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ABSTRACT
Bilinear pooling (BLP) refers to a family of operations recently developed for fusing
features from different modalities predominantly for visual question answering (VQA)
models. Successive BLP techniques have yielded higher performance with lower
computational expense, yet at the same time they have drifted further from the original
motivational justification of bilinear models, instead becoming empirically motivated
by task performance. Furthermore, despite significant success in text-image fusion in
VQA, BLP has not yet gained such notoriety in video question answering (video-QA).
Though BLP methods have continued to perform well on video tasks when fusing
vision and non-textual features, BLP has recently been overshadowed by other vision
and textual feature fusion techniques in video-QA. We aim to add a new perspective
to the empirical and motivational drift in BLP. We take a step back and discuss the
motivational origins of BLP, highlighting the often-overlooked parallels to neurological
theories (Dual Coding Theory and The Two-Stream Model of Vision). We seek to
carefully and experimentally ascertain the empirical strengths and limitations of BLP
as a multimodal text-vision fusion technique in video-QA using two models (TVQA
baseline and heterogeneous-memory-enchanced ‘HME’ model) and four datasets
(TVQA, TGif-QA, MSVD-QA, and EgoVQA). We examine the impact of both simply
replacing feature concatenation in the existingmodels with BLP, and amodified version
of the TVQA baseline to accommodate BLP that we name the ‘dual-stream’ model. We
find that our relatively simple integration of BLP does not increase, and mostly harms,
performance on these video-QA benchmarks. Using our insights on recent work in BLP
for video-QA results and recently proposed theoretical multimodal fusion taxonomies,
we offer insight into why BLP-driven performance gain for video-QA benchmarks may
be more difficult to achieve than in earlier VQA models. We share our perspective on,
and suggest solutions for, the key issues we identify with BLP techniques formultimodal
fusion in video-QA. We look beyond the empirical justification of BLP techniques
and propose both alternatives and improvements to multimodal fusion by drawing
neurological inspiration from Dual Coding Theory and the Two-Stream Model of
Vision. We qualitatively highlight the potential for neurological inspirations in video-
QA by identifying the relative abundance of psycholinguistically ‘concrete’ words in the
vocabularies for each of the text components (e.g., questions and answers) of the four
video-QA datasets we experiment with.
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INTRODUCTION
To solve the growing abundance of complex deep learning tasks, it is essential to
develop modelling and learning strategies with the capacity to learn complex and
nuanced multimodal relationships and representations. To this end, research efforts
in multimodal deep learning have taken aim at the relationship between vision and text
through visual question answering (VQA) (Wu et al., 2017; Srivastava et al., 2020) and
more recently video question answering (video-QA) (Sun et al., 2021). A particularly
notorious solution to learning multimodal relationships in VQA is the family of bilinear
pooling (BLP) operators (Gao et al., 2016; Kim et al., 2017; Yu et al., 2017; Ben-younes et
al., 2017; Yu et al., 2018b; Ben-Younes et al., 2019). A bilinear (outer product) expansion
is thought to encourage models to learn interactions between two feature spaces and has
experimentally outperformed ‘simpler’ vector operations (i.e., concatenation and element-
wise-addition/multiplication) on VQA benchmarks. Though successive BLP techniques
focus on leveraging higher performance with lower computational expense, which we
wholeheartedly welcome, the context of their use has subtly drifted from application
in earlier bilinear models e.g., where in Lin, RoyChowdhury & Maji (2015) the bilinear
mapping is learned between convolution maps (a tangible and visualisable parameter),
from compact BLP (Gao et al., 2016) onwards the bilinear mapping is learned between
indexes of deep feature vectors (a much less tangible unit of representation). Though
such changes are not necessarily problematic and the improved VQA performance they
have yielded is valuable, they represent a broader trend of the use of BLP methods in
multimodal fusion being justified only by empirical success. Furthermore, despite BLP’s
history of success in text-image fusion in VQA, it has not yet gained such notoriety in
video-QA. Though BLP methods have continued to perform well on video tasks when
fusing vision and non-textual features (Hu et al., 2021; Zhou et al., 2021; Pang et al., 2021;
Xu et al., 2021; Deng et al., 2021; Wang, Bao & Xu, 2021; Deb et al., 2022; Sudhakaran,
Escalera & Lanz, 2021), BLP has recently been overshadowed by other vision and textual
feature fusion techniques in video-QA (Kim et al., 2019; Li et al., 2019; Gao et al., 2019;
Liu et al., 2021; Liang et al., 2019). In this paper, we aim to add a new perspective to the
empirical and motivational drift in BLP. Our contributions include the following: (I) We
carefully and experimentally ascertain the empirical strengths and limitations of BLP as a
multimodal text-vision fusion technique on 2 models (TVQA baseline and heterogeneous-
memory-enchanced ‘HME’ model) and 4 datasets (TVQA, TGif-QA, MSVD-QA and
EgoVqa). To this end, our experiments include replacing feature concatenation in the
existing models with BLP, and a modified version of the TVQA baseline to accommodate
BLP that we name the ‘dual-stream’ model. Furthermore, we contrast BLP (classified as a
‘joint’ representation by Baltrušaitis, Ahuja & Morency (2019)) with deep canonical cross
correlation (a ‘co-ordinated representation’). We find that our relatively simple integration
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of BLP does not increase, and mostly harms, performance on these video-QA benchmarks.
(II) We discuss the motivational origins of BLP and share our observations of bilinearity
in text-vision fusion. (III) By observing trends in recent work using BLP for multimodal
video tasks and recently proposed theoretical multimodal fusion taxonomies, we offer
insight into why BLP-driven performance gain for video-QA benchmarks may be more
difficult to achieve than in earlier VQA models. (IV) We identify temporal alignment
and inefficiency (computational resources and performance) as key issues with BLP as a
multimodal text-vision fusion technique in video-QA, and highlight concatenation and
attention mechanisms as an ideal alternative. (V) In parallel with the empirically justified
innovations driving BLP methods, we explore the often-overlooked similarities of bilinear
and multimodal fusion to neurological theories e.g., Dual Coding Theory (Paivio, 2013;
Paivio, 2014) and the Two-StreamModel of Vision (Goodale & Milner, 1992;Milner, 2017),
and propose several potential neurologically justified alternatives and improvements to
existing text-image fusion. We highlight the latent potential already in existing video-QA
dataset to exploit neurological theories by presenting a qualitative analysis of occurrence
of psycholinguistically ‘concrete’ words in the vocabularies of the textual components of
the 4 video-QA we experiment with.

BACKGROUND: BILINEAR POOLING
In this sectionwe outline the development of BLP techniques, highlight howbilinearmodels
parallel the two-stream model of vision, and discuss where bilinear models diverged from
their original motivation.

Concatenation
Early works use vector concatenation to project different features into a new joint feature
space. Zhou et al. (2015) use vector concatenation on the Convolutional neural network
(CNN) image and text features in their simple baseline VQA model. Similarly, Lu et
al. (2016) concatenate image attention and textual features. Vector concatenation is a
projection of both input vectors into a new ‘joint’ dimensional space. Vector concatenation
as a multimodal feature fusion technique in VQA is considered a baseline and is generally
empirically outperformed in VQA by the following bilinear techniques.

Bilinear models
Working from the observations that ‘‘perceptual systems routinely separate ‘content’
from ‘style’’’, Tenenbaum & Freeman (2000) proposed a bilinear framework on these two
different aspects of purely visual inputs. They find that the multiplicative bilinear model
provides ‘‘sufficiently expressive representations of factor interactions’’. The bilinear
model in Lin, RoyChowdhury & Maji (2015) is a ‘two-stream’ architecture where distinct
subnetworks model temporal and spatial aspects. The bilinear interactions are between
the outputs of two CNN streams, resulting in a bilinear vector that is effectively an
outer product directly on convolution maps (features are aggregated with sum-pooling).
This makes intuitive sense as individual convolution maps represent specific patterns.
It follows that learnable parameters representing the outer product between these maps
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learn weightings between distinct and visualisable patterns directly. Interestingly, both
(Tenenbaum & Freeman, 2000; Lin, RoyChowdhury & Maji, 2015) are reminiscent of two-
stream hypothesises of visual processing in the human brain (Goodale & Milner, 1992;
Milner & Goodale, 2006; Milner & Goodale, 2008; Goodale, 2014; Milner, 2017) (discussed
in detail later). Though these models focus on only visual content, their generalisable
two-factor frameworks would later be inspiration to multimodal representations. Fully
bilinear representations using deep learning features can easily become impractically large,
necessitating informed mathematical compromises to the bilinear expansion.

Compact bilinear pooling
Gao et al. (2016) introduce Compact Bilinear Pooling, a technique combining the
count sketch function (Charikar, Chen & Farach-Colton, 2002) and convolution
theorem (Domínguez, 2015) in order to pool the outer product into a smaller bilinear
representation. Fukui et al. (2016) use compact BLP in their VQA model to learn
interactions between text and images i.e.,multimodal compact bilinear pooling (MCB).We
note that for MCB, the learned outer product is no longer on convolution maps, but rather
on the indexes of image and textual tensors. Intuitively, a given index of an image or textual
tensor is more abstracted from visualisable meaning when compared to convolution map.
As far as we are aware, no research has addressed the potential ramifications of this switch
fromdistinctmaps to feature indexes, and later usages of bilinear poolingmethods continue
this trend. Though MCB is significantly more efficient than full bilinear expansions, they
still require relatively large latent dimension to perform well on VQA (d ≈16000).

Multimodal low-rank bilinear pooling
To further reduce the number of needed parameters, Kim et al. (2017) introduce
multimodal low-rank bilinear pooling (MLB), which approximates the outer product
weight representationW by decomposing it into two rank-reduced projection matrices:
Ez =MLB(Ex,Ey)= (XT

Ex)� (Y T
Ey)

Ez = ExTW Ey = ExTXY T
Ey = 1T (XT

Ex�Y T
Ey)

whereX ∈Rm×o,Y ∈Rn×o, o<min(m,n) is the output vector dimension,� is element-wise
multiplication of vectors or theHadamard product, and1 is the unity vector.MLB performs
better than MCB in (Osman & Samek, 2019), but it is sensitive to hyperparameters and
converges slowly. Furthermore, Kim et al. (2017) suggest using Tanh activation on the
output of Ez to further increase model capacity.

Multimodal factorised low rank bilinear pooling
Yu et al. (2017) propose multimodal factorised bilinear pooling (MFB) as an extension of
MLB. Consider the bilinear projection matrix EW ∈Rm×n outlined above, to learn output
Ez ∈Ro we need to learn EW = [ EW0,..., EWo−1]. We generalise output Ez :

zi= ExT EXi EY T
i Ey =

k−1∑
d=0

ExTadbTd Ey =1
T ( EXT

i Ex� EY
T
i Ey) (1)

Note that MLB is equivalent to MFB where k =1. MFB can be thought of as a two-
part process: features are ‘expanded’ to higher-dimensional space by EWσ matrices, then
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Figure 1 Visualisation of mode-n fibres andmatricisation.
Full-size DOI: 10.7717/peerjcs.974/fig-1

‘squeezed’ into a ‘‘compact ouput’’. The authors argue that this gives ‘‘more powerful’’
representational capacity in the same dimensional space than MLB.

Multimodal tucker fusion
Ben-younes et al. (2017) extend the rank-reduction concept fromMLB andMFB to factorise
the entire bilinear tensor using tucker decomposition (Tucker, 1966) in their multimodal
tucker fusion (MUTAN) model. We will briefly summarise the notion of rank and the
mode-n product to describe the tucker decomposition model.
Rank andmode-n product: If EW ∈RI1×,...,×IN and EV ∈RJn×In for some n∈ {1,...,N } then

rank( EW ⊗n EV ) ≤ rank( EW )
where ⊗n is the mode-n tensor product:

( EW ⊗n EV )(i1,...,in−1,jn,in+1,...,iN ):=
∑In

in=1
EW (i1,...,in−1,in,in+1,...,iN ) EV (jn,in)

In essence, themode-n fibres (also known asmode-n vectors) of EW⊗n EV are themode-n
fibres of EW multiplied by EV (proof here Olikier, 2017). See Fig. 1 for a visualisation of
mode-n fibres. Each mode-n tensor product introduces an upper bound to the rank of the
tensor. We note that conventionally, the mode-n fibres count from 1 instead of 0. We will
follow this convention for the tensor product portion of our paper to avoid confusion.

The tucker decomposition of a real 3rd order tensor ET ∈Rd1×d2×d3 is:
ET = τ⊗1 EW1⊗2 EW2⊗3 EW3

where τ ∈Rd1×d2×d3 (core tensor), and EW1, EW2, EW3 ∈Rd1×d1 , Rd2×d2 , Rd3×d3 (factor matrices)
respectively.
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MUTAN: The MUTAN model uses a reduced rank on the core tensor to constrain
representational capacity, and the factor matrices to encode full bilinear projections of the
textual and visual features, and finally output an answer prediction, i.e:
Ey = ((τ⊗1 (EqT EWq))⊗2 (EvT EWv))⊗3 EWo

where Ey ∈R|A| is the answer prediction vector and Eq,Ev are the textual and visual features
respectively. A slice-wise attentionmechanism is used in theMUTANmodel to focus on the
‘most discriminative interactions’. Multimodal tucker fusion is an empirical improvement
over the preceeding BLP techniques on VQA, but it introduces complex hyperparameters
to refine that are important for relatively its high performance.

Multimodal factorised higher order bilinear pooling
All the BLP techniques discussed up to now are ‘second-order’, i.e., take two functions
as inputs. Yu et al. (2018b) propose multimodal factorised higher-order bilinear pooling
(MFH), extending second-order BLP to ‘generalised high-order pooling’ by stacking
multiple MFB units, i.e.:
Ez iexp=MFBiexp(EI , EQ)=Ez

i−1
exp �Dropout ( EU TEI� EV T EQ)

Ez = SumPool(Ezexp)
for i∈ {1,...,p} where EI , EQ are visual and text features respectively. Similar to how MFB
extends MLB, MFH is MFB where p= 1. Though MFH slightly outperforms MFB, there
has been little exploration into the theoretical benefit in generalising to higher-order BLP.

Bilinear superdiagonal fusion
Ben-Younes et al. (2019) proposed another method of rank restricted bilinear pooling:
Bilinear Superdiagonal Fusion (BLOCK).We will briefly outline block term decomposition
before describing BLOCK.
Block term decomposition: Introduced in a 3-part paper (De Lathauwer, 2008a; De
Lathauwer, 2008b; De Lathauwer & Nion, 2008), block term decomposition reformulates a
bilinear matrix representation as the sum of rank restricted matrix products (contrasting
low rank pooling which is represented by only a single rank restricted matrix product).
By choosing the number of decompositions in the approximated sum and their rank,
block-term decompositions offer greater control over the approximated bilinear model.
Block term decompositions are easily extended to higher-order tensor decompositions,
allowing multilinear rank restriction for multilinear models in future research. A block
term decomposition of a tensor EW ∈RI1×,...,×IN is a decomposition of the form:
EW =

∑R
r=1
ESr⊗1 EU 1

r ⊗2 EU 2
r ⊗3,...,⊗n EU n

r
where R∈N∗ and for each r ∈ {1,...,R},ESr ∈RR1×,...,×Rn where each ESr are ‘core tensors’
with dimensions Rn≤ In for n∈ {1,...,N } that are used to restrict the rank of the tensor
EW . EU n

r ∈ St(Rn,In) are the ‘factor matrices’ that intuitively expand the nth dimension of ES
back up to the original nth dimension of EW . St(a,b) here refers to the Stiefel manifold, i.e.,
St(a,b): { EY ∈Ra×b

: EY T EY =EIp}. Figure 2 visualises the block term decomposition process.
Bilinear superdiagonal model: The BLOCK model uses block term decompositions to
learn multimodal interactions. The authors argue that since BLOCK enables ‘‘very rich
(full bilinear) interactions between groups of features, while the block structure limits the
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Figure 2 Block term decomposition (n= 3).
Full-size DOI: 10.7717/peerjcs.974/fig-2

complexity of the whole model’’, that it is able to represent very fine grained interactions
between modalities while maintaining powerful mono-modal representations. The bilinear
model with inputs Ex ∈ Rm,Ey ∈ Rn is projected into o dimensional space with tensor
products:
Ez = EW ⊗1 Ex⊗2 Ey

where Ez ∈ Ro. The superdiagonal BLOCK model uses a 3-dimensional block term
decomposition. The decomposition of EW in rank (R1,R2,R3) is defined as:
EW =

∑R
r=1
ESr⊗1 EU 1

r ⊗2 EU 2
r ⊗3 EU 3

r
This can be written as
EW =ESbd⊗1 EU 1

⊗2 EU 2
⊗3 EU 3

where EU 1
=[ EU 1

1 ,...,
EU 1
R], similarly with EU 2 and EU 3, and now ESbd ∈RRR1

×RR2
×RR3

. So Ez
can now be expressed with respect to Ex and Ey . Let Êx = EU 1

Ex ∈RRR1
and Êy = EU 2

Ey ∈RRR2
.

These two projections are merged by the block-superdiagonal tensor ESbd . Each block in ESbd

merges together blocks of size R1 from Êx and of size R2 from Êy to produce a vector of size
R3:
Ezr =ESr⊗x ÊxrR1:(r+1)R1⊗y Êy rR2:(r+1)R2

where Êx i:j is the vector of dimension j− i containing the corresponding values of Êx .
Finally all vectors Ezr are concatenated producing Êz ∈RRR3

. The final prediction vector is
Ez = EU 3, Êz ∈ Ro. Similar to tucker fusion, the block term decomposition based fusion in
BLOCK theoretically allows more nuanced control on representation size and empirically
outperforms previous techniques.

RELATED WORKS
Bilinear pooling in video-QA with language-vision fusion
We aim to highlight and explore a broad shift away from BLP in favour of methods such as
attention in video-QA benchmarks. Several videomodels have incorporated and contrasted
BLP techniques to their own model designs for language-vision fusion tasks. Kim et al.
(2019) find various BLP fusions perform worse than their ‘dynamic modality fusion’
mechanism on TVQA (Lei et al., 2018) andMovieQA (Tapaswi et al., 2016). Li et al. (2019)
find MCB fusion performs worse on their model in ablation studies on TGIF-QA (Jang et
al., 2017). Chou et al. (2020) use MLB as part of their baseline model proposed alongside
their ‘VQA 360◦’ dataset. Gao et al. (2019) contrast their proposed two-stream attention
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mechanism to an MCB model for TGIF-QA, demonstrating a substantial performance
increase over the MCB model. Liu et al. (2021) use MUTAN fusion between question and
visual features to yield impressive results on TGif-QA, though they are outperformed by
an attention based model using element-wise multiplication (Le et al., 2020). The Focal
Visual-Text Attention network (FVTA) (Liang et al., 2019) is a hierarchical model that
aims to dynamically select from the appropriate point across both time and modalities that
outperforms an MCB approach on Movie-QA.

Bilinear pooling in video without language-vision fusion
Where recent research in video-QA tasks (which includes textual questions as input) has
moved away from BLP techniques, several video tasks that do not involve language have
found success using BLP techniques. Zhou et al. (2021) use a multilevel factorised BLP
based model to fuse audio and visual features for emotion recognition in videos. Hu et al.
(2021) use compact BLP to fuse audio and ‘visual long range’ features for human action
recognition. Pang et al. (2021) use MLB as part of an attention-based fusion for audio
and visual features for violence detection in videos. Xu et al. (2021) use BLP to fuse visual
features from different channels in colour image (RGB) and thermal infrared tracking
(TiR) i.e. (RGBT). Deng et al. (2021) use compact BLP to fuse spatial and temporal
representations of video features for action recognition. Wang, Bao & Xu (2021) fuse
motion and appearance visual information together achieving state-of-the-art results on
MSVD-QA. Sudhakaran, Escalera & Lanz (2021) draw design inspiration from bilinear
processing of Lin, RoyChowdhury & Maji (2015) and MCB to propose ‘Class Activation
Pooling’ for video action recognition. Deb et al. (2022) use MLB to process video features
for video captioning.

DATASETS
In this section, we outline the video-QA datasets we use in our experiments.

MSVD-QA
Xu et al. (2017) argue that simply extending image-QA methods is ‘‘insufficient and
suboptimal’’ to conduce quality video-QA, and that instead the focus should be on the
temporal structure of videos. Using an natural language processing (NLP) method to
automatically generate question-answer (QA) pairs from descriptions (Heilman & Smith,
2009), Xu et al. (2017) create the MSVD-QA dataset based on the Microsoft research video
description corpus (Chen & Dolan, 2011). The dataset is made from 1970 video clips, with
over 50k QA pairs in ‘5w’ style i.e., (‘‘what’’, ‘‘who’’, ‘‘how’’, ‘‘when’’, ‘‘where’’).

TGIF-QA
Jang et al. (2017) speculate that the relatively limited progress in video-QA compared to
image-QA is ‘‘due in part to the lack of large-scale datasets with well defined tasks’’. As such,
they introduced the TGIF-QA dataset to ‘complement rather than compete’ with existing
VQA literature and to serve as a bridge between video-QA and video understanding. To
this end, they propose 3 subsets with specific video-QA tasks that aim to take advantage of
the temporal format of videos:
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Count: Counting the number of times a specific action is repeated (Levy & Wolf, 2015)
e.g., ‘‘How many times does the girl jump?’’. Models output the predicted number of times
the specified actions happened. (Over 30k QA pairs).

Action: Identify the action that is repeated a number of times in the video clip. There
are over 22k multiple choice questions e.g., ‘‘What does the girl do 5 times?’’.

Trans: Identifying details about a state transition (Isola, Lim & Adelson, 2015). There
are over 58k multiple choice questions e.g., ‘‘What does the man do after the goal post?’’.

Frame-QA: An image-QA split using automatically generated QA pairs from frames
and captions in the TGIF dataset (Li et al., 2016) (over 53k multiple choice questions).

TVQA
The TVQA dataset (Lei et al., 2018) is designed to address the shortcomings of previous
datasets. It has significantly longer clip lengths than other datasets and is based on TV
shows instead of cartoons to give it realistic video content with simple coherent narratives.
It contains over 150k QA pairs. Each question is labelled with timestamps for the relevant
video frames and subtitles. The questions were gathered using AMT workers. Most
notably, the questions were specifically designed to encourage multimodal reasoning
by asking the workers to design two-part compositional questions. The first part asks a
question about a ‘moment’ and the second part localises the relevant moment in the video
clip i.e., [What/How/Where/Why/Who/...] —[when/before/after] —, e.g., ‘[What] was
House saying [before] he leaned over the bed? ’. The authors argue this facilitates questions
that require both visual and language information since ‘‘people often naturally use visual
signals to ground questions in time’’. The authors identify certain biases in the dataset.
They find that the average length of correct answers are longer than incorrect answers. They
analyse the performance of their proposed baseline model with different combinations of
visual and textual features on different question types they have identified. Though recent
analysis has highlighted bias towards subtitles in TVQA’s questions (Winterbottom et al.,
2020), it remains an important large scale video-QA benchmark.

EgoVQA
Most video-QA datasets focus on video-clips from the 3rd person. Fan (2019) argue that
1st person video-QA has more natural use cases that real-world agents would need. As
such, they propose the egocentric video-QA dataset (EgoVQA) with 609 QA pairs on 16
first-person video clips. Though the dataset is relatively small, it has a diverse set of question
types (e.g., 1st & 3rd person ‘action’ and ‘who’ questions, ‘count’, ‘colour’ etc.), and aims
to generate hard and confusing incorrect answers by sampling from correct answers of the
same question type. Models on EgoVQA have been shown to overfit due to its small size.
To remedy this, Fan (2019) pretrain the baseline models on the larger YouTube2Text-QA
(Ye et al., 2017). YouTube2Text-QA is a multiple choice dataset created fromMSVD videos
(Chen & Dolan, 2011) and questions created from YouTube2Text video description corpus
(Guadarrama et al., 2013). YouTube2Text-QA has over 99k questions in ‘what’, ‘who’ and
‘other’ style.
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Figure 3 TVQAModel.�/⊕= Element-wise multiplication/addition,�= context matching (Seo et al., 2017; Yu et al., 2018a), β = BLP. Any fea-
ture streams may be enabled/disabled.

Full-size DOI: 10.7717/peerjcs.974/fig-3

MODELS
In this section,we describe themodels used in our experiments, built from the official TVQA
(https://github.com/jayleicn/TVQA) and HME-VideoQA (https://github.com/fanchenyou/
HME-VideoQA) implementations.

TVQA model
Model Definition: The model takes as inputs: a question q, five potential answers {ai}4i=0,
a subtitle S and corresponding video-clip V, and outputs the predicted answer. As the
model can either use the entire video-clip and subtitle or only the parts specified in the
timestamp, we refer to the sections of video and subtitle used as segments from now on.
Figure 3 demonstrates the textual and visual streams and their associated features in model
architecture.

ImageNet features: Each frame is processed by a ResNet101 (He et al., 2016) pretrained
on ImageNet (Deng et al., 2009) to produce a 2048-d vector. These vectors are then
L2-normalised and stacked in frame order: V img

∈Rf×2048 where f is the number of frames
used in the video segment.

Regional features: Each frame is processed by a Faster R-CNN (Ren et al., 2015) trained
on Visual Genome (Krishna et al., 2017) in order to detect objects. Each detected object in
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the frame is given a bounding box, and has an affiliated 2048-d feature extracted. Since
there are multiple objects detected per frame (we cap it at 20 per frame), it is difficult
to efficiently represent this in time sequences (Lei et al., 2018). The model uses the top-K
regions for all detected labels in the segment as in (Anderson et al., 2018) and (Karpathy &
Fei-Fei, 2015). Hence the regional features are V reg

∈Rnreg×2048 where nreg is the number
of regional features used in the segment.

Visual concepts: The classes or labels of the detected regional features are called ‘Visual
Concepts’. Yin & Ordonez (2017) found that simply using detected labels instead of image
features gives comparable performance on image captioning tasks. Importantly they
argued that combining CNN features with detected labels outperforms either approach
alone. Visual concepts are represented as either GloVe (Pennington, Socher & Manning,
2014) or BERT (Devlin et al., 2019) embeddings V vcpt

∈Rnvcpt×300 or Rnvcpt×768 respectively,
where nvcpt is the number of visual concepts used in the segment.

Text features: The model encodes the questions, answers, and subtitles using either
GloVe (∈R300) or BERT embeddings (∈R768). Formally, q∈Rnq×d,{ai}4i=0 ∈R

nai×d ,S∈
Rns×d where nq,nai,ns is the number of words in q,ai,S respectively and d = 300,768 for
GloVe or BERT embeddings respectively.

Context matching: Context matching refers to context-query attention layers recently
adopted in machine comprehension (Seo et al., 2017; Yu et al., 2018a). Given a context-
query pair, context matching layers return ‘context aware queries’.

Model details: Any combination of subtitles or visual features can be used. All features
aremapped intoword vector space through a tanh non-linear layer. They are then processed
by a shared bi-directional long short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997; Graves & Schmidhuber, 2005) (‘Global LSTM’ in Fig. 3) of output dimension 300.
Features are context-matched with the question and answers. The original context vector is
then concatenated with the context-aware question and answer representations and their
combined element-wise product (‘StreamProcessor’ in Fig. 3, e.g., for subtitles S, the stream
processor outputs [F sub; Asub,q; Asub,a0−4 ; F sub

�Asub,q; F sub
�Asub,a0−4] ∈Rnsub×1500 where

F sub
∈Rns×300. Each concatenated vector is processed by their own unique bi-directional

LSTM of output dimension 600, followed by a pair of fully connected layers of output
dimensions 500 and 5, both with dropout 0.5 and ReLU activation. The 5-dimensional
output represents a vote for each answer. The element-wise sum of each activated feature
stream is passed to a softmax producing the predicted answer index. All features remain
separate through the entire network, effectively allowing the model to choose the most
useful features.

HME-VideoQA
To better handle semantic meaning through long sequential video data, recent models have
integrated external ‘memory’ units (Xiong, Merity & Socher, 2016; Sukhbaatar et al., 2015)
alongside recurrent networks to handle input features (Gao et al., 2018; Zeng et al., 2017).
These external memory units are designed to encourage multiple iterations of inference
between questions and video features, helping the model revise it’s visual understanding
as new details from the question are presented. The heterogeneous memory-enhanced
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Figure 4 HMEmodel.
Full-size DOI: 10.7717/peerjcs.974/fig-4

video-QA model(HME) (Fan et al., 2019) proposes several improvements to previous
memory based architectures:

Heterogeneous read/write memory: The memory units in HME use an attention-
guided read/write mechanism to read from/update memory units respectively(the number
of memory slots used is a hyperparameter). The claim is that since motion and appearance
features are heterogeneous, a ‘straightforward’ combination of them cannot effectively
describe visual information. The video memory aims to effectively fuses motion (C3D
(Tran et al., 2014)) and appearance (ResNet (He et al., 2016) and VGG (Simonyan &
Zisserman, 2015)) features by integrating them in the joint read/write operations (visual
memory in Fig. 4).

Encoder-aware question memory: Previousmemorymodels used a single feature vector
outputted by an LSTM or gated recurrent unit (GRU) for their question representation
(Gao et al., 2018; Zeng et al., 2017; Xiong, Merity & Socher, 2016; Anderson et al., 2018).
HME uses an LSTM question encoder and question memory unit pair that augment each
other dynamically (question memory in Fig. 4).

Multimodal fusion unit: The hidden states of the video and question memory units
are processed by a temporal attention mechanism. The joint representation ‘read’ updates
the fusion unit’s own hidden state. The visual and question representations are ultimately
fused by vector concatenation (multimodal fusion in Fig. 5). Our experiments will involve
replacing this concatenation step with BLP techniques.

EXPERIMENTS AND RESULTS
In this section we outline our experimental setup and results. We save our insights for the
discussion in the next section. See our GitHub repository (https://github.com/Jumperkables/
trying_blp) for both the datasets and code used in our experiments. Table 1 shows the
benchmarks and state-of-the-art results for the datasets we consider in this paper.
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Figure 5 ⊕= Concatenation, β= BLP.
Full-size DOI: 10.7717/peerjcs.974/fig-5

Table 1 Dataset benchmark and SoTA results to the best of our knowledge. † = Mean L2 loss. An aster-
isk (*) = Results we replicated using the cited implementation.

Dataset Benchmark SoTA

TVQA (Val) 68.85% Lei et al. (2018) 74.97% Khan et al. (2020)
TVQA (Test) 68.48% Lei et al. (2018) 72.89% Khan et al. (2020)
EgoVQA (Val 1) 37.57% Fan (2019) 45.05%* Chenyou (2019)
EgoVQA (Test 2) 31.02% Fan (2019) 43.35%* Chenyou (2019)
MSVD-QA 32.00% Xu et al. (2017) 40.30% Guo et al. (2021)
TGIF-Action 60.77% Jang et al. (2017) 84.70% Le et al. (2020)
TGIF-Count 4.28 † Jang et al. (2017) 2.19 † Le et al. (2020)
TGIF-Trans 67.06% Jang et al. (2017) 87.40% Seo et al. (2021)
TGIF-FrameQA 49.27% Jang et al. (2017) 64.80% Le et al. (2020)

Concatenation to BLP (TVQA)
As previously discussed, BLP techniques have outperformed feature concatenation on
a number of VQA benchmarks. The baseline stream processor concatenates the visual
feature vector with question and answer representations. Each of the five inputs to the final
concatenation are 300-d. We replace the visual-question/answer concatenation with BLP
(Fig. 6). All inputs to the BLP layer are 300-d, the outputs are 750-d and the hidden size
is 1600 (a smaller hidden state than normal, however, the input features are also smaller
compared to other uses of BLP). We make as few changes as possible to accommodate

Winterbottom et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.974 13/35

https://peerj.com
https://doi.org/10.7717/peerjcs.974/fig-5
http://dx.doi.org/10.7717/peerj-cs.974


Figure 6 Baseline concatenation stream processor from TVQAmodel (left-A) vs our BLP stream pro-
cessor (right-B). �= Element-wise multiplication, β = BLP,�= Context Matching.

Full-size DOI: 10.7717/peerjcs.974/fig-6

BLP, i.e., we use context matching to facilitate BLP fusion by aligning visual and textual
features temporally. Our experiments include models with/without subtitles or questions
(Table 2).

Dual-stream Model
We create our ‘dual-stream’ (Fig. 7, Table 3) model from the SI TVQA baseline model for 2
main purposes: (I) To explore the effects of a joint representation onTVQA, (II) To contrast
the concatenation-replacement experiment with a model restructured specifically with BLP
as a focus. The baseline BLP model keeps subtitles and other visual features completely
separate up to the answer voting step. Our aim here is to create a joint representation
BLP-based model similar in essence to the baseline TVQA model that fuses subtitle and
visual features. As before, we use context matching to temporally align the video and text
features.

Deep CCA in TVQA
In contrast to joint representations, Baltrušaitis, Ahuja & Morency (2019) define ‘co-
ordinated representations’ as a category of multimodal fusion techniques that learn
‘‘separated but co-ordinated’’ representations for each modality (under some constraints).
Peng, Qi & Yuan (2018) claim that since there is often an information imbalance between
modalities, learning separate modality representations can be beneficial for preserving
‘exclusive and usefulmodality-specific characteristics’.We include one such representation,
deep canonical correlation analysis (DCCA) (Andrew et al., 2013), in our experiments to
contrast with the joint BLP models.

CCA
Canonical cross correlation analysis (CCA) (Hotelling, 1936) is a method for measuring the
correlations between two sets. Let ( EX0, EX1)∈Rd0×Rd1 be random vectors with covariances
(
∑

r=00,
∑

r=11) and cross-covariance
∑

r=01. CCA finds pairs of linear projections of the
two views (w ′0 EX0,w1′ EX1) that are maximally correlated:
ρ= (w∗0 ,w

∗

1 )= argmax
w0,w1

corr(w ′0 EX0,w1′ EX1)
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Table 2 Concatenation replaced with BLP in the TVQAmodel on the TVQADataset. All models use
visual concepts and ImageNet features. ‘No Q’ indicates questions are not used as inputs i.e., answers rely
purely on input features.

Subtitles Fusion type Accuracy Baseline offset

– Concatenation 45.94% –
GloVE Concatenation 69.74% –
BERT Concatenation 72.20% –
– (No Q) Concatentation 45.58% −0.36%
GloVE (No Q) Concatentation 68.31% −1.42%
BERT (No Q) Concatentation 70.43% −1.77%
– MCB 45.65% −0.29%
GloVE MCB 69.32% −0.42%
BERT MCB 71.68% −0.52%
– MLB 41.98% −3.96%
GloVE MLB 69.30% −0.44%
BERT MLB 69.04% −3.16%
– MFB 41.82% −4.12%
GloVE MFB 68.87% −0.87%
BERT MFB 67.29% −4.91%
- MFH 44.44% −1.5%
GloVE MFH 68.43% −1.31%
BERT MFH 67.29% −4.91%
– Blocktucker 44.44% −1.5%
GloVE Blocktucker 67.95% −1.79%
BERT Blocktucker 67.04% −5.16%
– BLOCK 41.09% −4.85%
GloVE BLOCK 65.31% −4.43%
BERT BLOCK 66.94% −5.26%

Figure 7 Our Dual-StreamModel.�= Context Matching.
Full-size DOI: 10.7717/peerjcs.974/fig-7

= argmax
w0,w1

w ′0
∑

01w1√
w ′0

∑
00w0w ′1

∑
11w1

where ρ is the correlation co-efficient. As ρ is invariant to the scaling of w0 and w1, the
projections are constrained to have unit variances, and can be represented as the following
maximisation:
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Table 3 Dual-Stream Results Table. ‘SI’ for TVQAmodels indicates the model is using subtitle and
ImageNet feature streams only, i.e., the green and pink streams in Fig. 3.

Model Text Val Acc

TVQA SI GloVe 67.78%
TVQA SI BERT 70.56%
Dual-Stream MCB GloVe 63.46%
Dual-Stream MCB BERT 60.63%
Dual-Stream MFH GloVe 62.71%
Dual-Stream MFH BERT 59.34%

Figure 8 Baseline concatenation stream processor from TVQAmodel (left-A) vs our DCCA stream
processor (right-B). �= Element-wise multiplication,�= Context Matching.

Full-size DOI: 10.7717/peerjcs.974/fig-8

argmax
w0,w1

w ′0
∑

01w1 s.t w ′0
∑

00w0=w ′1
∑

11w1=E1

However, CCA can only model linear relationships regardless of the underlying realities
in the dataset. Thus, CCA extensions were proposed, including kernel CCA (KCCA)
(Akaho, 2001) and later DCCA.

DCCA
DCCA is a parametric method used in multimodal neural networks that can learn non-
linear transformations for input modalities. Both modalities t ,v are encoded in neural-
network transformations Ht ,Hv = ft (t ,θt ), fv(v,θv) , and then the canonical correlation
between both modalities is maximised in a common subspace (i.e., maximise cross-modal
correlation between Ht , Hv).

max corr(Ht ,Hv) = argmax
θt ,θv

corr(ft (t ,θt ),fv(v,θv))

We use DCCA over KCCA to co-ordinate modalities in our experiments as it is generally
more stable and efficient, learning more ‘general’ functions.

DCCA in TVQA
We use a 2-layer DCCA module to coordinate question and context (visual or subtitle)
features (Fig. 8, Table 4). Output features are the same dimensions as inputs. Though
DCCA itself is not directly related to BLP, it has recently been classified as a coordinated
representation (Guo, Wang & Wang, 2019), which contrasts a ‘joint’ representation.
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Table 4 DCCA in the TVQA baseline model.

Model Text Baseline Acc DCCA Acc

VI GloVe 45.94% 45.00% (−0.94%)
VI BERT – 41.70%
SVI GloVe 69.74% 67.91% (−1.83%)
SVI BERT 72.20% 68.48% (−3.72%)

Table 5 HME-Video QAmodel. The default fusion technique is concatenation. † refers to minimised L2
loss.

Dataset Fusion type Val Test

TVQA (GloVE) Concatenation 41.25% N/A
EgoVQA-0 Concatenation 36.99% 37.12%
EgoVQA-1 Concatenation 48.50% 43.35%
EgoVQA-2 Concatenation 45.05% 39.04%
MSVD-QA Concatenation 30.94% 33.42%
TGIF-Action Concatenation 70.69% 73.87%
TGIF-Count Concatenation 3.95 † 3.92 †
TGIF-Trans Concatenation 76.33% 78.94%
TGIF-FrameQA Concatenation 52.48% 51.41%
TVQA (GloVE) MCB 41.09% (−0.16%) N/A%
EgoVQA-0 MCB No Convergence No Convergence
EgoVQA-1 MCB No Convergence No Convergence
EgoVQA-2 MCB No Convergence No Convergence
MSVD-QA MCB 30.85% (−0.09%) 33.78% (+0.36%)
TGIF-Action MCB 73.56% (+2.87%) 73.00% (−0.87%)
TGIF-Count MCB 3.95 † (+0 †) 3.98 † (+0.06 †)
TGIF-Trans MCB 79.30% (+2.97%) 77.10% (−1.84%)
TGIF-FrameQA MCB 51.72% (−0.76%) 52.21% (+0.80%)

Concatenation to BLP (HME-VideoQA)
As described in the previous section, we replace a concatenation step in the HME model
between textual and visual features with BLP (Fig. 5, corresponding to the multimodal
fusion unit in Fig. 4). The goal here is to explore if BLP can better facilitate multimodal
fusion in aggregated memory features (Table 5). We replicate the results from (Fan et al.,
2019) with the HME on the MSVD, TGIF and EgoVQA datasets using the official github
repository (Chenyou, 2019). We extract our own C3D features from the frames in the
TVQA.

DISCUSSION
TVQA experiments
No BLP Improvements on TVQA: On the HME concat-to-BLP substitution model
(Table 5), MCB barely changes model performance at all. We find that none of our
TVQA concat-to-BLP substitutions (Table 2) yield any improvements at all, with almost
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all of them performing worse overall (0.3–5%) than even the questionless concatenation
model. Curiously, MCB scores the highest of all BLP techniques. The dual-stream model
performs worse still, dropping accuracy by between 5–10% vs the baseline (Table 3).
Similarly, we find that MCB performs best despite being known to require larger latent
spaces to work on VQA.

BERT impacted the most: For the TVQA BLP-substitution models, we find the GloVe,
BERT and ‘no-subtitle’ variations all degrade by roughly similar margins, with BERT
models degrading more most often. This slight discrepancy is unsurprising as the most
stable BERT baseline model is the best, and thus may degrade more on the inferior
BLP variations. However, BERT’s relative degradation is much more pronounced on
the dual-stream models, performing 3% worse than GloVe. We theorise that here, the
significant and consistent drop is potentially caused by BERT’s more contextual nature no
longer helping, but actively obscuring more pronounced semantic meaning learned from
subtitles and questions.

Blame smaller latent spaces?: Naturally, bilinear representations of time series data
across multiple frames or subtitles are highly GPU memory intensive. Thus we can
only explore relatively small hidden dimensions (i.e., 1600). However, we cannot simply
conclude our poor results are due to our relatively small latent spaces because: (I) MCB is
our best performing BLP technique. However, MCB has been outperformed by MFH on
previous VQA models and it has been shown to require much larger latent spaces to work
effectively in the first place (Fukui et al., 2016) (16000). (II) Our vector representations
of text and images are also much smaller (300-d) compared to the larger representation
dimensions conventional in previous benchmarks (e.g., 2048 in Fukui et al., 2016). We
note that 16000/2048 ≈ 1600/300, and so our latent-to-input size ratio is not substantially
different to previous works.

Unimodal biases in TVQA and joint representation: Another explanation may come
from works exploring textual biases inherent in TVQA to textual modalities (Winterbottom
et al., 2020). BLP has been categorised as a ‘joint representation’. Baltrušaitis, Ahuja
& Morency (2019) consider representation as summarising multimodal data ‘‘in a
way that exploits the complementarity and redundancy of multiple modalities’’. Joint
representations combine unimodal signals into the same representation space. However,
they struggle to handle missing data (Baltrušaitis, Ahuja & Morency, 2019) as they tend
to preserve shared semantics while ignoring modality-specific information (Guo, Wang &
Wang, 2019). The existence of unimodal text bias in TVQA implies BLPmay performpoorly
on the TVQA as a joint representation of it’s features because: (I) information from either
modality is consistently missing, (II) prioritising ‘shared semantics’ over ‘modality-specific’
information harms performance on TVQA. Though concatenation could also be classified
as a joint representation, we argue that this observation still has merit. Theoretically, a
concatenation layer can still model modality specific information(see Fig. 9), but a bilinear
representation would seem to inherently entangle its inputs which would make modality
specific information more challenging to learn since each parameter representing one
modality is by definition weighted with the other. This may explain why our simpler BLP
substitutions perform better than our more drastic ‘joint’ dual-stream model.
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Figure 9 Visualisation of the differences between concatenation and bilinear representations for uni-
modal processing. Concatenation (left-A) can theoretically allow unimodal features from text or vision to
process independently of the other modality by reducing it’s weighted contribution (see ‘V1 Only’). Bilin-
ear representations (right-B) force multimodal interactions. It is less clear how useful ‘unimodal’ is pro-
cessed.

Full-size DOI: 10.7717/peerjcs.974/fig-9

What about DCCA?: Table 4 shows our results on theDCCA augmented TVQAmodels.
We see a slight but noticable performance degradation with this relatively minor alteration
to the stream processor. As previously mentioned, DCCA is in some respects an opposite
approach to multimodal fusion than BLP, i.e., a ‘coordinated representation’. The idea of
a coordinated representations is to learn a separate representation for each modality , but
with respect to the other. In this way, it is thought that multimodal interactions can be
learned while still preserving modality-specific information that a joint representation may
otherwise overlook (Guo, Wang & Wang, 2019; Peng, Qi & Yuan, 2018). DCCA specifically
maximises cross-modal correlation. Without further insight from surrounding literature, it
is difficult to conclude what TVQA’s drop in performance using both joint and coordinated
representations could mean. We will revisit this when we discuss the role of attention in
multimodal fusion.

Does context matching ruin multimodal integrity?: The context matching technique
used in the TVQA model is the birdirectional attention flow (BiDAF) module introduced
in Seo et al. (2017). It is used in machine comprehension between a textual context-query
pair to generate query-aware context representations. BiDAF uses a ‘memoryless’ attention
mechanism where information from each time step does not directly affect the next,
which is thought to prevent early summarisation. BiDAF considers different input features
at different levels of granularity. The TVQA model uses bidirectional attention flow to
create context aware (visual/subtitle) question and answer representations. BiDAF can be
seen as a co-ordinated representation in some regards, but it does project questions and
answers representations into a new space. We use this technique to prepare our visual and
question/answer features because it temporally aligns both features, giving them the same
dimensional shape, conveniently allowing us to apply BLP at each time step. Since the
representations generated are much more similar than the original raw features and there
is some degree of information exchange, it may affect BLP’s representational capacity.
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Though it is worth considering these potential shortcomings, we cannot immediately
assume that BiDAFwould cause serious issues as earlier bilinear technique were successfully
used between representations in the same modality (Tenenbaum & Freeman, 2000; Gao
et al., 2016). This implies that multimodal interactions can still be learned between the
more similar context-matched representations, provided the information is still present.
Since BiDAF does allow visual information to be used in the TVQA baseline model, it is
reasonable to assume that some of the visual information is in fact intact and exploitable for
BLP. However, it is still currently unclear if context matching is fundamentally disrupting
BLP and contributing to the poor results we find. We note that in BiDAF, ‘memoryless’
attention is implemented to avoid propagating errors through time. We argue that though
this may be true and help in some circumstances, conversely, this will not allow some
useful interactions to build up over time steps.

The other datasets on HME
BLP has no effect:Our experiments on the EgoVQA, TGIF-QA, andMSVD-QA datasets

are on concat-to-BLP substitution HME models. Our results are inconclusive. There is
virtually no variation in performance between the BLP and concatenation implementations.
Interestingly, EgoVQA consistently does not converge with this simple substitution. We
cannot comment for certain on why this is the case. There seems to be no intuitive reason
why it’s 1st person content would cause this. Rather, we believe this is symptomatic of
overfitting in training, as EgoVQA is very small and pretrained on a different dataset, and
BLP techniques can sometimes have difficulties converging.

Does better attention explain the difference?: Attention mechanisms have been shown
to improve the quality of text and visual interactions. Yu et al. (2017) argue that methods
without attention are ‘coarse joint-embedding models’ which use global features that
contain noisy information unhelpful in answering fine-grained questions commonly
seen in VQA and video-QA. This provides strong motivation for implementing attention
mechanisms alongside BLP, so that the theoretically greater representational capacity of BLP
is not squandered on less useful noisy information. The TVQA model uses the previously
discussed BiDAF mechanism to focus information from both modalities. However, the
HME model integrates a more complex memory-based multi-hop attention mechanism.
This difference may potentially highlight why the TVQA model suffers more substantially
integrating BLP than the HME one.

BLP in video-QA: problems and recommendations
We have experimented with BLP in two video-QA models and across four datasets. Our
experiments show that the BLP fusion techniques popularised in VQA has not extended
to increased performance to video-QA. In the preceding sections, we have supported this
observation with experimental results which we contextualise by surveying the surrounding
literature for BLP for multimodal video tasks. In this section, we condense our observations
into a list of problems that BLP techniques pose to video-QA, and our proposal for
alternatives and solutions:

Inefficient and computationally expensive across time: BLP as a fusion mechanism
in video-QA can be exceedingly expensive due to added temporal relations. Though
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propagating information from each time step through a complex text-vision multimodal
fusion layer is an attractive prospect, our experiments imply that modern BLP techniques
simply do not empirically perform in such a scenario. We recommend avoiding
computationally expensive fusion techniques like BLP for text-image fusion throughout
timesteps, and instead simply concatenate features at these points to save computational
resources for other stages of processing (e.g., attention). Furthermore, we note that any
prospective fusion technique used across time will quickly encounter memory limitations
that could force the hidden-size used sub-optimally low. Though summarising across time
steps into condensed representations may allow more expensive BLP layers to be used on
the resultant text and video representations, we instead recommend using state-of-the-art
and empirically proven multimodal attention mechanisms instead (Lei et al., 2021; Yang
et al., 2021). Attention mechanisms are pivotal in VQA for reducing noise and focusing
on specific fine-grained details (Yu et al., 2017). The sheer increase in feature information
when moving from still-image to video further increases the importance of attention in
video-QA. Our experiments show the temporal-attention based HME model performs
better when it is not degraded by BLP. Our findings are in line with that of Long et al.
(2018) as they consider multiple different fusion methods for video classification, i.e.,
LSTM, probability, ‘feature’ and attention. ‘Feature’ fusion is the direct connection of each
modality within each local time interval, which is effectively what context matching does
in the TVQA model. Long et al. (2018) finds temporal feature based fusion sub-par, and
speculates that the burden of learning multimodal and temporal interactions is too heavy.
Our experiments lend further evidence that for video tasks, attention-based fusion is the
ideal choice.

Problem with alignment of text and video: As we highlight in the second subsection
of our related works, BLP has yielded great performance in video tasks where it fuses the
visual features with non-textual features. Audio and visual feature fusion demonstrates
impressive performance on action recognition(Hu et al., 2021), emotion recognition
(Zhou et al., 2021), and violence detection (Pang et al., 2021). Likewise, different visual
representations have thrived in RGBT tracking (Xu et al., 2021), action recognition (Deng
et al., 2021) and video-QA on MSVD-QA (Wang, Bao & Xu, 2021). On the other hand, we
notice that several recent video-QA works (highlighted in the first section of our related
works) have found in ablation that BLP fusion which specifically fuse visual and textual
features give poor results (Kim et al., 2019; Li et al., 2019; Gao et al., 2019; Liu et al., 2021;
Liang et al., 2019). Our observations and our experimental results highlight a pattern
of poor performance for BLP in text-video fusion specifically. We demonstrate poor
performance using BLP to fuse both ‘BiDAF-aligned’ (TVQA) and ‘raw’ (HME) text and
video features i.e., temporally aligned and unaligned respectively. As the temporally-aligned
modality combinations of video-video and video-audio BLP fusion continue to succeed,
we believe that the ‘natural alignment’ of modalities is a significant contributing factor to
this performance discrepancy in video. To the best of our knowledge, we are the first to
draw attention to this trend. Attention mechanisms continue to achieve state-of-the-art
in video-language tasks and have been demonstrated (with visualisable attention maps) to
focus on relevant video and question features. We therefore recommend using attention
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mechanisms for their strong performance and relatively interpretable behaviour, and
avoiding BLP for specifically video-text fusion.

Empirically justified on VQA: Successive BLP techniques have helped drive increased
VQA performance in recent years, as such they remain an important and welcome asset to
the field of multimodal machine learning. We stress that these improvements, welcome as
they are, are only justified by their empirical improvements in the tasks they are applied
to, and lack strong theoretical frameworks which explain their superior performance.
This is entirely understandable given the infamous difficulty in interpreting how neural
networks actually make decisions or exploit their training data. However, it is often
claimed that such improvements are the result of some intrinsic property of the BLP
operator, e.g., creating ‘richer multimodal representations’: (Fukui et al., 2016) hypothesise
that concatenation is not as expressive as an outer product of visual and textual features.
(Kim et al., 2017) claim that ‘‘bilinear models provide rich representations compared
with linear models’’. Ben-younes et al. (2017) claim MUTAN ‘‘focuses on modelling fine
and rich interactions between image and text modalities’’. Yu et al. (2018b) claim that
MFH significantly improves VQA performance ‘‘because they achieve more effective
exploitation of the complex correlations between multimodal features’’. Ben-Younes et al.
(2019) carefully demonstrate that the extra control over the dimensions of components
in BLOCK fusion can be leveraged to achieve yet higher VQA performance, however this
is attributed to it’s ability ‘‘to represent very fine interactions between modalities while
maintaining powerful mono-modal representations’’. In contrast, Yu et al. (2017) carefully
assess and discuss the empirical improvements their MFH fusion offers on VQA. Our
discussions and findings highlight the importance of being measured and nuanced when
discussing the theoretical nature of multimodal fusion techniques and the benefits they
bring.

THEORETICALLY MOTIVATED OBSERVATIONS AND
NEUROLOGICALLY GUIDED PROPOSALS:
BLP techniques effectively exploit mathematical innovations on bilinear expansions
represented in neural networks. As previously discussed, it remains unclear why any bilinear
representation would be intrinsically superior for multimodal fusion to alternatives e.g., a
series of non-linear fully connected layers or attentionmechanisms. In this section, we share
our thoughts on the properties of bilinear functions, and how they relate to neurological
theories for multimodal processing in the human brain. We provide qualitative analysis
of the distribution of psycholinguistic norms present in the video-QA datasets used in
our experiments with which, through the lens of ‘Dual Coding Theory’ and the ‘Two-
Stream’ model of vision, we propose neurologically motivated multimodal processing
methodologies.

Observations: bilinearity in BLP
Nonlinearities in bilinear expansions: As previously mentioned in our description of

MLB, Kim et al. (2017) suggest using Tanh activation on the output of vector Ez to further
increase model capacity. Strictly speaking, we note that adding the the non-linearity means
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the representation is no longer bilinear as it is not linear with respect to either of its
input domains. It is instead the ‘same kind of non-linear’ in both the input domains. We
suggest that an alternative term such as ‘bi-nonlinear’ would more accurately describe
such functions. Bilinear representations are not the most complex functions with which
to learn interactions between modalities. As explored by Yu et al. (2018b), we believe that
higher-order interactions between features would facilitate a more realistic model of the
world. The non-linear extension of bilinear or higher-order functions is a key factor to
increase representational capacity.

Outer product forces multimodal interactions: The motivation for using bilinear
methods over concatenation in VQA and video-QA was that it would enable learning
more ‘complex’ or ‘expressive’ interactions between the textual and visual inputs. We note
however that concatenation of inputs features should theoretically allow both a weighted
multimodal combination of textual and visual units, and allow unimodal units of input
features.

As visualised in Fig. 9, weights representing a bilinear expansion in a neural network
each represent a multiplication of input units from each modalitiy. This appears to, in
some sense, force multimodal interactions where it could possibly be advantageous to allow
some degree of separation between the text and vision modalities. As discussed earlier,
it is thought that ‘joint’ representations (Baltrušaitis, Ahuja & Morency, 2019) preserve
shared semantics while ignoring modality-specific information (Guo, Wang & Wang,
2019). Though it is unclear if concatenation could effectively replicate bilinear processing
while also preserving unimodal processing, it also remains unclear how exactly bilinear
representations learn. For now, the successes and struggles of bilinear representations
across VQA and video-QA remain justified by empirical performance on datasets.

Proposals: neurological parallels
We have recommended that video-QA models prioritise attention mechanisms over BLP
given our own experimental results and our observations of the current state-of-the-art
trends.We can however still explore how bilinear models in deep learning are related to two
key areas of relevant neurological research, i.e., the Two-Stream model of vision (Goodale
& Milner, 1992;Milner, 2017) and Dual Coding Theory (Paivio, 2013; Paivio, 2014).

Two-stream vision: Introduced in Goodale & Milner (1992), the current consensus
on primate visual processing is that it is divided into two networks or streams: The
‘ventral’ stream which mediates transforming the contents of visual information into
‘mental furniture’ that guides memory, conscious perception, and recognition; and the
‘dorsal’ stream which mediates the visual guidance of action. There is a wealth of evidence
showing that these two subsystems are not mutually insulated from each other, but rather
interconnect and contribute to one another at different stages of processing (Milner,
2017; Jeannerod & Jacob, 2005). In particular, Jeannerod & Jacob (2005) argue that valid
comparisons between visual representation must consider the direction of fit, direction of
causation and the level of conceptual content. They demonstrate that visual subsystems and
behaviours inherently rely on aspects of both streams. Recently, Milner (2017) consider
3 potential ways these cross-stream interactions could occur: (I) Computations along
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Figure 10 Visualisation of the 1st and 3rd cross-stream scenarios for the two-streammodel of vision
described byMilner (2017). The early bilinear model proposed by Tenenbaum & Freeman (2000) strik-
ingly resembles the 1st (left-A). The 3rd and more recently favoured scenario features a continuous ex-
change of information across streams at multiple stages, and can be realised by introducing ‘cross-talking’
of deep learning features (right-B).

Full-size DOI: 10.7717/peerjcs.974/fig-10

the two pathways are independent and combine at a ‘shared terminal’(the independent
processing account), (II) Processing along the separate pathways is modulated by feedback
loops that transfer information from ‘downstream’ brain regions, including information
from the complementary stream (the feedback account), (III) Information is transferred
between the 2 streams at multiple stages and location along their pathways (the continuous
cross-talk account).

Though Milner (2017) focus mostly on the ‘continuous cross-talk’ idea, they believe
that a unifying theory would include aspects from each of these scenarios. The vision-only
deep bilinear models proposed in Tenenbaum & Freeman (2000); Lin, RoyChowdhury &
Maji (2015) are strikingly reminiscent to the 1st ‘shared-terminal’ scenario (see Fig. 10).
The bilinear framework proposed in Tenenbaum & Freeman (2000) focuses on splitting up
‘style’ and ‘content’, and is designed to be applied to any two-factor task.Lin, RoyChowdhury
& Maji (2015) note but do not explore the similarities between their proposed network
and the two-stream model of vision. Their bilinear CNN model aims to processes two
subnetworks separately, ‘what’ (ventral) and ‘where’ (dorsal) streams, and later combine
in a bilinear ‘terminal’. BLP methods developed from these baselines would later focus
on multimodal tasks between language and vision. As Milner (2017) focus mainly on
their 3rd scenario (right), subsequent bilinear models that draw inspiration from the
two-streammodel of vision could realise the ‘cross-talk’ mechanism i.e., using co-attention
or ‘co-ordinated’ DCCA.

Dual coding theory: Dual coding theory (DCT) (Paivio, 2013) broadly considers the
interactions between the verbal and non-verbal systems in the brain (recently surveyed
in Paivio (2014)). DCT considers verbal and non-verbal interactions by way of ‘logogens’
and ‘imagens’ respectively, i.e., units of verbal and non-verbal recognition. Imagens may
be multimodal, i.e., haptic, visual, smell, taste, motory etc. We should appreciate the
distinction between medium and modality: image is both medium and modality and
videos are an image based modality. Similarly, text is the medium through which the
natural language modality is expressed. We can see parallels in multimodal deep learning
and dual coding theory, with textual features as logogens and visual (or audio) features
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Figure 11 Visualisation of moving from less tangible visual features to more ‘imagen-like’ visual fea-
tures e.g. convolutionmaps of an image.

Full-size DOI: 10.7717/peerjcs.974/fig-11

as visual(or auditory) imagens. There are many insights from DCT that could guide and
drive multimodal deep learning:

(I) Logogens and imagens are discrete units of recognition and are often related
to tangible concepts (e.g., ‘pictogens’ (Morton, 1979)). By drawing inspiration from
pictogen/imagen style of information representation, it could be hypothesised that
multimodal models should additionally focus on deriving more tangible features
(i.e., discrete convolution maps previously used in vision-only bilinear models (Lin,
RoyChowdhury & Maji, 2015)) as opposed to more abstracted ‘ImageNet-style’ feature
vectors more commonly used in recent BLP models (see Fig. 11) are a more ideal way to
represent features.

(II) Bezemer & Kress (2008) explore the differences in student’s understanding when
text information is presented alongside other modalities. They argue that when meaning
is moved from one medium to another semiotic relations are redefined. This paradigm
could be emulated to control how networks learn concepts in relation to certain modal
information.

(III) Imagens (and potentially logogens) may be a function of many modalities, i.e.,
one may recognise something as a function of haptic and auditory experiences alongside
visual ones. We believe this implies that non-verbal modalities (vision/sound etc.) should
be in some way grouped or aggregated, and that while DCT remains widely accepted,
multimodal research should consider ‘verbal vs non-verbal’ interactions as a whole instead
of focusing too intently on ‘case-by-case’ interactions, i.e., text-vs-image and text-vs-audio.
This text/non-text insight may be related to the apparent difference in text-vision video
task performance previously discussed.

(IV)Multimodal cognitive behaviours in people can be improved by providing cues. For
example, referential processing (naming an object or identifying an object from a word)
has been found to additively affect free recall (recite a list of items), with the memory
contribution of non-verbal codes (pictures) being twice that of verbal codes (Paivio &
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Lambert, 1981). Begg (1972) find that free recall of ‘concrete phrases’ (can be visualised) of
their constituent words is roughly twice that of ‘abstract’ phrases. However, this difference
increased six-fold for concrete phrases when cued with one of the phrase words, yet using
cues for abstract phrases did not help at all. This was named the ‘conceptual peg’ effect in
DCT, and is interpreted as memory images being re-activated by ‘a high imagery retrieval
cue’. Given such apparent differences in human cognitive processing for ‘concrete’ and
‘abstract’ words, it may similarly be beneficial for multimodal text-vision tasks to explicitly
exploit the psycholinguistic ‘concreteness’ word norm. Leveraging existing psycholinguistic
word-norm datasets, we identify the relative abundance of concrete words in textual
components of the video-QA datasets we experiment with (see Fig. 12). As the various
word-norm datasets use various scoring systems for concreteness (e.g., MTK40 uses a
Likert scale 1-7), we rescale the scores for each dataset such that the lowest score is 0
(highly abstract), and the highest score is 1 (highly concrete). Though we cannot find a
concreteness score for every word in each dataset component’s vocabulary, we see that
the four video-QA datasets we experiment with have more concrete than abstract words
overall. Furthermore, we see that answers are on-average significantly more concrete than
they are abstract, and that (as intuitively expected) visual concepts from TVQA are even
more concrete.

Taking inspiration from human processing through DCT, it could be hypothesised that
multimodal machine learning tasks could benefit by explicitly learning relations between
‘concrete’ words and their constituents, whilst treating ‘abstract’ words and concepts
differently.

Recently proposed computational models of DCT have had many drawbacks (Paivio,
2014), we believe that neural networks can be a natural fit for modelling neural correlates
explored in DCT and should be considered as a future modelling option.

CONCLUSION
In light of BLP’s empirical success in VQA, we have experimentally explored their use
in video-QA on two models and four datasets. We find that switching from vector
concatenation to BLP through simple substitution on the HME and TVQA models
does not improve and in fact actively harm performance on video-QA. We find that a
more substantial ‘dual-stream’ restructuring of the TVQA model to accommodate BLP
significantly reduces performance on TVQA. Our results and observations about the
downturn in successful text-vision BLP fusion in video tasks imply that naively using
BLP techniques can be very detrimental in video-QA. We caution against automatically
integrating bilinear pooling in video-QA models and expecting similar empirical increases
as in VQA. We offer several interpretations and insights of our negative results using
surrounding multimodal and neurological literature and find our results inline with
trends in VQA and video-classification. To the best of our knowledge, we are the first
to outline how important neurological theories i.e., dual coding theory and the two-
stream model of vision relate to the history of (and journey to) modern multimodal deep
learning practices. We offer a few experimentally and theoretically guided suggestions to
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Figure 12 The relative abundance of the psycholinguistic ‘concreteness’ score in the vocabularies of
each source of text in the video-QA datasets we experiment with. Stopwords are not included. Concrete-
ness scores are taken from the following datasets: MT40k (Brysbaert, Warriner & Kuperman, 2013), USF
(Nelson, Mcevoy & Schreiber, 1998), SimLex999 (Hill, Reichart & Korhonen, 2015), Clark-Paivio (Clark
& Paivio, 2004), Toronto Word Pool (Friendly et al., 1982), Chinese Word Norm Corpus (Yee, 2017),
MEGAHR-Crossling (Ljubešić, Fišer & Peti-Stantić, 2018), Glasgow Norms (Scott et al., 2017; Reilly &
Kean, 2007), and (Sianipar, Groenestijn & Dijkstra, 2016). The scores for each word are abstract= 0 and
most concrete= 1, and the result averaged if more than 1 dataset has the same word.

Full-size DOI: 10.7717/peerjcs.974/fig-12

consider for multimodal fusion in video-QA, most notably that attention mechanisms
should be prioritised over BLP in text-vision fusion. We qualitatively show the potential
for neurologically-motivated multimodal approaches in video-QA by identifying the
relative abundance of psycholinguistically ‘concrete’ words in the vocabularies for the text
components of the 4 video-QA datasets we experiment with. We would like to emphasise
the importance of related neurological theories in deep learning and encourage researchers
to explore Dual Coding Theory and the Two-Stream model of vision.
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