., 2021c) and FUNDED (Wang et al., 2020).

� In order to study the impact of sample similarity and code features on vulnerability
detectors, the difference of vulnerability datasets should be as large as possible.

Table 1 Code features of vulnerability datasets.

Feature Description

AvgCyclomatic Average cyclomatic complexity for all nested functions or methods

AvgEssential Average Essential complexity for all nested functions or methods

AvgLine Average number of lines for all nested functions or methods

AvgCountInput Number of calling subprograms plus global variables read

AvgCountOutput Number of called subprograms plus global variables set

Table 2 Summary of vulnerability datasets.

Dataset Source Category Vulnerable samples Non-vulnerable samples

SySeVR SARD + NVD Synthesized, manually modified 2,091 13,502

FUNDED GitHub Open-source repository 5,200 5,200

Devign Qemu + FFMPeg Open-source software 10,067 12,294

REVEAL Chromium + Debian Open-source software 1,664 16,505

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 9/22

https://scitools.org.uk
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

Therefore, we chose vulnerability datasets from different sources. SySeVR (Li et al.,
2021c) comes from SARD (Black, 2018) and NVD (Booth, Rike & Witte, 2013), and
FUNDED (Wang et al., 2020) comes from GitHub. We then chose Devign (Zhou et al.,
2019) from Qemu and FFMPeg as another dataset. We used the above three
vulnerability datasets from different sources to train and test vulnerability detectors.

� We chose REVEAL (Chakraborty et al., 2020) as the public test set to ensure fairness.
Since it is a real-world vulnerability dataset. Additionally, it is from a source different to
the other three three datasets.

Representation methods and DL-based vulnerability detectors
We chose three types of representation methods: sequence-based representation method -
word2vec (Mikolov et al., 2013), AST-based representation method-code2vec (Alon et al.,
2019), and graph-based representation method-GGNN (Zhou et al., 2019).

We chose four vulnerability detectors to conduct experiments: SySeVR (Li et al., 2021c),
VulDeePecker (Zhen et al., 2018), REVEAL (Chakraborty et al., 2020), and C2V-BGRU.
Here are the reasons for choosing them:

� To study the impact of granularity on vulnerability detectors, a vulnerability detector
that can accept both function level and slice level as input should be selected. Therefore,
we chose SySeVR (Li et al., 2021c) to study the impact of granularity on vulnerability
detectors.

� In order to study the impact of sample similarity and code features, we needed
vulnerability detectors that use the three representation methods studied in this
paper and different DL models to avoid the bias caused by specific DL models.
Therefore, we chose VulDeePecker (Zhen et al., 2018) based on word2vec (Mikolov
et al., 2013) and BLSTM, REVEAL (Chakraborty et al., 2020) based on GGNN (Zhou
et al., 2019) and MLP, and a variant of SySeVR (Li et al., 2021c) based on code2vec
(Alon et al., 2019) and BGRU (called C2V-BGRU).

Evaluation metrics
Our approaches were based on four popular evaluation metrics used for classification
tasks: Accuracy (ACC), Precision (P), Recall (R), and F1-score (F1). Let True Positive (TP)
be the number of samples with vulnerabilities detected correctly, True Negative (TN) be
the number of samples with non-vulnerabilities detected correctly, False Positive (FP)
be the number of samples with false vulnerabilities detected, and False Negative (FN)
be the number of samples with true vulnerabilities undetected. Accuracy (ACC) indicates
the proportion of all correctly classified samples to total samples, ACC = (TP + TN)/(TP +
TN + FP + FN). Precision (P), also known as the Positive Predictive rate, indicates the
correctness of predicted vulnerable samples, P = TP/(TP + FP). Recall (R) indicates the
effectiveness of vulnerability prediction, R = TP/(TP + FN). F1-score (F1) is defined as the
geometric mean of Precision and Recall, F1 = 2 � (P � R)/(P + R).

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 10/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

EXPERIMENTAL RESULTS
Impact of granularity (RQ1)
This subsection studied the impact of different sample granularity on the DL-based
vulnerability detector. We generated slice-level samples and function-level samples of
SySeVR (Li et al., 2021c) and FUNDED (Wang et al., 2020). Since SySeVR used the ratio of
80%:20% in original papers, we follow this ratio to ensure maximum restoration of
vulnerability detectors. 80% of the samples were training set and 20% of the samples were
test set. The training set was used to train the SySeVR (Li et al., 2021c) vulnerability
detector. The function-level test set was used for testing. The results are shown in Table 3
and Fig. 2.

We observed that the F1-score of the vulnerability detector trained on the slice-level
data of the SySeVR (Li et al., 2021c) dataset was 9.09% higher than that of the vulnerability
detector trained on the function-level data. The F1-score of vulnerability detectors trained

Figure 2 (A–D) The ROC curve of three vulnerability detectors tested on the original test set.
Full-size DOI: 10.7717/peerj-cs.975/fig-2

Table 3 The result of SySeVR on function-level and slice-level vulnerability samples.

Dataset Granularity Accuracy (%) Precision (%) Recall (%) F1-score (%)

FUNDED Function 72.34 57.02 55.73 56.38

Slice 75.48 63.23 59.55 65.47

SySeVR Function 80.36 85.13 82.52 83.37

Slice 89.57 96.54 84.02 89.89

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 11/22

http://dx.doi.org/10.7717/peerj-cs.975/fig-2
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

on slice-level data of the FUNDED (Wang et al., 2020) dataset was 6.52% higher than
that of vulnerability detectors trained on functional-level data. The proportion of
vulnerability-related information contained in fine-grained samples was larger than that of
function-level samples, which was conducive to the more effective learning of
vulnerability-related features by the DL model.

Insight
For DL-based vulnerability detectors, a training set with fine-grained code samples is
conducive to detecting vulnerabilities. The fine-grained samples make it easier for the
DL-based vulnerability detector to learn the characteristics of vulnerabilities.

Impact of sample similarity (RQ2)
This subsection was to study the impact of sample similarity on DL-based vulnerability
detectors. We used word2vec (Mikolov et al., 2013), code2vec (Alon et al., 2019), and
GGNN (Zhou et al., 2019) to represent the samples of the three vulnerability datasets (i.e.,
SySeVR (Li et al., 2021c), FUNDED (Wang et al., 2020), and Devign (Zhou et al., 2019)) as
vectors. To better retain important information, we then used PCA (Wold, Esbensen &
Geladi, 1987) to reduce the dimensionality of the vector to 15 dimensions. Finally, we used
T-SNE (Laurens & Hinton, 2008) to reduce the dimensionality of the vector to two
dimensions. We calculated the inter-class and the intra-class distances for these two-
dimensional vectors and represented their inter-class and intra-class similarities. The
results are shown in Table 4. The SySeVR (Li et al., 2021c) dataset had the highest
inter-class similarity and the lowest intra-class similarity. In contrast, the FUNDED (Wang
et al., 2020) dataset had the lowest inter-class similarity and the highest intra-class
similarity across the three representations. The average inter-class distance of SySeVR
(Li et al., 2021c) was 1.45 times higher than Devign (Zhou et al., 2019) and 2.08 times
higher than FUNDED (Wang et al., 2020). The average intra-class distance of FUNDED
(Wang et al., 2020) was 1.37 times higher than Devign (Zhou et al., 2019) and 2.45 times
higher than SySeVR (Li et al., 2021c).

Table 4 The inter-class distance and intra-class distance of the three vulnerability datasets under the
three representation methods.

Dataset Representation Dinter Dintra Eninter Enintra

FUNDED word2vec 0.1507 0.3578 0.6739 0.5317

code2vec 0.3201 0.4854

GGNN 0.3205 0.5942

SySeVR word2vec 0.4013 0.1327 0.8578 0.3790

code2vec 0.4945 0.2343

GGNN 0.7556 0.2002

Devign word2vec 0.2529 0.2247 0.7265 0.4882

code2vec 0.3855 0.3576

GGNN 0.4942 0.4683

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 12/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

We generated function-level code samples from the three vulnerability datasets (i.e.,
SySeVR (Li et al., 2021c), FUNDED (Wang et al., 2020), and Devign (Zhou et al., 2019))
according to the input format required by the three function-level vulnerability detectors
(i.e., VulDeePecker (Zhen et al., 2018), REVEAL (Chakraborty et al., 2020), and C2V-
BGRU). Since both VulDeePecker and REVEAL used the ratio of 80%: 20% in original
papers, we followed this ratio to ensure maximum restoration of vulnerability detectors.
For every vulnerability dataset, 80% of the samples were training set and 20% of the
samples were original test set. Training sets were used to train DL-based vulnerability
detectors, test sets, and the REVEAL (Chakraborty et al., 2020) dataset were used to test the
effect of the vulnerability detector. The results are shown in Table 5 and Figs. 3 and 4.

From Table 5, we observed that for the vulnerability detection of the original test set,
the F1-score of VulDeePecker trained by SySeVR (Li et al., 2021c) was 9.42% higher
than the F1-score trained by Devign (Zhou et al., 2019) and 20.94% higher than the
F1-score trained by FUNDED (Wang et al., 2020). The F1-score of C2V-BGRU trained by
SySeVR (Li et al., 2021c) was 3.25% higher than the one trained by Devign (Zhou et al.,
2019) and 4.89% higher than the one trained by FUNDED (Wang et al., 2020). The
F1-score of REVEAL (Chakraborty et al., 2020) trained by SySeVR (Li et al., 2021c) was
9.11% higher than the F1-score trained by Devign (Zhou et al., 2019) and 15.19% higher
than the F1-score trained by FUNDED (Wang et al., 2020). The average F1-score of
SySeVR (Li et al., 2021c) was 7.26% higher than the F1-score trained by Devign (Zhou
et al., 2019) and 13.67% higher than the F1-score trained by FUNDED (Wang et al., 2020).

Table 5 The results of the vulnerability detectors trained by the three training sets on the original
test set and REVEAL.

Test set Detector Training set Accuracy (%) Precision (%) Recall (%) F1-score (%)

Original VulDeePecker FUNDED 63.75 53.45 51.78 52.65

SySeVR 89.52 75.62 72.37 73.59

Devign 58.57 68.43 60.36 64.17

C2V-BGRU FUNDED 52.52 54.13 42.73 47.79

SySeVR 84.22 56.35 49.52 52.68

Devign 53.58 52.53 46.74 49.43

REVEAL FUNDED 48.84 49.44 48.94 49.23

SySeVR 79.05 56.82 74.60 64.42

Devign 66.24 47.24 65.87 55.31

REVEAL VulDeePecker FUNDED 78.74 23.78 28.93 26.41

SySeVR 80.56 9.54 15.59 11.83

Devign 70.08 10.56 17.58 13.19

C2V-BGRU FUNDED 89.05 21.56 19.35 20.39

SySeVR 88.41 8.33 14.78 10.65

Devign 84.23 19.72 14.88 16.96

REVEAL FUNDED 66.26 35.89 20.36 25.98

SySeVR 72.38 8.76 17.33 11.63

Devign 64.05 22.35 17.45 19.59

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 13/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

For the vulnerability detection of the REVEAL (Chakraborty et al., 2020) datasets, the
F1-score of VulDeePecker trained by FUNDED (Wang et al., 2020) was 13.22% higher
than the F1-score trained by Devign (Zhou et al., 2019) and 14.58% higher than the
F1-score trained by SySeVR (Li et al., 2021c). The F1-score of C2V-BGRU trained by
FUNDED (Wang et al., 2020) was 3.43% higher than the one trained by Devign (Zhou
et al., 2019) and 9.74% higher than the one trained by SySeVR (Li et al., 2021c). The
F1-score of REVEAL (Chakraborty et al., 2020) trained by FUNDED (Wang et al., 2020)
was 6.39% higher than the F1-score trained by Devign (Zhou et al., 2019) and 14.35%
higher than the F1-score trained by SySeVR (Li et al., 2021c). The average F1-score of
FUNDED (Wang et al., 2020) was 7.68% higher than the F1-score trained by Devign (Zhou
et al., 2019) and 12.89% higher than the F1-score trained by SySeVR (Li et al., 2021c).

By analyzing the above results, we observed that for the vulnerability detection of the
original test set, the dataset with lower inter-class similarity and higher intra-class
similarity was better. For the vulnerability detection of the REVEAL (Chakraborty et al.,

Figure 3 (A–I) The ROC curve of three vulnerability detectors tested on the original test set. Full-size DOI: 10.7717/peerj-cs.975/fig-3

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 14/22

http://dx.doi.org/10.7717/peerj-cs.975/fig-3
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

2020) dataset, the dataset with higher inter-class similarity and lower intra-class similarity
was better.

The training set with lower inter-class similarity made it easier for the DLmodel to learn
the difference between the two data classes. For the vulnerability detection of the original
test set, the similarity between the test set was also lower. The difference between the
vulnerable and non-vulnerable classes was significant and was more conducive to detecting
vulnerable samples. However, since the DL model learns different features that are not
related to vulnerabilities, the training set with low inter-class similarity will affect the
performance of the vulnerability detector when detecting other vulnerability datasets.

The training set with higher intra-class similarity helped the DL model learn the
characteristics of the two classes of data. For the vulnerability detection of the original test
set, the intra-class similarity of the test set was also higher. The same class of data was
slightly different, making it more conducive to detecting vulnerable samples. However,
since the higher intra-class similarity meant that the similar data in the dataset had a single
feature, the DL model learned features unrelated to the vulnerability. Therefore, for the

Figure 4 (A–I) The ROC curve of three vulnerability detectors tested on the REVEAL dataset. Full-size DOI: 10.7717/peerj-cs.975/fig-4

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 15/22

http://dx.doi.org/10.7717/peerj-cs.975/fig-4
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

detection of other vulnerability datasets, the high intra-class similarity of the training set
affects the performance of the vulnerability detector.

Insight

For DL-based vulnerability detectors, vulnerability datasets with higher intra-class
similarity and lower inter-class similarity are conducive to detecting vulnerabilities in the
original test set. Vulnerability datasets with lower intra-class similarity and higher inter-
class similarity are conducive to detecting vulnerabilities in other vulnerability datasets.
This is because higher intra-class similarity and lower inter-class similarity cause DL-based
vulnerability detectors to learn a single feature and features that are unrelated to
vulnerabilities.

Impact of code features (RQ3)
This subsection studied the impact of code features on the DL-based vulnerability detector.
We analyzed the samples of vulnerability datasets, extracted and characterized the code
features of the vulnerability datasets, and the results are shown in Table 6. We found
that the SySeVR (Li et al., 2021c) dataset had the lowest complexity, smallest sample size,
and minor subroutine calls. The FUNDED (Wang et al., 2020) dataset had the highest
complexity, largest sample size, and most subroutine calls.

From Tables 5 and 6, we observed that for the vulnerability detection of the original test
set, a training set with lower complexity, smaller average sample size, and fewer subroutine
calls was better. For vulnerability detection of the REVEAL (Chakraborty et al., 2020)
dataset, a training set with higher complexity, larger average sample sizes, and more
subroutine calls generated better results.

The dataset with low complexity, small sample size, and fewer subroutine calls had a
simple structure, and it was easier for the DL models to learn simple inputs. For the
vulnerability detection of the original test set, the structure of the test set was also
simple, so it was more conducive to detecting vulnerable samples. However, the simple
structure meant that the dataset had a single feature, which made it difficult for the DL
model to learn complex vulnerability features from the training set. Therefore, for the
vulnerability detection of other vulnerability datasets, a training set with low complexity,
small sample size, and few subroutine calls will affect the performance of the vulnerability
detector.

Insight
For DL-based vulnerability detectors, vulnerability datasets with a simple structure are
conducive to detecting vulnerabilities in the original test set, and vulnerability datasets

Table 6 Code features values of three vulnerability datasets.

Dataset AvgCyclomalic AvgEssential AvgLine (num) AvgCountInput (num) AvgCountOutput (num)

FUNDED 15.37 8.09 100.05 8.97 17.17

SySeVR 8.38 4.84 51.87 5.96 7.08

Devign 9.23 4.98 74.77 7.70 11.13

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 16/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

with a complex structure are more conducive to detecting vulnerabilities in other
vulnerability datasets. This is because it is not easy to detect vulnerabilities in complex
data, and their complex features can better train the detection ability of DL-based
vulnerability detectors.

DISCUSSION
Suggestions
Based on our research results, we have the following suggestions for creating and selecting
vulnerability datasets. (1) Vulnerability datasets should be collected from the real-world
environment. We need to de-duplicate the dataset and remove irrelevant vulnerability
information, such as header files and comments. (2) When verifying the feasibility of the
DL-based vulnerability detector, the chosen dataset should be relatively simple with
less similarity between classes and more significant intra-class similarity under the
representation of the DL-based vulnerability detector. (3) When optimizing the DL-based
vulnerability detector, the chosen dataset should be more complex with more significant
similarity between classes and less similarity within classes under the representation of the
DL-based vulnerability detector.

Limitations
This study has several limitations. First, we used three vulnerability datasets and four
DL-based vulnerability detectors for research. Due to the limited number of public
vulnerability datasets currently available and the inherent limitations of DL-based
vulnerability detectors, more DL-based vulnerability detectors and vulnerability datasets
should be used to verify the results in the future. Second, we studied the impact of C/C++
vulnerability datasets on DL-based vulnerability detectors. Future research direction
should explore Python/Java/PHP vulnerability datasets. Third, our work was devoted to
the existing vulnerability datasets, but we did not conduct in-depth research on how to
improve vulnerability datasets. In the future, we will provide a complete improvement
plan.

CONCLUSION
This article focuses on using sample granularity, sample similarity, and code features to
study the impact of vulnerability datasets on DL-based vulnerability detectors. Our
research found: (1) Fine-grained samples were conducive to detecting vulnerabilities;
(2) vulnerability datasets with lower inter-class similarity, higher intra-class similarity, and
simple structure helped detect vulnerabilities in the original test set; and (3) vulnerability
datasets with higher inter-class similarity, lower intra-class similarity, and complex
structure could better detect vulnerabilities in other datasets. We also have given
suggestions for creating and selecting vulnerability datasets. During the research process,
we found that the quality of vulnerability datasets was essential to DL-based vulnerability
detectors. It affected the DL-based vulnerability detectors and played a significant role in
guiding the optimization of DL-based vulnerability detectors. The lack of vulnerability
datasets restricts the development of DL-based vulnerability detectors. We hope to collect

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 17/22

http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

better vulnerability datasets to study their relationship with vulnerability detectors and lay
a foundation for developing DL-based vulnerability detectors.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Natural Science Foundation of Hebei Province under
Grant No. F2020201016. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Natural Science Foundation of Hebei Province: F2020201016.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Lili Liu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

� Zhen Li conceived and designed the experiments, performed the computation work,
authored or reviewed drafts of the paper, and approved the final draft.

� Yu Wen analyzed the data, prepared figures and/or tables, and approved the final draft.
� Penglong Chen performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at figshare: Liu, Lili (2021): PCS.zip. figshare. Dataset. https://doi.
org/10.6084/m9.figshare.17059688.v1

The code is available at GitHub: https://github.com/liulili0925/peerj-cs.git.
The third-party data and code are available at GitHub:
- https://github.com/HuantWang/FUNDED_NISL
- https://git.io/Jf6IA
- https://github.com/SySeVR/SySeVR/.

REFERENCES
Alon U, Zilberstein M, Levy O, Yahav E. 2019. code2vec: learning distributed representations of

code. Proceedings of the ACM on Programming Languages 3(POPL):1–29 DOI 10.1145/3290353.

Bhandari G, Naseer A, Moonen L. 2021. CVEfixes: automated collection of vulnerabilities and
their fixes from open-source software. In: Proceedings of PROMISE 2021. New York, USA,
30–39.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 18/22

https://doi.org/10.6084/m9.figshare.17059688.v1
https://doi.org/10.6084/m9.figshare.17059688.v1
https://github.com/liulili0925/peerj-cs.git
https://github.com/HuantWang/FUNDED_NISL
https://git.io/Jf6IA
https://github.com/SySeVR/SySeVR/
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

Black P. 2018. A software assurance reference dataset: thousands of programs with known bugs.
Journal of Research of the National Institute of Standards and Technology 123:1–3
DOI 10.6028/jres.123.005.

Booth H, Rike D, Witte GA. 2013. The national vulnerability database (nvd): Overview. National
Institute of Standards and Technology. Technical report. Available at https://nvd.nist.gov/.

Bosu A, Carver JC, Hafiz M, Hilley P, Janni D. 2014. Identifying the characteristics of vulnerable
code changes: an empirical study. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. Hong Kong, China, New York: ACM,
257–268.

Chakraborty S, Krishna R, Ding Y, Ray B. 2020. Deep learning based vulnerability detection: Are
we there yet? ArXiv preprint. DOI 10.48550/arXiv.2009.07235.

Chen X, Li C, Wang D, Wen S, Zhang J, Nepal S, Xiang Y, Ren K. 2019. Android HIV: a study of
repackaging malware for evading machine-learning detection. IEEE Transactions on
Information Forensics and Security 15:987–1001 DOI 10.1109/TIFS.2019.2932228.

Cheng X, Wang H, Hua J, Xu G, Sui Y. 2021. Deepwukong: statically detecting software
vulnerabilities using deep graph neural network. ACM Transactions on Software Engineering
and Methodology (TOSEM) 30(3):1–33 DOI 10.1145/3436877.

Choi M-J, Jeong S, Oh H, Choo J. 2017. End-to-end prediction of buffer overruns from raw source
code via neural memory networks. ArXiv preprint. DOI 10.48550/arXiv.1703.02458.

Dam HK, Tran T, Pham T, Ng SW, Grundy J, Ghose A. 2017. Automatic feature learning for
vulnerability prediction. ArXiv preprint. DOI 10.48550/arXiv.1708.02368.

Dong F,Wang J, Li Q, Xu G, Zhang S. 2018.Defect prediction in android binary executables using
deep neural network. Wireless Personal Communications 102(3):2261–2285
DOI 10.1007/s11277-017-5069-3.

Duan X, Wu J, Ji S, Rui Z, Luo T, Yang M, Wu Y. 2019. VulSniper: focus your attention to shoot
fine-grained vulnerabilities. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI). Macao, China, 4665–4671.

Fan J, Li Y, Wang S, Nguyen TN. 2020. A C/C++ code vulnerability dataset with code changes and
CVE summaries. In: Proceedings of the 17th International Conference on Mining Software
Repositories (MSR). Seoul, Republic of Korea, 508–512.

Farid AB, Fathy EM, Sharaf Eldin A, Abd-Elmegid LA. 2021. Software defect prediction using
hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term
memory (Bi-LSTM). PeerJ Computer Science 7(5):e739 DOI 10.7717/peerj-cs.739.

Grieco G, Grinblat GL, Uzal L, Rawat S, Feist J, Mounier L. 2016. Toward large-scale
vulnerability discovery using machine learning. In: Proceedings of the 6th ACM Conference on
Data and Application Security and Privacy (CODASPY). New Orleans, Louisiana, USA, 85–96.

Harer JA, Kim LY, Russell RL, Ozdemir O, Kosta LR, Rangamani A, Hamilton LH, Centeno GI,
Key JR, Ellingwood PM, Antelman E, Mackay A, McConley MW, Opper JM, Chin P,
Lazovich T. 2018. Automated software vulnerability detection with machine learning. ArXiv
preprint. DOI 10.48550/arXiv.1803.04497.

Jang J, Agrawal A, Brumley D. 2012. Redebug: finding unpatched code clones in entire OS
distributions. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy (S&P). San
Francisco, CA, USA, Piscataway: IEEE, 48–62.

Johnson B, Song Y, Murphy-Hill E, Bowdidge R. 2013.Why don’t software developers use static
analysis tools to find bugs? In: Proceedings of the 2013 International Conference on Software
Engineering (ICSE). San Francisco, CA, USA, 672–681.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 19/22

http://dx.doi.org/10.6028/jres.123.005
https://nvd.nist.gov/
http://dx.doi.org/10.48550/arXiv.2009.07235
http://dx.doi.org/10.1109/TIFS.2019.2932228
http://dx.doi.org/10.1145/3436877
http://dx.doi.org/10.48550/arXiv.1703.02458
http://dx.doi.org/10.48550/arXiv.1708.02368
http://dx.doi.org/10.1007/s11277-017-5069-3
http://dx.doi.org/10.7717/peerj-cs.739
http://dx.doi.org/10.48550/arXiv.1803.04497
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

Kim S,Woo S, Lee H, Oh H. 2017.Vuddy: a scalable approach for vulnerable code clone discovery.
In: Proceedings of 2017 IEEE Symposium on Security and Privacy. San Jose, CA, USA, Piscataway:
IEEE, 595–614.

Laurens VDM, Hinton G. 2008. Visualizing data using t-sne. Journal of Machine Learning
Research 9(2605):2579–2605.

Le T, Nguyen T, Le T, Phung D, Montague P, De Vel O, Qu L. 2019. Maximal divergence
sequential autoencoder for binary software vulnerability detection. In: Proceedings of the 7th
International Conference on Learning Representations (ICLR). New Orleans, LA, USA.

Li Q, Song J, Tan D, Wang H, Liu J. 2021a. Pdgraph: a large-scale empirical study on project
dependency of security vulnerabilities. In: Proceedings of the 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). Taipei, China,
Piscataway: IEEE, 161–173.

Li Z, Zou D, Xu S, Chen Z, Zhu Y, Jin H. 2021b. VulDeeLocator: a deep learning-based fine-
grained vulnerability detector. IEEE Transactions on Dependable and Secure Computing 1
DOI 10.48550/arXiv.2001.02350.

Li Z, Zou D, Xu S, Jin S, Qi H, Hu J. 2016. An automated vulnerability detection system based on
code similarity analysis. In: Proceedings of the 32nd Annual Conference on Computer Security
Applications. Los Angeles, CA, USA, 201–213.

Li Y, Wang S, Nguyen TN. 2021. Vulnerability detection with fine-grained interpretations. ArXiv
preprint. DOI 10.48550/arXiv.2106.10478.

Li Z, Zou D, Xu S, Jin H, Chen Z. 2021c. SySeVR: a framework for using deep learning to detect
software vulnerabilities. IEEE Transactions on Dependable and Secure Computing Epub ahead of
print 13 January 2021 DOI 10.1109/TDSC.2021.3051525.

Lin G, Xiao W, Zhang J, Xiang Y. 2019a. Deep learning-based vulnerable function detection: a
benchmark. In: Proceedings of the 21st International Conference on the Information and
Communications Security (ICICS). Beijing, China, 219–232.

Lin G, Zhang J, Luo W, Pan L, De Vel O, Montague P, Xiang Y. 2019b. Software vulnerability
discovery via learning multi-domain knowledge bases. IEEE Transactions on Dependable and
Secure Computing 18(5):2469–2485 DOI 10.1109/TDSC.2019.2954088.

Lin G, Zhang J, Luo W, Pan L, Xiang Y. 2017. Poster: vulnerability discovery with function
representation learning from unlabeled projects. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. Abu Dhabi, UAE, 2539–2541.

Lin G, Zhang J, Luo W, Pan L, Xiang Y, De Vel O, Montague P. 2018. Cross-project transfer
representation learning for vulnerable function discovery. IEEE Transactions on Industrial
Informatics 14(7):3289–3297 DOI 10.1109/TII.2018.2821768.

Liu B, Meng G, Zou W, Gong Q, Li F, Lin M, Sun D, Huo W, Zhang C. 2020. A large-scale
empirical study on vulnerability distribution within projects and the lessons learned. In:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. Seoul,
South Korea, 1547–1559.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representations in
vector space. ArXiv preprint DOI 10.48550/arXiv.1301.3781.

Neuhaus S, Zimmermann T, Holler C, Zeller A. 2007. Predicting vulnerable software
components. In: Proceedings of 2007 ACM Conference on Computer and Communications
Security. Alexandria, Virginia, USA, New York: ACM, 529–540.

Peng H, Mou L, Li G, Liu Y, Zhang L, Jin Z. 2015. Building program vector representations for
deep learning. In: Proceedings of the 8th International Conference on Knowledge Science,
Engineering and Management. Chongqing, China, 547–553.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 20/22

http://dx.doi.org/10.48550/arXiv.2001.02350
http://dx.doi.org/10.48550/arXiv.2106.10478
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1109/TDSC.2019.2954088
http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.48550/arXiv.1301.3781
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

Russell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O, Ellingwood P, McConley M.
2018. Automated vulnerability detection in source code using deep representation learning. In:
Proceedings of the 17th IEEE International Conference on Machine Learning and Applications
(ICMLA). Orlando, FL, USA, Piscataway: IEEE, 757–762.

Sestili CD, Snavely WS, VanHoudnos NM. 2018. Towards security defect prediction with AI.
ArXiv preprint. DOI 10.48550/arXiv.1808.09897.

Shar LK, Tan HBK. 2013. Predicting SQL injection and cross site scripting vulnerabilities through
mining input sanitization patterns. Information and Software Technology 55(10):1767–1780
DOI 10.1016/j.infsof.2013.04.002.

Wang H, Ye G, Tang Z, Tan SH,Wang Z. 2020. Combining graph-based learning with automated
data collection for code vulnerability detection. IEEE Transactions on Information Forensics and
Security 16:1943–1958 DOI 10.1109/TIFS.2020.3044773.

Wang S, Liu T, Tan L. 2016. Automatically learning semantic features for defect prediction. In:
Proceedings of the 38th International Conference on Software Engineering (ICSE). Austin,
Piscataway: IEEE, 297–308.

Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemometrics & Intelligent
Laboratory Systems 2(1–3):37–52 DOI 10.1016/0169-7439(87)80084-9.

Wu F,Wang J, Liu J, WangW. 2017.Vulnerability detection with deep learning. In: Proceedings of
the 3rd IEEE International Conference on Computer and Communications (ICCC). Chengdu,
China, Piscataway: IEEE, 1298–1302.

Wang X,Wang S, Feng P, Sun K, Jajodia S. 2021. PatchDB: a large-scale security patch dataset. In:
Proceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). Taipei, China, Piscataway: IEEE, 257–268.

Yamaguchi F, Wressnegger C, Gascon H, Rieck K. 2013. Chucky: exposing missing checks in
source code for vulnerability discovery. In: Proceedings of 2013 ACM SIGSAC Conference on
Computer and Communications Security. Berlin, Germany, New York: ACM, 499–510.

Yamaguchi F, Lottmann M, Rieck K. 2012. Generalized vulnerability extrapolation using abstract
syntax trees. In: Proceedings of the 28th Annual Computer Security Applications Conference.
Orlando, FL, USA, 359–368.

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. 2019. A novel neural source code
representation based on abstract syntax tree. In: Proceedings of the 41st International Conference
on Software Engineering (ICSE). Montreal, Quebec, Canada, 783–794.

Zhen L, Zou D, Xu S, Ou X, Zhong Y. 2018. VulDeePecker: a deep learning-based system for
vulnerability detection. In: Proceedings of the Network and Distributed System Security
Symposium 2018. San Diego, CA, USA.

Zheng Y, Pujar S, Lewis B, Buratti L, Epstein E, Yang B, Laredo J, Morari A, Su Z. 2021. D2A: a
dataset built for AI-based vulnerability detection methods using differential analysis. In:
Proceedings of the 43rd International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’21). Madrid, Spain, 111–120.

Zhou Y, Liu S, Siow J, Du X, Liu Y. 2019. Devign: effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. In: 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019). Vancouver, Canada, 10197–10207.

Zhu T, Li G, Zhou W, Philip SY. 2017. Differentially private data publishing and analysis: a
survey. IEEE Transactions on Knowledge and Data Engineering 29(8):1619–1638
DOI 10.1109/TKDE.2017.2697856.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 21/22

http://dx.doi.org/10.48550/arXiv.1808.09897
http://dx.doi.org/10.1016/j.infsof.2013.04.002
http://dx.doi.org/10.1109/TIFS.2020.3044773
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1109/TKDE.2017.2697856
http://dx.doi.org/10.7717/peerj-cs.975
https://peerj.com/computer-science/

Zhu T, Xiong P, Li G, Zhou W, Philip SY. 2020. Differentially private model publishing in cyber
physical systems. Future Generation Computer Systems 108(10):1297–1306
DOI 10.1016/j.future.2018.04.016.

Zou D, Wang S, Xu S, Li Z, Jin H. 2019. μVulDeePecker: a deep learning-based system for
multiclass vulnerability detection. IEEE Transactions on Dependable and Secure Computing
18(5):2224–2236 DOI 10.1109/TDSC.2019.2942930.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.975 22/22

http://dx.doi.org/10.1016/j.future.2018.04.016
http://dx.doi.org/10.1109/TDSC.2019.2942930
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.975

	Investigating the impact of vulnerability datasets on deep learning-based vulnerability detectors
	Introduction
	Related work
	Design
	Experimental setup
	Experimental results
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

