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Bilinear pooling (BLP) refers to a family of operations recently developed for fusing
features from different modalities predominantly for visual question answering (VQA)
models. Successive BLP techniques have yielded higher performance with lower
computational expense, yet at the same time they have drifted further from the original
motivational justification of bilinear models, instead becoming empircally motivated by
task performance. Furthermore, despite significant success in text-image fusion in VQA,
BLP has not yet gained such notoriety in video-QA. Though BLP methods have continued to
perform well on video tasks when fusing vision and non-textual features, BLP has recently
been overshadowed by other vision and textual feature fusion techniques in video-QA. We
aim to add a new perspective to the empirical and motivational drift in BLP. We take a step
back and discuss the motivational origins of BLP, highlighting the often-overlooked
parallels to neurological theories (Dual Coding Theory and The Two-Stream Model of
Vision). We seek to carefully and experimentally ascertain the empirical strengths and
limitations of BLP as a multimodal text-vision fusion technique in video-QA using 2 models
(TVQA baseline and heterogeneous-memory-enchanced ‘HME’ model) and 4 datasets
(TVQA, TGif-QA, MSVD-QA, and EgoVQA). We examine the impact of both simply replacing
feature concatenation in the existing models with BLP, and a modified version of the TVQA
baseline to accommodate BLP that we name the ‘dual-stream’ model. We find that our
relatively simple integration of BLP does not increase, and mostly harms, performance on
these video-QA benchmarks. Using our insights on recent work in BLP for video-QA results
and recently proposed theoretical multimodal fusion taxonomies, we offer insight into why
BLP-driven performance gain for video-QA benchmarks may be more difficult to achieve
than in earlier VQA models. We both share our perspective on, and suggest solutions for,
the key issues we identify with BLP techniques for multimodal fusion in video-QA. We look
beyond the empirical justification of BLP techniques and propose both alternatives and
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improvements to multimodal fusion by drawing neurological inspiration from Dual Coding
Theory and the Two-Stream Model of Vision. We qualitatively highlight the potential for
neurological inspirations in video-QA by identifying the relative abundance of
psycholinguistically ‘concrete’ words in the vocabularies for each of the text components
(e.g. questions and answers) of the 4 video-QA datasets we experiment with.
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ABSTRACT12

Bilinear pooling (BLP) refers to a family of operations recently developed for fusing features from different

modalities predominantly for visual question answering (VQA) models. Successive BLP techniques

have yielded higher performance with lower computational expense, yet at the same time they have

drifted further from the original motivational justification of bilinear models, instead becoming empircally

motivated by task performance. Furthermore, despite significant success in text-image fusion in VQA,

BLP has not yet gained such notoriety in video-QA. Though BLP methods have continued to perform

well on video tasks when fusing vision and non-textual features, BLP has recently been overshadowed

by other vision and textual feature fusion techniques in video-QA. We aim to add a new perspective to

the empirical and motivational drift in BLP. We take a step back and discuss the motivational origins

of BLP, highlighting the often-overlooked parallels to neurological theories (Dual Coding Theory and

The Two-Stream Model of Vision). We seek to carefully and experimentally ascertain the empirical

strengths and limitations of BLP as a multimodal text-vision fusion technique in video-QA using 2 models

(TVQA baseline and heterogeneous-memory-enchanced ‘HME’ model) and 4 datasets (TVQA, TGif-QA,

MSVD-QA, and EgoVQA). We examine the impact of both simply replacing feature concatenation in the

existing models with BLP, and a modified version of the TVQA baseline to accommodate BLP that we

name the ‘dual-stream’ model. We find that our relatively simple integration of BLP does not increase,

and mostly harms, performance on these video-QA benchmarks. Using our insights on recent work in

BLP for video-QA results and recently proposed theoretical multimodal fusion taxonomies, we offer insight

into why BLP-driven performance gain for video-QA benchmarks may be more difficult to achieve than in

earlier VQA models. We both share our perspective on, and suggest solutions for, the key issues we

identify with BLP techniques for multimodal fusion in video-QA. We look beyond the empirical justification

of BLP techniques and propose both alternatives and improvements to multimodal fusion by drawing

neurological inspiration from Dual Coding Theory and the Two-Stream Model of Vision. We qualitatively

highlight the potential for neurological inspirations in video-QA by identifying the relative abundance of

psycholinguistically ‘concrete’ words in the vocabularies for each of the text components (e.g. questions

and answers) of the 4 video-QA datasets we experiment with.
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INTRODUCTION39

To solve the growing abundance of complex deep learning tasks, it is essential to develop modelling40

and learning strategies with the capacity to learn complex and nuanced multimodal relationships and41

representations. To this end, research efforts in multimodal deep learning have taken aim at the relationship42

between vision and text through visual question answering (VQA) Wu et al. (2017); Srivastava et al.43

(2020) and more recently video question answering (video-QA) Sun et al. (2021). A particularly notorious44

solution to learning multimodal relationships in VQA is the family of bilinear pooling (BLP) operators45

Gao et al. (2016); Kim et al. (2017); Yu et al. (2017); Ben-younes et al. (2017); Yu et al. (2018b);46
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Ben-Younes et al. (2019). A bilinear (outer product) expansion is thought to encourage models to learn47

interactions between two feature spaces and has experimentally outperformed ‘simpler’ vector operations48

(i.e. concatenation and element-wise-addition/multiplication) on VQA benchmarks. Though successive49

BLP techniques focus on leveraging higher performance with lower computational expense, which we50

wholeheartedly welcome, the context of their use has subtly drifted from application in earlier bilinear51

models e.g. where in Lin et al. (2015) the bilinear mapping is learned between convolution maps (a52

tangible and visualisable parameter), from compact BLP Gao et al. (2016) onwards the bilinear mapping53

is learned between indexes of deep feature vectors (a much less tangible unit of representation). Though54

such changes are not necessarily problematic and the improved VQA performance they have yielded is55

valuable, they represent a broader trend of the use of BLP methods in multimodal fusion being justified56

only by empirical success. Furthermore, despite BLP’s history of success in text-image fusion in VQA, it57

has not yet gained such notoriety in video-QA. Though BLP methods have continued to perform well58

on video tasks when fusing vision and non-textual features Hu et al. (2021); Zhou et al. (2021); Pang59

et al. (2021); Xu et al. (2021); Deng et al. (2021); Wang et al. (2021); Deb et al. (2022); Sudhakaran60

et al. (2021), BLP has recently been overshadowed by other vision and textual feature fusion techniques61

in video-QA Kim et al. (2019); Li et al. (2019); Gao et al. (2019); Liu et al. (2021); Liang et al. (2019).62

In this paper, we aim to add a new perspective to the empirical and motivational drift in BLP. Our63

contributions include the following: I) We carefully and experimentally ascertain the empirical strengths64

and limitations of BLP as a multimodal text-vision fusion technique on 2 models (TVQA baseline and65

heterogeneous-memory-enchanced ‘HME’ model) and 4 datasets (TVQA, TGif-QA, MSVD-QA and66

EgoVqa). To this end, our experiments include replacing feature concatenation in the existing models with67

BLP, and a modified version of the TVQA baseline to accommodate BLP that we name the ‘dual-stream’68

model. Furthermore, we contrast BLP (classified as a ‘joint’ representation by Baltrušaitis et al. (2019))69

with deep canonical cross correlation (a ‘co-ordinated representation’). We find that our relatively simple70

integration of BLP does not increase, and mostly harms, performance on these video-QA benchmarks. II)71

We discuss the motivational origins of BLP and share our observations of bilinearity in text-vision fusion.72

III) By observing trends in recent work using BLP for multimodal video tasks and recently proposed73

theoretical multimodal fusion taxonomies, we offer insight into why BLP-driven performance gain for74

video-QA benchmarks may be more difficult to achieve than in earlier VQA models. IV) We identify75

temporal alignment and inefficiency (computational resources and performance) as key issues with BLP76

as a multimodal text-vision fusion technique in video-QA, and highlight concatenation and attention77

mechanisms as an ideal alternative. V) In parallel with the empirically justified innovations driving BLP78

methods, we explore the often-overlooked similarities of bilinear and multimodal fusion to neurological79

theories e.g. Dual Coding Theory Paivio (2013, 2014) and the Two-Stream Model of Vision Goodale80

and Milner (1992); Milner (2017), and propose several potential neurologically justified alternatives81

and improvements to existing text-image fusion. We highlight the latent potential already in existing82

video-QA dataset to exploit neurological theories by presenting a qualitative analysis of occurrence of83

psycholinguistically ‘concrete’ words in the vocabularies of the textual components of the 4 video-QA we84

experiment with.85

BACKGROUND: BILINEAR POOLING86

In this section we outline the development of BLP techniques, highlight how bilinear models parallel the87

two-stream model of vision, and discuss where bilinear models diverged from their original motivation.88

Concatenation89

Early works use Vector concatenation to project different features into a new joint feature space. Zhou90

et al. (2015) use vector concatenation on the CNN image and text features in their simple baseline VQA91

model. Similarly, Lu et al. (2016) concatenate image attention and textual features. Vector concatenation92

is a projection of both input vectors into a new ‘joint’ dimensional space. Vector concatenation as93

a multimodal feature fusion technique in VQA is considered a baseline and is generally empirically94

outperformed in VQA by the following bilinear techniques.95

Bilinear Models96

Working from the observations that “perceptual systems routinely separate ‘content’ from ‘style”’, Tenen-97

baum and Freeman (2000) proposed a bilinear framework on these two different aspects of purely visual98
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inputs. They find that the multiplicative bilinear model provides “sufficiently expressive representations99

of factor interactions”. The bilinear model in Lin et al. (2015) is a ‘two-stream’ architecture where distinct100

subnetworks model temporal and spatial aspects. The bilinear interactions are between the outputs of two101

CNN streams, resulting in a bilinear vector that is effectively an outer product directly on convolution102

maps (features are aggregated with sum-pooling). This makes intuitive sense as individual convolution103

maps represent specific patterns. It follows that learnable parameters representing the outer product be-104

tween these maps learn weightings between distinct and visualisable patterns directly. Interestingly, both105

Tenenbaum and Freeman (2000); Lin et al. (2015) are reminiscent of two-stream hypothesises of visual106

processing in the human brain Goodale and Milner (1992); Milner and Goodale (2006, 2008); Goodale107

(2014); Milner (2017) (discussed in detail later). Though these models focus on only visual content,108

their generalisable two-factor frameworks would later be inspiration to multimodal representations. Fully109

bilinear representations using deep learning features can easily become impractically large, necessitating110

informed mathematical compromises to the bilinear expansion.111

Compact Bilinear Pooling112

Gao et al. (2016) introduce ‘Compact Bilinear Pooling’, a technique combining the count sketch function113

Charikar et al. (2002) and convolution theorem Domı́nguez (2015) in order to ‘pool’ the outer product114

into a smaller bilinear representation. Fukui et al. (2016) use compact BLP in their VQA model to115

learn interactions between text and images i.e. multimodal compact bilinear pooling (MCB). We note116

that for MCB, the learned outer product is no longer on convolution maps, but rather on the indexes of117

image and textual tensors. Intuitively, a given index of an image or textual tensor is more abstracted118

from visualisable meaning when compared to convolution map. As far as we are aware, no research119

has addressed the potential ramifications of this switch from distinct maps to feature indexes, and later120

usages of bilinear pooling methods continue this trend. Though MCB is significantly more efficient121

than full bilinear expansions, they still require relatively large latent dimension to perform well on VQA122

(d≈16000).123

Multimodal Low-Rank Bilinear Pooling124

To further reduce the number of needed parameters, Kim et al. (2017) introduce multimodal low-rank125

bilinear pooling (MLB), which approximates the outer product weight representation W by decomposing126

it into two rank-reduced projection matrices:127

z = MLB(x,y) = (XT x)⊙ (Y T y)128

z = xTWy = xT XY T y = 1
T (XT x⊙Y T y)129

where X ∈ R
m×o, Y ∈ R

n×o, o < min(m,n) is the output vector dimension, ⊙ is element-wise multiplica-130

tion of vectors or the Hadamard product, and 1 is the unity vector. MLB performs better than MCB in131

Osman and Samek (2019), but it is sensitive to hyperparameters and converges slowly. Furthermore, Kim132

et al. (2017) suggest using Tanh activation on the output of z to further increase model capacity.133

Multimodal Factorised Low Rank Bilinear Pooling134

Yu et al. (2017) propose multimodal factorised bilinear pooling (MFB) as an extension of MLB. Consider

the bilinear projection matrix W ∈ R
m×n outlined above, to learn output z ∈ R

o we need to learn

W = [W0, ...,Wo−1]. We generalise output z:

zi = xT XiY
T
i y =

k−1

∑
d=0

xT adbT
d y = 1

T (XT
i x⊙YT

i y) (1)

Note that MLB is equivalent to MFB where k=1. MFB can be thought of as a two-part process: features135

are ‘expanded’ to higher-dimensional space by Wσ matrices, then ‘squeezed’ into a “compact ouput”.136

The authors argue that this gives “more powerful” representational capacity in the same dimensional137

space than MLB.138

Multimodal Tucker Fusion139

Ben-younes et al. (2017) extend the rank-reduction concept from MLB and MFB to factorise the entire140

bilinear tensor using tucker decomposition Tucker (1966) in their multimodal tucker fusion (MUTAN)141
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model. We will briefly summarise the notion of rank and the mode-n product to describe the tucker142

decomposition model.143

Rank and mode-n product: If W ∈ R
I1×,...,×IN and V ∈ R

Jn×In for some n ∈ {1, ...,N} then144

rank(W⊗n V) ≤ rank(W)145

where ⊗n is the mode-n tensor product:146

(W⊗n V)(i1, ..., in−1, jn, in+1, ..., iN):=∑
In
in=1 W (i1, ..., in−1, in, in+1, ..., iN)V( jn, in)147

In essence, the mode-n fibres (also known as mode-n vectors) of W⊗n V are the mode-n fibres of W148

multiplied by V (proof here Guillaume OLIKIER (2017)). See Figure 1 for a visualisation of mode-n149

fibres. Each mode-n tensor product introduces an upper bound to the rank of the tensor. We note that150

conventionally, the mode-n fibres count from 1 instead of 0. We will follow this convention for the tensor151

product portion of our paper to avoid confusion. The tucker decomposition of a real 3rd order tensor

Figure 1. Visualisation of mode-n fibres and matricisation

152

T ∈ R
d1×d2×d3 is:153

T = τ ⊗1 W1 ⊗2 W2 ⊗3 W3154

where τ ∈ R
d1×d2×d3 (core tensor), and W1,W2,W3 ∈ R

d1×d1 , Rd2×d2 , Rd3×d3 (factor matrices) respec-155

tively.156

MUTAN: The MUTAN model uses a reduced rank on the core tensor to constrain representational157

capacity, and the factor matrices to encode full bilinear projections of the textual and visual features, and158

finally output an answer prediction, i.e:159

y = ((τ ⊗1 (q
T Wq))⊗2 (v

T Wv))⊗3 Wo160

Where y ∈ R
|A| is the answer prediction vector and q,v are the textual and visual features respectively.161

A slice-wise attention mechanism is used in the MUTAN model to focus on the ‘most discriminative162

interactions’. Multimodal tucker fusion is an empirical improvement over the preceeding BLP techniques163

on VQA, but it introduces complex hyperparameters to refine that are important for relatively its high164

performance (R and core tensor dimensions).165

Multimodal Factorised Higher Order Bilinear Pooling166

All the BLP techniques discussed up to now are ‘second-order’, i.e. take two functions as inputs. Yu et al.167

(2018b) propose multimodal factorised higher-order bilinear pooling (MFH), extending second-order168

BLP to ‘generalised high-order pooling’ by stacking multiple MFB units, i.e:169

zi
exp = MFBi

exp(I,Q) = zi−1
exp ⊙Dropout(UT I⊙VT Q)170

z = SumPool(zexp)171

for i ∈ {1, ..., p} where I, Q are visual and text features respectively. Similar to how MFB extends MLB,172

MFH is MFB where p = 1. Though MFH slightly outperforms MFB, there has been little exploration173

into the theoretical benefit in generalising to higher-order BLP.174
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Bilinear Superdiagonal Fusion175

Ben-Younes et al. (2019) proposed another method of rank restricted bilinear pooling: Bilinear Superdiag-176

onal Fusion (BLOCK). We will briefly outline block term decomposition before describing BLOCK.177

Block Term Decomposition: Introduced in a 3-part paper De Lathauwer (2008a,b); De Lathauwer and178

Nion (2008), block term decomposition reformulates a bilinear matrix representation as the sum of rank179

restricted matrix products (contrasting low rank pooling which is represented by only a single rank180

restricted matrix product). By choosing the number of decompositions in the approximated sum and181

their rank, block-term decompositions offer greater control over the approximated bilinear model. Block182

term decompositions are easily extended to higher-order tensor decompositions, allowing multilinear183

rank restriction for multilinear models in future research. A block term decomposition of a tensor184

W ∈ R
I1×,...,×IN is a decomposition of the form:185

W = ∑
R
r=1 Sr ⊗1 U1

r ⊗2 U2
r⊗3, ...,⊗nUn

r186

where R ∈ N
∗ and for each r ∈ {1, ...,R},Sr ∈ R

R1×,...,×Rn where each Sr are ‘core tensors’ with dimen-187

sions Rn ≤ In for n ∈ {1, ...,N} that are used to restrict the rank of the tensor W. Un
r ∈ St(Rn, In) are the188

‘factor matrices’ that intuitively expand the nth dimension of S back up to the original nth dimension of W.189

St(a,b) here refers to the Stiefel manifold, i.e. St(a,b):{Y ∈ R
a×b : YT Y = Ip}. Figure 2 visualises the190

block term decomposition process.

Figure 2. Block Term Decomposition (n=3)

191

Bilinear Superdiagonal Model: The BLOCK model uses block term decompositions to learn multimodal192

interactions. The authors argue that since BLOCK enables “very rich (full bilinear) interactions between193

groups of features, while the block structure limits the complexity of the whole model”, that it is able194

to represent very fine grained interactions between modalities while maintaining powerful mono-modal195

representations. The bilinear model with inputs x ∈R
m,y ∈R

n is projected into o dimensional space with196

tensor products:197

z = W⊗1 x⊗2 y198

where z ∈ R
o. The superdiagonal BLOCK model uses a 3 dimensional block term decomposition. The199

decomposition of W in rank (R1,R2,R3) is defined as:200

W = ∑
R
r=1 Sr ⊗1 U1

r ⊗2 U2
r ⊗3 U3

r201

This can be written as202

W = Sbd ⊗1 U1 ⊗2 U2 ⊗3 U3
203

where U1 =[U1
1, ...,U

1
R], similarly with U2 and U3, and now Sbd ∈ R

RR1×RR2×RR3
. So z can now be204

expressed with respect to x and y. Let x̂ = U1x ∈ R
RR1

and ŷ = U2y ∈ R
RR2

. These two projections are205

merged by the block-superdiagonal tensor Sbd . Each block in Sbd merges together blocks of size R1 from206

x̂ and of size R2 from ŷ to produce a vector of size R3:207

zr = Sr ⊗x x̂rR1:(r+1)R1 ⊗y ŷrR2:(r+1)R2208

where x̂i: j is the vector of dimension j− i containing the corresponding values of x̂. Finally all vectors209

zr are concatenated producing ẑ ∈ R
RR3

. The final prediction vector is z = U3, ẑ ∈ R
o. Similar to tucker210

fusion, the block term decomposition based fusion in BLOCK theoretically allows more nuanced control211

on representation size and empirically outperforms previous techniques.212
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RELATED WORKS213

Bilinear Pooling in Video-QA With Language-Vision Fusion214

We aim to highlight and explore a broad shift away from BLP in favour of methods such as attention215

in video-QA benchmarks. Several video models have incorporated and contrasted BLP techniques to216

their own model designs for language-vision fusion tasks. Kim et al. (2019) find various BLP fusions217

perform worse than their ‘dynamic modality fusion’ mechanism on TVQA Lei et al. (2018) and MovieQA218

Tapaswi et al. (2016). Li et al. (2019) find MCB fusion performs worse on their model in ablation219

studies on TGIF-QA Jang et al. (2017). Chou et al. (2020) use MLB as part of their baseline model220

proposed alongside their ‘VQA 360◦’ dataset. Gao et al. (2019) contrast their proposed two-stream221

attention mechanism to an MCB model for TGIF-QA, demonstrating a substantial performance increase222

over the MCB model. Liu et al. (2021) use MUTAN fusion between question and visual features to223

yield impressive results on TGif-QA, though they are outperformed by an attention based model using224

element-wise multiplication Le et al. (2020). The Focal Visual-Text Attention network (FVTA) Liang225

et al. (2019) is a hierarchical model that aims to dynamically select from the appropriate point across both226

time and modalities that outperforms an MCB approach on Movie-QA.227

Bilinear Pooling in Video Without Language-Vision Fusion228

Where recent research in video-QA tasks (which includes textual questions as input) has moved away229

from BLP techniques, several video tasks that do not involve language have found success using BLP230

techniques. Zhou et al. (2021) use a multilevel factorised BLP based model to fuse audio and visual231

features for emotion recognition in videos. Hu et al. (2021) use compact BLP to fuse audio and ‘visual232

long range’ features for human action recognition. Pang et al. (2021) use MLB as part of an attention-233

based fusion for audio and visual features for violence detection in videos. Xu et al. (2021) use BLP to234

fuse visual features from different channels in RGBT tracking. Deng et al. (2021) use compact BLP to235

fuse spatial and temporal representations of video features for action recognition. Wang et al. (2021)236

fuse motion and appearance visual information together achieving state-of-the-art results on MSVD-QA.237

Sudhakaran et al. (2021) draw design inspiration from bilinear processing of Lin et al. (2015) and MCB238

to propose ‘Class Activation Pooling’ for video action recognition. Deb et al. (2022) use MLB to process239

video features for video captioning.240

DATASETS241

In this section, we outline the video-QA datasets we use in our experiments.242

MSVD-QA243

Xu et al. (2017) argue that simply extending image-QA methods is “insufficient and suboptimal” to244

conduce quality video-QA, and that instead the focus should be on the temporal structure of videos. Using245

an NLP method to automatically generate QA pairs from descriptions Heilman and Smith (2009), Xu246

et al. (2017) create the MSVD-QA dataset based on the Microsoft research video description corpus Chen247

and Dolan (2011). The dataset is made from 1970 video clips, with over 50k QA pairs in ‘5w’ style i.e.248

(“what”, “who”, “how”, “when”, “where”).249

TGIF-QA250

Jang et al. (2017) speculate that the relatively limited progress in video-QA compared to image-QA is251

“due in part to the lack of large-scale datasets with well defined tasks”. As such, they introduced the252

TGIF-QA dataset to ‘complement rather than compete’ with existing VQA literature and to serve as a253

bridge between video-QA and video understanding. To this end, they propose 3 subsets with specific254

video-QA tasks that aim to take advantage of the temporal format of videos:255

Count: Counting the number of times a specific action is repeated Levy and Wolf (2015) e.g. “How many256

times does the girl jump?”. Models output the predicted number of times the specified actions happened.257

(Over 30k QA pairs).258

Action: Identify the action that is repeated a number of times in the video clip. There are over 22k259

multiple choice questions e.g. “What does the girl do 5 times?”.260

Trans: Identifying details about a state transition Isola et al. (2015). There are over 58k multiple choice261

questions e.g. “What does the man do after the goal post?”.262
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Frame-QA: An image-QA split using automatically generated QA pairs from frames and captions in the263

TGIF dataset Li et al. (2016) (over 53k multiple choice questions).264

TVQA265

The TVQA dataset Lei et al. (2018) is designed to address the shortcomings of previous datasets. It266

has significantly longer clip lengths than other datasets and is based on TV shows instead of cartoons267

to give it realistic video content with simple coherent narratives. It contains over 150k QA pairs. Each268

question is labelled with timestamps for the relevant video frames and subtitles. The questions were269

gathered using AMT workers. Most notably, the questions were specifically designed to encourage270

multimodal reasoning by asking the workers to design two-part compositional questions. The first part271

asks a question about a ‘moment’ and the second part localises the relevant moment in the video clip i.e.272

[What/How/Where/Why/Who/...] — [when/before/after] —, e.g. ‘[What] was House saying [before] he273

leaned over the bed?’. The authors argue this facilitates questions that require both visual and language274

information since “people often naturally use visual signals to ground questions in time”. The authors275

identify certain biases in the dataset. They find that the average length of correct answers are longer276

than incorrect answers. They analyse the performance of their proposed baseline model with different277

combinations of visual and textual features on different question types they have identified. Though recent278

analysis has highlighted bias towards subtitles in TVQA’s questions Winterbottom et al. (2020), it remains279

an important large scale video-QA benchmark.280

EgoVQA281

Most video-QA datasets focus on video-clips from the 3rd person. Fan (2019) argue that 1st person282

video-QA has more natural use cases that real-world agents would need. As such, they propose the283

egocentric video-QA dataset (EgoVQA) with 609 QA pairs on 16 first-person video clips. Though the284

dataset is relatively small, it has a diverse set of question types (e.g. 1st & 3rd person ‘action’ and ‘who’285

questions, ‘count’, ‘colour’ etc..), and aims to generate hard and confusing incorrect answers by sampling286

from correct answers of the same question type. Models on EgoVQA have been shown to overfit due to its287

small size. To remedy this, Fan (2019) pretrain the baseline models on the larger YouTube2Text-QA Ye288

et al. (2017). YouTube2Text-QA is a multiple choice dataset created from MSVD videos Chen and Dolan289

(2011) and questions created from YouTube2Text video description corpus Guadarrama et al. (2013).290

YouTube2Text-QA has over 99k questions in ‘what’, ‘who’ and ‘other’ style.291

MODELS292

In this section, we describe the models used in our experiments, built from the official TVQA 1 and293

HME-VideoQA 2 implementations.294

TVQA Model295

Model Definition: The model takes as inputs: a question q, five potential answers {ai}4
i=0, a subtitle S296

and corresponding video-clip V, and outputs the predicted answer. As the model can either use the entire297

video-clip and subtitle or only the parts specified in the timestamp, we refer to the sections of video and298

subtitle used as segments from now on. Figure 3 demonstrates the textual and visual streams and their299

associated features in model architecture.300

ImageNet Features: Each frame is processed by a ResNet101 He et al. (2016) pretrained on ImageNet301

Deng et al. (2009) to produce a 2048-d vector. These vectors are then L2-normalised and stacked in frame302

order: V img ∈ R
f×2048 where f is the number of frames used in the video segment.303

Regional Features: Each frame is processed by a Faster R-CNN Ren et al. (2015) trained on Visual304

Genome Krishna et al. (2017) in order to detect objects. Each detected object in the frame is given a305

bounding box, and has an affiliated 2048-d feature extracted. Since there are multiple objects detected per306

frame (we cap it at 20 per frame), it is difficult to efficiently represent this in time sequences Lei et al.307

(2018). The model uses the top-K regions for all detected labels in the segment as in Anderson et al.308

(2018) and Karpathy and Fei-Fei (2015). Hence the regional features are V reg ∈ R
nreg×2048 where nreg is309

the number of regional features used in the segment.310

1https://github.com/jayleicn/TVQA
2https://github.com/fanchenyou/HME-VideoQA
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Figure 3. TVQA Model. ⊙/⊕ = Element-wise multiplication/addition, ⊡ = context matching Seo et al.

(2017); Yu et al. (2018a), β = BLP. Any feature streams may be enabled/disabled.

Visual Concepts: The classes or labels of the detected regional features are called ‘Visual Concepts’. Yin311

and Ordonez (2017) found that simply using detected labels instead of image features gives comparable312

performance on image captioning tasks. Importantly they argued that combining CNN features with313

detected labels outperforms either approach alone. Visual concepts are represented as either GloVe314

Pennington et al. (2014) or BERT Devlin et al. (2019) embeddings V vcpt ∈ R
nvcpt×300 or R

nvcpt×768
315

respectively, where nvcpt is the number of visual concepts used in the segment.316

Text Features: The model encodes the questions, answers, and subtitles using either GloVe (∈ R
300) or317

BERT embeddings (∈ R
768). Formally, q ∈ R

nq×d ,{ai}4
i=0 ∈ R

nai
×d

,S ∈ R
ns×d where nq,nai

,ns is the318

number of words in q,ai,S respectively and d = 300,768 for GloVe or BERT embeddings respectively.319

Context Matching: Context matching refers to context-query attention layers recently adopted in machine320

comprehension Seo et al. (2017); Yu et al. (2018a). Given a context-query pair, context matching layers321

return ‘context aware queries’.322

Model Details: Any combination of subtitles or visual features can be used. All features are mapped into323

word vector space through a tanh non-linear layer. They are then processed by a shared bi-directional324

LSTM Hochreiter and Schmidhuber (1997); Graves and Schmidhuber (2005) (‘Global LSTM’ in Figure325

3) of output dimension 300. Features are context-matched with the question and answers. The original326

context vector is then concatenated with the context-aware question and answer representations and327

their combined element-wise product (‘Stream Processor’ in Figure 3, e.g. for subtitles S, the stream328

processor outputs [Fsub;Asub,q;Asub,a0−4 ; Fsub⊙Asub,q;Fsub⊙Asub,a0−4 ]∈R
nsub×1500 where Fsub ∈R

ns×300.329

Each concatenated vector is processed by their own unique bi-directional LSTM of output dimension 600,330

followed by a pair of fully connected layers of output dimensions 500 and 5, both with dropout 0.5 and331

ReLU activation. The 5-dimensional output represents a vote for each answer. The element-wise sum332

of each activated feature stream is passed to a softmax producing the predicted answer ID. All features333

remain separate through the entire network, effectively allowing the model to choose the most useful334

features.335

HME-VideoQA336

To better handle semantic meaning through long sequential video data, recent models have integrated337

external ‘memory’ units Xiong et al. (2016); Sukhbaatar et al. (2015) alongside recurrent networks to338

handle input features Gao et al. (2018); Zeng et al. (2017). These external memory units are designed339

to encourage multiple iterations of inference between questions and video features, helping the model340

revise it’s visual understanding as new details from the question are presented. The heterogeneous341
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Figure 4. HME Model

memory-enhanced video-QA model (HME) Fan et al. (2019) proposes several improvements to previous342

memory based architectures:343

Heterogeneous Read/Write Memory: The memory units in HME use an attention-guided read/write344

mechanism to read from/update memory units respectively (the number of memory slots used is a hyper-345

parameter). The claim is that since motion and appearance features are heterogeneous, a ‘straightforward’346

combination of them cannot effectively describe visual information. The video memory aims to effectively347

fuses motion (C3D Tran et al. (2014)) and appearance (ResNet He et al. (2016) and VGG Simonyan348

and Zisserman (2015)) features by integrating them in the joint read/write operations (visual memory in349

Figure 4).350

Encoder-Aware Question Memory: Previous memory models used a single feature vector outputted351

by an LSTM or GRU for their question representation Gao et al. (2018); Zeng et al. (2017); Xiong et al.352

(2016); Anderson et al. (2018). HME uses an LSTM question encoder and question memory unit pair that353

augment each other dynamically (question memory in Figure 4).354

Multimodal Fusion Unit: The hidden states of the video and question memory units are processed by a355

temporal attention mechanism. The joint representation ‘read’ updates the fusion unit’s own hidden state.356

The visual and question representations are ultimately fused by vector concatenation (multimodal fusion357

in Figure 5). Our experiments will involve replacing this concatenation step with BLP techniques.

Figure 5. ⊕ = Concatenation, β = BLP.

358
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EXPERIMENTS AND RESULTS359

In this section we outline our experimental setup and results. We save our insights for the discussion360

in the next section. See our GitHub repository3 for both the datasets and code used in our experiments.361

Table 1 shows the benchmarks and SotA results for the datasets we consider in this paper.

Dataset Benchmark SoTA

TVQA (Val) 68.85% Lei et al. (2018) 74.97% Khan et al. (2020)

TVQA (Test) 68.48% Lei et al. (2018) 72.89% Khan et al. (2020)

EgoVQA (Val 1) 37.57% Fan (2019) 45.05%* Chenyou (2019)

EgoVQA (Test 2) 31.02% Fan (2019) 43.35%* Chenyou (2019)

MSVD-QA 32.00% Xu et al. (2017) 40.30% Guo et al. (2021)

TGIF-Action 60.77% Jang et al. (2017) 84.70% Le et al. (2020)

TGIF-Count 4.28† Jang et al. (2017) 2.19† Le et al. (2020)

TGIF-Trans 67.06% Jang et al. (2017) 87.40% Seo et al. (2021)

TGIF-FrameQA 49.27% Jang et al. (2017) 64.80% Le et al. (2020)

Table 1. Dataset benchmark and SoTA results to the best of our knowledge. † = Mean L2 loss. * =

Results we replicated using the cited implementation.

362

Concatenation to BLP (TVQA)363

As previously discussed, BLP techniques have outperformed feature concatenation on a number of VQA364

benchmarks. The baseline stream processor concatenates the visual feature vector with question and365

answer representations. Each of the 5 inputs to the final concatenation are 300-d. We replace the visual-366

question/answer concatenation with BLP (Figure 6). All inputs to the BLP layer are 300-d, the outputs367

are 750-d and the hidden size is 1600 (a smaller hidden state than normal, however, the input features are368

also smaller compared to other uses of BLP). We make as few changes as possible to accommodate BLP,369

i.e. we use context matching to facilitate BLP fusion by aligning visual and textual features temporally.370

Our experiments include models with/without subtitles or questions (Table 2).

Figure 6. Baseline concatenation stream processor from TVQA model (left-A) vs Our BLP stream

processor (right-B). ⊙ = Element-wise multiplication, β = BLP, ⊡ = Context Matching.

371

Dual-Stream Model372

We create our ‘dual-stream’ (Figure 7, Table 3) model from the SI TVQA baseline model for 2 main373

purposes: I) To explore the effects of a joint representation on TVQA, II) To contrast the concatenation-374

replacement experiment with a model restructured specifically with BLP as a focus. The baseline BLP375

model keeps subtitles and other visual features completely separate up to the answer voting step. Our aim376

here is to create a joint representation BLP-based model similar in essence to the baseline TVQA model377

that fuses subtitle and visual features. As before, we use context matching to temporally align the video378

and text features.379

3https://github.com/Jumperkables/trying blp
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Subtitles Fusion Type Accuracy Baseline Offset

- Concatenation 45.94% -

GloVE Concatenation 69.74% -

BERT Concatenation 72.20% -

- (No Q) Concatentation 45.58% -0.36%

GloVE (No Q) Concatentation 68.31% -1.42%

BERT (No Q) Concatentation 70.43% -1.77%

- MCB 45.65% -0.29%

GloVE MCB 69.32% -0.42%

BERT MCB 71.68% -0.52%

- MLB 41.98% -3.96%

GloVE MLB 69.30% -0.44%

BERT MLB 69.04% -3.16%

- MFB 41.82% -4.12%

GloVE MFB 68.87% -0.87%

BERT MFB 67.29% -4.91%

- MFH 44.44% -1.5%

GloVE MFH 68.43% -1.31%

BERT MFH 67.29% -4.91%

- Blocktucker 44.44% -1.5%

GloVE Blocktucker 67.95% -1.79%

BERT Blocktucker 67.04% -5.16%

- BLOCK 41.09% -4.85%

GloVE BLOCK 65.31% -4.43%

BERT BLOCK 66.94% -5.26%

Table 2. Concatenation replaced with BLP in the TVQA model on the TVQA Dataset. All models use

visual concepts and ImageNet features. ‘No Q’ indicates questions are not used as inputs i.e. answers rely

purely on input features.

Figure 7. Our Dual-Stream Model. ⊡ = Context Matching.

Deep CCA in TVQA380

In contrast to joint representations, Baltrušaitis et al. (2019) define ‘co-ordinated representations’ as a381

category of multimodal fusion techniques that learn “separated but co-ordinated” representations for382

each modality (under some constraints). Peng et al. (2018) claim that since there is often an information383

imbalance between modalities, learning separate modality representations can be beneficial for preserving384

‘exclusive and useful modality-specific characteristics’. We include one such representation, deep canoni-385

cal correlation analysis (DCCA) Andrew et al. (2013), in our experiments to contrast with the joint BLP386

models.387

CCA388

Canonical cross correlation analysis (CCA) Hotelling (1936) is a method for measuring the correlations389

between two sets. Let (X0,X1) ∈ R
d0 ×R

d1 be random vectors with covariances (∑r=00,∑r=11) and390

cross-covariance ∑r=01. CCA finds pairs of linear projections of the two views (w′
0X0,w

′
1X1) that are391

maximally correlated:392

ρ = (w∗
0,w

∗
1) = argmax

w0,w1

corr(w′
0X0,w

′
1X1)393
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= argmax
w0,w1

w′
0 ∑01 w1√

w′
0 ∑00 w0w′

1 ∑11 w1

394

where ρ is the correlation co-efficient. As ρ is invariant to the scaling of w0 and w1, the projections are395

constrained to have unit variances, and can be represented as the following maximisation:396

argmax
w0,w1

w′
0 ∑01 w1 s.t w′

0 ∑00 w0 = w′
1 ∑11 w1 = 1397

However, CCA can only model linear relationships regardless of the underlying realities in the dataset.398

Thus, CCA extensions were proposed, including kernel CCA (KCCA) Akaho (2001) and later DCCA.399

DCCA400

DCCA is a parametric method used in multimodal neural networks that can learn non-linear transforma-401

tions for input modalities. Both modalities t,v are encoded in neural-network transformations Ht ,Hv =402

ft(t,θt), fv(v,θv) , and then the canonical correlation between both modalities is maximised in a common403

subspace (i.e. maximise cross-modal correlation between Ht , Hv).404

max corr(Ht ,Hv) = argmax
θt ,θv

corr( ft(t,θt), fv(v,θv))405

We use DCCA over KCCA to co-ordinate modalities in our experiments as it is generally more stable and406

efficient, learning more ‘general’ functions.407

DCCA in TVQA408

We use a 2-layer DCCA module to coordinate question and context (visual or subtitle) features (Figure 8,409

Table 4). Output features are the same dimensions as inputs. Though DCCA itself is not directly related410

to BLP, it has recently been classified as a coordinated representation Guo et al. (2019), which contrasts a411

‘joint’ representation.412

Model Text Val Acc

TVQA SI GloVe 67.78%

TVQA SI BERT 70.56%

Dual-Stream MCB GloVe 63.46%

Dual-Stream MCB BERT 60.63%

Dual-Stream MFH GloVe 62.71%

Dual-Stream MFH BERT 59.34%

Table 3. Dual-Stream Results Table. ‘SI’ for TVQA models indicates the model is using subtitle and

ImageNet feature streams only, i.e. the green and pink streams in Figure 3

Figure 8. Baseline concatenation stream processor from TVQA model (left-A) vs Our DCCA stream

processor (right-B). ⊙ = Element-wise multiplication, ⊡ = Context Matching.

Concatenation to BLP (HME-VideoQA)413

As described in the previous section, we replace a concatenation step in the HME model between textual414

and visual features with BLP (Figure 5, corresponding to the multimodal fusion unit in Figure 4). The goal415

here is to explore if BLP can better facilitate multimodal fusion in aggregated memory features (Table 5).416

We replicate the results from Fan et al. (2019) with the HME on the MSVD, TGIF and EgoVQA datasets417

using the official github repository Chenyou (2019). We extract our own C3D features from the frames in418

the TVQA.419
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Model Text Baseline Acc DCCA Acc

VI GloVe 45.94% 45.00% (-0.94%)

VI BERT – 41.70%

SVI GloVe 69.74% 67.91% (-1.83%)

SVI BERT 72.20% 68.48% (-3.72%)

Table 4. DCCA in the TVQA Baseline Model.

Dataset Fusion Type Val Test

TVQA (GloVE) Concatenation 41.25% N/A

EgoVQA-0 Concatenation 36.99% 37.12%

EgoVQA-1 Concatenation 48.50% 43.35%

EgoVQA-2 Concatenation 45.05% 39.04%

MSVD-QA Concatenation 30.94% 33.42%

TGIF-Action Concatenation 70.69% 73.87%

TGIF-Count Concatenation 3.95† 3.92†

TGIF-Trans Concatenation 76.33% 78.94%

TGIF-FrameQA Concatenation 52.48% 51.41%

TVQA (GloVE) MCB 41.09% (-0.16%) N/A%

EgoVQA-0 MCB No Convergence No Convergence

EgoVQA-1 MCB No Convergence No Convergence

EgoVQA-2 MCB No Convergence No Convergence

MSVD-QA MCB 30.85% (-0.09%) 33.78% (+0.36%)

TGIF-Action MCB 73.56% (+2.87%) 73.00% (-0.87%)

TGIF-Count MCB 3.95† (+0†) 3.98† (+0.06†)

TGIF-Trans MCB 79.30% (+2.97%) 77.10% (-1.84%)

TGIF-FrameQA MCB 51.72% (-0.76%) 52.21% (+0.80%)

Table 5. HME-VideoQA Model. The default fusion technique is concatenation. † refers to minimised

L2 loss.

DISCUSSION420

TVQA Experiments421

No BLP Improvements on TVQA: On the HME concat-to-BLP substitution model (Table 5), MCB422

barely changes model performance at all. We find that none of our TVQA concat-to-BLP substitutions423

(Table 2) yield any improvements at all, with almost all of them performing worse overall ( 0.3-5%) than424

even the questionless concatenation model. Curiously, MCB scores the highest of all BLP techniques.425

The dual-stream model performs worse still, dropping accuracy by between 5-10% vs the baseline (Table426

3). Similarly, we find that MCB performs best despite being known to require larger latent spaces to work427

on VQA.428

BERT Impacted the Most: For the TVQA BLP-substitution models, we find the GloVe, BERT and429

‘no-subtitle’ variations all degrade by roughly similar margins, with BERT models degrading more most430

often. This slight discrepancy is unsurprising as the most stable BERT baseline model is the best, and431

thus may degrade more on the inferior BLP variations. However, BERT’s relative degradation is much432

more pronounced on the dual-stream models, performing 3% worse than GloVe. We theorise that here,433

the significant and consistent drop is potentially caused by BERT’s more contextual nature is no longer434

helping, but actively obscuring more pronounced semantic meaning learned from subtitles and questions.435

Blame Smaller Latent Spaces?: Naturally, bilinear representations of time series data across multiple436

frames or subtitles are highly VRAM intensive. Thus we can only explore relatively small hidden437

dimensions (i.e. 1600). However, we cannot simply conclude our poor results are due to our relatively438

small latent spaces because: I) MCB is our best performing BLP technique. However, MCB has been439

outperformed by MFH on previous VQA models and it has been shown to require much larger latent440

spaces to work effectively in the first place Fukui et al. (2016) ( 16000). II) Our vector representations441

of text and images are also much smaller (300-d) compared to the larger representation dimensions442

conventional in previous benchmarks (e.g. 2048 in Fukui et al. (2016)). We note that 16000/2048 ≈443

1600/300, and so our latent-to-input size ratio is not substantially different to previous works.444
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Unimodal Biases in TVQA and Joint Representation: Another explanation may come from works445

exploring textual biases inherent in TVQA to textual modalities Winterbottom et al. (2020). BLP has been446

categorised as a ‘joint representation’. Baltrušaitis et al. (2019) consider representation as summarising447

multimodal data “in a way that exploits the complementarity and redundancy of multiple modalities”.448

Joint representations combine unimodal signals into the same representation space. However, they struggle449

to handle missing data Baltrušaitis et al. (2019) as they tend to preserve shared semantics while ignoring450

modality-specific information Guo et al. (2019). The existence of unimodal text bias in TVQA implies451

BLP may perform poorly on the TVQA as a joint representation of it’s features because: I) information452

from either modality is consistently missing, II) prioritising ‘shared semantics’ over ‘modality-specific’453

information harms performance on TVQA. Though concatenation could also be classified as a joint454

representation, we argue that this observation still has merit. Theoretically, a concatenation layer can still455

model modality specific information (see Figure 9), but a bilinear representation would seem to inherently456

entangle its inputs which would make modality specific information more challenging to learn since each457

parameter representing one modality is by definition weighted with the other. This may explain why our458

simpler BLP substitutions perform better than our more drastic ‘joint’ dual-stream model.459

What About DCCA?: Table 4 shows our results on the DCCA augmented TVQA models. We see a460

slight but noticable performance degradation with this relatively minor alteration to the stream processor.461

As previously mentioned, DCCA is in some respects an opposite approach to multimodal fusion than462

BLP, i.e. a ‘coordinated representation’. The idea of a coordinated representations is to learn a separate463

representation for each modality , but with respect to the other. In this way, it is thought that multimodal464

interactions can be learned while still preserving modality-specific information that a joint representation465

may otherwise overlook Guo et al. (2019); Peng et al. (2018). DCCA specifically maximises cross-modal466

correlation. Without further insight from surrounding literature, it is difficult to conclude what TVQA’s467

drop in performance using both joint and coordinated representations could mean. We will revisit this468

when we discuss the role of attention in multimodal fusion.469

Does Context Matching Ruin Multimodal Integrity?: The context matching technique used in the470

TVQA model is the birdirectional attention flow (BiDAF) module introduced in Seo et al. (2017). It is471

used in machine comprehension between a textual context-query pair to generate query-aware context472

representations. BiDAF uses a ‘memoryless’ attention mechanism where information from each time473

step does not directly affect the next, which is thought to prevent early summarisation. BiDAF considers474

different input features at different levels of granularity. The TVQA model uses bidirectional attention475

flow to create context aware (visual/subtitle) question and answer representations. BiDAF can be seen as476

a co-ordinated representation in some regards, but it does project questions and answers representations477

into a new space. We use this technique to prepare our visual and question/answer features because it478

temporally aligns both features, giving them the same dimensional shape, conveniently allowing us to479

apply BLP at each time step. Since the representations generated are much more similar than the original480

raw features and there is some degree of information exchange, it may affect BLP’s representational481

capacity. Though it is worth considering these potential shortcomings, we cannot immediately assume482

that BiDAF would cause serious issues as earlier bilinear technique were successfully used between483

representations in the same modality Tenenbaum and Freeman (2000); Gao et al. (2016). This implies that484

multimodal interactions can still be learned between the more similar context-matched representations,485

provided the information is still present. Since BiDAF does allow visual information to be used in the486

TVQA baseline model, it is reasonable to assume that some of the visual information is in fact intact and487

exploitable for BLP. However, it is still currently unclear if context matching is fundamentally disrupting488

BLP and contributing to the poor results we find. We note that in BiDAF, ‘memoryless’ attention is489

implemented to avoid propagating errors through time. We argue that though this may be true and help in490

some circumstances, conversely, this will not allow some useful interactions to build up over time steps.491

The Other Datasets on HME492

BLP Has No Effect: Our experiments on the EgoVQA, TGIF-QA and MSVD-QA datasets are on493

concat-to-BLP substitution HME models. Our results are inconclusive. There is virtually no variation in494

performance between the BLP and concatenation implementations. Interestingly, EgoVQA consistently495

does not converge with this simple substitution. We cannot comment for certain on why this is the case.496

There seems to be no intuitive reason why it’s 1st person content would cause this. Rather, we believe this497

is symptomatic of overfitting in training, as EgoVQA is very small and pretrained on a different dataset,498
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and BLP techniques can sometimes have difficulties converging.499

Does Better Attention Explain the Difference?: Attention mechanisms have been shown to improve500

the quality of text and visual interactions. Yu et al. (2017) argue that methods without attention are501

‘coarse joint-embedding models’ which use global features that contain noisy information unhelpful in502

answering fine-grained questions commonly seen in VQA and video-QA. This provides strong motivation503

for implementing attention mechanisms alongside BLP, so that the theoretically greater representational504

capacity of BLP is not squandered on less useful noisy information. The TVQA model uses the previously505

discussed BiDAF mechanism to focus information from both modalities. However, the HME model506

integrates a more complex memory-based multi-hop attention mechanism. This difference may potentially507

highlight why the TVQA model suffers more substantially integrating BLP than the HME one.508

BLP in Video-QA: Problems and Recommendations509

We have experimented with BLP in 2 video-QA models and across 4 datasets. Our experiments show510

that the BLP fusion techniques popularised in VQA has not extended to increased performance to video-511

QA. In the preceding sections, we have supported this observation with experimental results which we512

contextualise by surveying the surrounding literature for BLP for multimodal video tasks. In this section,513

we condense our observations into a list of problems that BLP techniques pose to video-QA, and our514

proposal for alternatives and solutions:515

Inefficient and Computationally Expensive Across Time: BLP as a fusion mechanism in video-QA516

can be exceedingly expensive due to added temporal relations. Though propagating information from517

each time step through a complex text-vision multimodal fusion layer is an attractive prospect, our518

experiments imply that modern BLP techniques simply do not empirically perform in such a scenario.519

We recommend avoiding computationally expensive fusion techniques like BLP for text-image fusion520

throughout timesteps, and instead simply concatenate features at these points to save computational521

resources for other stages of processing (e.g. attention). Furthermore, we note that any prospective fusion522

technique used across time will quickly encounter memory limitations that could force the hidden-size523

used sub-optimally low. Though summarising across time steps into condensed representations may524

allow more expensive BLP layers to be used on the resultant text and video representations, we instead525

recommend using state-of-the-art and empirically proven multimodal attention mechanisms instead Lei526

et al. (2021); Yang et al. (2021). Attention mechanisms are pivotal in VQA for reducing noise and focusing527

on specific fine-grained details Yu et al. (2017). The sheer increase in feature information when moving528

from still-image to video further increases the importance of attention in video-QA. Our experiments529

show the temporal-attention based HME model performs better when it is not degraded by BLP. Our530

findings are in line with that of Long et al. (2018) as they consider multiple different fusion methods531

for video classification, i.e. LSTM, probability, ‘feature’ and attention. ‘Feature’ fusion is the direct532

connection of each modality within each local time interval, which is effectively what context matching533

does in the TVQA model. Long et al. (2018) finds temporal feature based fusion sub-par, and speculates534

that the burden of learning multimodal and temporal interactions is too heavy. Our experiments lend535

further evidence that for video tasks, attention-based fusion is the ideal choice.536

Problem with Alignment of Text and Video: As we highlight in the second subsection of our related537

works, BLP has yielded great performance in video tasks where it fuses the visual features with non-textual538

features. Audio and visual feature fusion demonstrates impressive performance on action recognitionHu539

et al. (2021), emotion recognition Zhou et al. (2021), and violence detection Pang et al. (2021). Likewise,540

different visual representations have thrived in RGBT tracking Xu et al. (2021), action recognition Deng541

et al. (2021) and video-QA on MSVD-QA Wang et al. (2021). On the other hand, we notice that several542

recent video-QA works (highlighted in the first section of our related works) have found in ablation543

that BLP fusion which specifically fuse visual and textual features give poor results Kim et al. (2019);544

Li et al. (2019); Gao et al. (2019); Liu et al. (2021); Liang et al. (2019). Our observations and our545

experimental results highlight a pattern of poor performance for BLP in text-video fusion specifically.546

We demonstrate poor performance using BLP to fuse both ‘BiDAF-aligned’ (TVQA) and ‘raw’ (HME)547

text and video features i.e. temporally aligned and unaligned respectively. As the temporally-aligned548

modality combinations of video-video and video-audio BLP fusion continue to succeed, we believe that549

the ‘natural alignment’ of modalities is a significant contributing factor to this performance discrepancy in550

video. To the best of our knowledge, we are the first to draw attention to this trend. Attention mechanisms551

continue to achieve state-of-the-art in video-language tasks and have been demonstrated (with visualisable552
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attention maps) to focus on relevant video and question features. We therefore recommend using attention553

mechanisms for their strong performance and relatively interpretable behaviour, and avoiding BLP for554

specifically video-text fusion.555

Empirically Justified on VQA: Successive BLP techniques have helped drive increased VQA perfor-556

mance in recent years, as such they remain an important and welcome asset to the field of multimodal557

machine learning. We stress that these improvements, welcome as they are, are only justified by their558

empirical improvements in the tasks they are applied to, and lack strong theoretical frameworks which559

explain their superior performance. This is entirely understandable given the infamous difficulty in560

interpreting how neural networks actually make decisions or exploit their training data. However, it is561

often claimed that such improvements are the result of some intrinsic property of the BLP operator, e.g.562

creating ‘richer multimodal representations’: Fukui et al. (2016) hypothesise that concatenation is not563

as expressive as an outer product of visual and textual features. Kim et al. (2017) claim that “bilinear564

models provide rich representations compared with linear models”. Ben-younes et al. (2017) claim565

MUTAN “focuses on modelling fine and rich interactions between image and text modalities”. Yu et al.566

(2018b) claim that MFH significantly improves VQA performance “because they achieve more effective567

exploitation of the complex correlations between multimodal features”. Ben-Younes et al. (2019) carefully568

demonstrate that the extra control over the dimensions of components in BLOCK fusion can be leveraged569

to achieve yet higher VQA performance, however this is attributed to it’s ability “to represent very fine570

interactions between modalities while maintaining powerful mono-modal representations”. In contrast,571

Yu et al. (2017) carefully assess and discuss the empirical improvements their MFH fusion offers on VQA.572

Our discussions and findings highlight the importance of being measured and nuanced when discussing573

the theoretical nature of multimodal fusion techniques and the benefits they bring.574

THEORETICALLY MOTIVATED OBSERVATIONS AND NEUROLOGICALLY575

GUIDED PROPOSALS:576

BLP techniques effectively exploit mathematical innovations on bilinear expansions represented in577

neural networks. As previously discussed, it remains unclear why any bilinear representation would be578

intrinsically superior for multimodal fusion to alternatives e.g. a series of non-linear fully connected layers579

or attention mechanisms. In this section, we share our thoughts on the properties of bilinear functions,580

and how they relate to neurological theories for multimodal processing in the human brain. We provide581

qualitative analysis of the distribution of psycholinguistic norms present in the video-QA datasets used in582

our experiments with which, through the lens of ‘Dual Coding Theory’ and the ‘Two-Stream’ model of583

vision, we propose neurologically motivated multimodal processing methodologies.584

Observations: Bilinearity in BLP585

Nonlinearities in Bilinear Expansions: As previously mentioned in our description of MLB, Kim et al.586

(2017) suggest using Tanh activation on the output of vector z to further increase model capacity. Strictly587

speaking, we note that adding the the non-linearity means the representation is no longer bilinear as it is588

not linear with respect to either of its input domains. It is instead the ‘same kind of non-linear’ in both589

the input domains. We suggest that an alternative term such as ‘bi-nonlinear’ would more accurately590

described such functions. Bilinear representations are not the most complex functions with which to learn591

interactions between modalities. As explored by Yu et al. (2018b), we believe that higher-order interactions592

between features would facilitate a more realistic model of the world. The non-linear extension of bilinear593

or higher-order functions is a key factor to increase representational capacity.594

Outer Product Forces Multimodal Interactions: The motivation for using bilinear methods over595

concatenation in VQA and video-QA was that it would enable learning more ‘complex’ or ‘expressive’596

interactions between the textual and visual inputs. We note however that concatenation of inputs features597

should theoretically allow both a weighted multimodal combination of textual and visual units, and allow598

unimodal units of input features. As visualised in Figure 9, weights representing a bilinear expansion599

in a neural network each represent a multiplication of input units from each modalitiy. This appears to,600

in some sense, force multimodal interactions where it could possibly be advantageous to allow some601

degree of separation between the text and vision modalities. As discussed earlier, it is thought that ‘joint’602

representations Baltrušaitis et al. (2019) preserve shared semantics while ignoring modality-specific603

information Guo et al. (2019). Though it is unclear if concatenation could effectively replicate bilinear604

processing while also preserving unimodal processing, it also remains unclear how exactly bilinear605
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Figure 9. Visualisation of the differences between concatenation and bilinear representations for

unimodal processing. Concatenation (left-A) can theoretically allow unimodal features from text or

vision to process independently of the other modality by reducing it’s weighted contribution (see ‘V1

Only’). Bilinear representations (right-B) force multimodal interactions. It is less clear how useful

‘unimodal’ is processed.

representations learn. For now, the successes and struggles of bilinear representations across VQA and606

video-QA remain justified by empirical performance on datasets.607

Proposals: Neurological Parallels608

We have recommended that video-QA models prioritise attention mechanisms over BLP given our own609

experimental results and our observations of the current state-of-the-art trends. We can however still610

explore how bilinear models in deep learning are related to 2 key areas of relevant neurological research,611

i.e. the Two-Stream model of vision Goodale and Milner (1992); Milner (2017) and Dual Coding Theory612

Paivio (2013, 2014).613

Two-Stream Vision: Introduced in Goodale and Milner (1992), the current consensus on primate visual614

processing is that it is divided into two networks or streams: The ‘ventral’ stream which mediates615

transforming the contents of visual information into ‘mental furniture’ that guides memory, conscious616

perception, and recognition; and the ‘dorsal’ stream which mediates the visual guidance of action. There617

is a wealth of evidence showing that these two subsystems are not mutually insulated from each other, but618

rather interconnect and contribute to one another at different stages of processing Milner (2017); Jeannerod619

and Jacob (2005). In particular, Jeannerod and Jacob (2005) argue that valid comparisons between visual620

representation must consider the direction of fit, direction of causation and the level of conceptual621

content. They demonstrate that visual subsystems and behaviours inherently rely on aspects of both622

streams. Recently, Milner (2017) consider 3 potential ways these cross-stream interactions could occur: I)623

Computations along the 2 pathways are independent and combine at a ‘shared terminal’ (the independent624

processing account), II) Processing along the separate pathways is modulated by feedback loops that625

transfer information from ‘downstream’ brain regions, including information from the complementary626

stream (the feedback account), III) Information is transferred between the 2 streams at multiple stages and627

location along their pathways (the continuous cross-talk account). Though Milner (2017) focus mostly on

Figure 10. Visualisation of the 1st and 3rd cross-stream scenarios for the two-stream model of vision

described by Milner (2017). The early bilinear model proposed by Tenenbaum and Freeman (2000)

strikingly resembles the 1st (left-A). The 3rd and more recently favoured scenario features a continuous

exchange of information across streams at multiple stages, and can be realised by introducing

‘cross-talking’ of deep learning features (right-B).

628
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the ‘continuous cross-talk’ idea, they believe that a unifying theory would include aspects from each of629

these scenarios. The vision-only deep bilinear models proposed in Tenenbaum and Freeman (2000); Lin630

et al. (2015) are strikingly reminiscent to the 1st ‘shared-terminal’ scenario (see Figure 10). The bilinear631

framework proposed in Tenenbaum and Freeman (2000) focuses on splitting up ‘style’ and ‘content’, and632

is designed to be applied to any two-factor task. Lin et al. (2015) note but do not explore the similarities633

between their proposed network and the two-stream model of vision. Their bilinear CNN model aims to634

processes two subnetworks separately, ‘what’ (ventral) and ‘where’ (dorsal) streams, and later combine in635

a bilinear ‘terminal’. BLP methods developed from these baselines would later focus on multimodal tasks636

between language and vision. As Milner (2017) focus mainly on their 3rd scenario (right), subsequent637

bilinear models that draw inspiration from the two-stream model of vision could realise the ‘cross-talk’638

mechanism i.e. using co-attention or ‘co-ordinated’ DCCA.639

Dual Coding Theory: Dual coding theory (DCT) Paivio (2013) broadly considers the interactions640

between the verbal and non-verbal systems in the brain (recently surveyed in Paivio (2014)). DCT641

considers verbal and non-verbal interactions by way of ‘logogens’ and ‘imagens’ respectively, i.e. units642

of verbal and non-verbal recognition. Imagens may be multimodal, i.e. haptic, visual, smell, taste, motory643

etc. We should appreciate the distinction between medium and modality: image is both medium and644

modality and videos are an image based modality. Similarly, text is the medium through which the natural645

language modality is expressed. We can see parallels in multimodal deep learning and dual coding theory,646

with textual features as logogens and visual (or audio) features as visual (or auditory) imagens. There are647

many insights from DCT that could guide and drive multimodal deep learning:648

I) Logogens and imagens are discrete units of recognition and are often related to tangible concepts649

(e.g. ‘pictogens’ Morton (1979)). By drawing inspiration from pictogen/imagen style of information650

representation, it could be hypothesised that multimodal models should additionally focus on deriving651

more tangible features (i.e. discrete convolution maps previously used in vision-only bilinear models Lin

Figure 11. Visualisation of moving from less tangible visual features to more ‘imagen-like’ visual

features e.g. convolution maps of an image.

652

et al. (2015)) as opposed to more abstracted ‘ImageNet-style’ feature vectors more commonly used in653

recent BLP models (see Figure 11) are a more ideal way to represent features.654

II) Bezemer and Kress (2008) explore the differences in student’s understanding when text information655

is presented alongside other modalities. They argue that when meaning is moved from one medium to656

another semiotic relations are redefined. This paradigm could be emulated to control how networks learn657

concepts in relation to certain modal information.658

III) Imagens (and potentially logogens) may be a function of many modalities, i.e. one may recognise659

something as a function of haptic and auditory experiences alongside visual ones. We believe this660

implies that non-verbal modalities (vision/sound etc..) should be in some way grouped or aggregated, and661

that while DCT remains widely accepted, multimodal research should consider ‘verbal vs non-verbal’662

interactions as a whole instead of focusing too intently on ‘case-by-case’ interactions, i.e. text-vs-image663

and text-vs-audio. This text/non-text insight may be related to the apparent difference in text-vision video664
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task performance previously discussed.665

IV) Multimodal cognitive behaviours in people can be improved by providing cues. For example,666

referential processing (naming an object or identifying an object from a word) has been found to additively667

affect free recall (recite a list of items), with the memory contribution of non-verbal codes (pictures)668

being twice that of verbal codes Paivio and Lambert (1981). Begg (1972) find that free recall of ‘concrete669

phrases’ (can be visualised) of their constituent words is roughly twice that of ‘abstract’ phrases. However,670

this difference increased six-fold for concrete phrases when cued with one of the phrase words, yet671

using cues for abstract phrases did not help at all. This was named the ‘conceptual peg’ effect in DCT,672

and is interpreted as memory images being re-activated by ‘a high imagery retrieval cue’. Given such673

apparent differences in human cognitive processing for ‘concrete’ and ‘abstract’ words, it may similarly674

be beneficial for multimodal text-vision tasks to explicitly exploit the psycholinguistic ‘concreteness’675

word norm. Leveraging existing psycholinguistic word-norm datasets, we identify the relative abundance676

of concrete words in textual components of the video-QA datasets we experiment with (see Figure 12).677

As the various word-norm datasets use various scoring systems for concreteness (e.g. MTK40 uses a678

Likert scale 1-7), we rescale the scores for each dataset such that the lowest score is 0 (highly abstract),679

and the highest score is 1 (highly concrete). Though we cannot find a concreteness score for every word680

in each dataset component’s vocabulary, we see that the 4 video-QA datasets we experiment with have681

more concrete than abstract words overall. Furthermore, we see that answers are on-average significantly682

more concrete than they are abstract, and that (as intuitively expected) visual concepts from TVQA are683

even more concrete. Taking inspiration from human processing through DCT, it could be hypothesised684

that multimodal machine learning tasks could benefit by explicitly learning relations between ‘concrete’685

words and their constituents, whilst treating ‘abstract’ words and concepts differently.686

Recently proposed computational models of DCT have had many drawbacks Paivio (2014), we believe687

that neural networks can be a natural fit for modelling neural correlates explored in DCT and should be688

considered as a future modelling option.689

CONCLUSION690

In light of BLP’s empirical success in VQA, we have experimentally explored their use in video-QA691

on 2 models and 4 datasets. We find that switching from vector concatenation to BLP through simple692

substitution on the HME and TVQA models does not improve and in fact actively harm performance on693

video-QA. We find that a more substantial ‘dual-stream’ restructuring of the TVQA model to accommodate694

BLP significantly reduces performance on TVQA. Our results and observations about the downturn in695

successful text-vision BLP fusion in video tasks imply that naively using BLP techniques can be very696

detrimental in video-QA. We caution against automatically integrating bilinear pooling in video-QA697

models and expecting similar empirical increases as in VQA. We offer several interpretations and insights698

of our negative results using surrounding multimodal and neurological literature and find our results699

inline with trends in VQA and video-classification. To the best of our knowledge, we are the first to700

outline how important neurological theories i.e. dual coding theory and the two-stream model of vision701

relate to the history of (and journey to) modern multimodal deep learning practices. We offer a few702

experimentally and theoretically guided suggestions to consider for multimodal fusion in video-QA, most703

notably that attention mechanisms should be prioritised over BLP in text-vision fusion. We qualitatively704

show the potential for neurologically-motivated multimodal approaches in video-QA by identifying the705

relative abundance of psycholinguistically ‘concrete’ words in the vocabularies for the text components706

of the 4 video-QA datasets we experiment with. We would like to emphasise the importance of related707

neurological theories in deep learning and encourage researchers to explore Dual Coding Theory and the708

Two-Stream model of vision.709
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Figure 12. The relative abundance of the psycholinguistic ‘concreteness’ score in the vocabularies of

each source of text in the video-QA datasets we experiment with. Stopwords are not included.

Concreteness scores are taken from the following datasets: MT40k Brysbaert et al. (2013), USF Nelson

et al. (1998), SimLex999 Hill et al. (2015), Clark-Paivio Clark and Paivio (2004), Toronto Word Pool

Friendly et al. (1982), Chinese Word Norm Corpus Yee (2017), MEGAHR-Crossling Ljubešić et al.

(2018), Glasgow Norms Scott et al. (2017), Reilly and Kean (2007), and Sianipar et al. (2016). The

scores for each word are rescaled from 0-1 such that most abstract = 0 and most concrete = 1, and the

result averaged if more than 1 dataset has the same word.
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