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ABSTRACT
The Clustered Traveling Salesman Problem (CTSP) is a variant of the popular
Traveling Salesman Problem (TSP) arising from a number of real-life applications.
In this work, we explore a transformation approach that solves the CTSP by
converting it to the well-studied TSP. For this purpose, we first investigate a
technique to convert a CTSP instance to a TSP and then apply powerful TSP solvers
(including exact and heuristic solvers) to solve the resulting TSP instance. We want
to answer the following questions: How do state-of-the-art TSP solvers perform
on clustered instances converted from the CTSP? Do state-of-the-art TSP solvers
compete well with the best performing methods specifically designed for the CTSP?
For this purpose, we present intensive computational experiments on various
benchmark instances to draw conclusions.

Subjects Algorithms and Analysis of Algorithms
Keywords Traveling salesman, Heuristics, Clustered traveling salesman, Problem transformation

INTRODUCTION
The Clustered Traveling Salesman Problem (CTSP), originally proposed by Chisman
(1975), is an extension of the classic Traveling Salesman Problem (TSP) where the cities are
grouped into clusters and the cities of each cluster must be visited contiguously. Formally,
the problem is defined on a symmetric complete weighted graph G = (V, E) with a set
of vertices V = {1,2,…,n} and a set of edges E = {(i, j):i, j ∈ V, i ≠ j}. The vertex set V is
partitioned into disjoint clusters V1,V2,…,Vm (V1 ∪ V2 ∪…∪ Vm = V). Let C be an n × n
symmetric distance matrix such that cij (i, j = 1,2…,n, i ≠ j) represents the travel cost
between two corresponding vertices i and j, and satisfies the triangle inequality rule. The
objective of the CTSP is to find a minimum cost Hamiltonian circuit over all the vertices,
where the vertices of each cluster must be visited consecutively.

Figure 1 shows a feasible solution for a CTSP instance, where the solution corresponds
to a Hamiltonian cycle such that the vertices of each cluster are visited contiguously.

The CTSP can be formally modelled as the following integer programming model
described in Chisman (1975) where, without loss of generality, the salesman is assumed to
leave origin city 1 and return to 1.
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xij 2 f0; 1g 8i; j 2 V (6)
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In this model, the binary variable xij = 1 if city j is visited immediately after city i; xij = 0
otherwise. Objective function (1) seeks to minimize the total distance traveled by the
salesman. Constraints (2) and (3) ensure that each city is visited exactly once. Constraints
(4) eliminate subtours, while constraints (5) guarantee that the cities of each cluster are
visited contiguously. The remaining constraints are related to the decision variables.

The above subtour elimination constraints (4) are called MTZ formulation (Miller,
Tucker & Zemlin, 1960). Although MTZ is simple to implement, it provides a very
poor linear relaxation (Campuzano, Obreque & Aguayo, 2020). Many compact
formulations have been proposed to replace Constraints (4). According to the literature,

Figure 1 A feasible solution for an instance of the CTSP.
Full-size DOI: 10.7717/peerj-cs.972/fig-1
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a multi-commodity flow formulation (Wong, 1980; Claus, 1984) was proven to provide a
strong linear relaxation, without compromising its simplicity. In the multi-commodity
flow formulation, let k = 2,3,…,n be n − 1 commodities, and let ykij be a nonnegative
decision variable which represents the flow on the arc (i, j)∈ E for the commodity k from
city 1 to city k. Then, another alternative mathematical model for the CTSP is constituted
of the objective function (1) and the constraints (2), (3), (5), (6) along with the following
subtour elimination constraints:

0 � ykij � xij 8i; j; k 2 V ; k 6¼ 1 (8)

Xn
i¼2

yk1i ¼ 1 8k 2 Vnf1g (9)

Xn
i¼2

yki1 ¼ 0 8k 2 Vnf1g (10)

Xn
i¼1

ykik ¼ 1 8k 2 Vnf1g (11)

Xn
j¼1

ykkj ¼ 0 8k 2 Vnf1g (12)

Xn
i¼1

ykij �
Xn
i¼1

ykji ¼ 0 8j; k 2 Vnf1g; j 6¼ k (13)

Constraints (8) only allow flow in an arc (i, j) if and only if it is traversed by the salesman
(i.e., xij = 1). Constraints (9) ensure that city 1 is the source of one unit of each commodity
k ∈ V \{1} and Constraints (10) avoid that the flow of each commodity k ∈ V \{1}
returns to city 1. Constraints (11) and (12) guarantees that one flow unit of commodity k
enters to city k and it does not leave the city k. Constraints (13) ensure flow conservation at
each city, apart from city 1 and for commodity k at city k.

One notices that the CTSP is equivalent to the TSP when there is a single cluster or
when each cluster contains exactly one vertex. Therefore, the CTSP is NP-hard, and thus
computationally challenging in the general case. From a practical perspective, the CTSP is
a versatile modeling tool for several operational research applications arising in a wide
variety of areas, including automated warehouse routing (Chisman, 1975), emergency
vehicle dispatching (Weintraub et al., 1999), production planning (Lokin, 1979), disk
defragmentation (Laporte & Palekar, 2002), and commercial transactions with
supermarkets, shops and grocery suppliers (Ghaziri & Osman, 2003). As a result, effective
solution methods for the CTSP can help to solve these practical problems. Indeed, the
computational challenge and the wide range of applications of the problem have motivated
a variety of approaches that are reviewed in the “Literature Review on Existing Solution
Methods” section. However, unlike the classic TSP problem for which many powerful
methods have been introduced in the past decades, studies on the CTSP are still quite
limited.
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Moreover, the CTSP belongs to the large class of traveling salesman problems. Among
the TSP variants, the generalized traveling salesman problem (GTSP) (Srivastava et al.,
1969; Cosma, Pop & Cosma, 2021) and the family traveling salesman problem (FTSP)
(Morán-Mirabal, Velarde & Resende, 2014; Pop, Matei & Pintea, 2018) share similarities
with the CTSP. In the GTSP, the set of vertices is divided into clusters and the objective
is to find a minimum-cost tour passing through one vertex from each cluster. In the
FTSP, the set of vertices is also divided into clusters (called families) and the objective is to
visit a predefined number of vertices in each family at a minimum cost.

In this work, we investigate the problem transformation approach proposed in Chisman
(1975), which converts the CTSP to the TSP and assess the interest of popular modern TSP
solvers for solving the resulting TSP instances. To our knowledge, this is the first large
computational study testing modern TSP solvers on solving the CTSP. The work is
motivated by the following considerations. First, intensive researches on the TSP have led
to the development of many very powerful solvers. Thus, it is interesting to know whether
we can take advantage of these solvers to effectively solve the CTSP. Second, the TSP
instances converted from the CTSP are characterized by their cluster structures. These
instances constitute interesting test cases for existing TSP solvers. This work aims thus to
answer the following questions.

1. How do state-of-the-art exact TSP solvers perform on clustered instances converted
from the CTSP?

2. How do state-of-the-art inexact (heuristic) TSP solvers perform on clustered instances
converted from the CTSP?

3. Do state-of-the-art TSP solvers compete well with the best performing methods
specifically designed for the CTSP?

To our knowledge, Questions 1 and 3 have never been investigated in the literature.
Regarding Question 2, two previous studies (Neto, 1999; Helsgaun, 2014) are of interest.
However, they are limited because they only concern one TSP algorithm, i.e., the local
search based LKH solver (Helsgaun, 2009), while ignoring other powerful TSP solvers like
GA-EAX (Nagata & Kobayashi, 1997) and Concorde (Applegate, Bixby & Chvatal, 2006).
Answering these questions helps to enrich the state-of-the-art of solving the CTSP and
gain novel knowledge on using modern TSP methods to solve new problems. Finally, we
mention that the transformation approach was also tested in Lokin (1979) and Jongens &
Volgenant (1985). However, these studies are clearly outdated and don’t provide useful
information as to the questions we want to investigate.

The remainder of this paper is organized as follows. “Literature Review on Existing
Solution Methods” reviews existing solution methods for the CTSP. “Solving the CTSP via
TSP Methods” presents the transformation of the CTSP to the TSP and three powerful
TSP methods (solvers). “Computational Experiments” shows computational studies of the
TSP solvers applied to the clustered instances and comparisons with existing algorithms
dedicated to the CTSP. “Discussion” provides additional explanations regarding the
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behaviors of the three TSP solvers. Finally, concluding remarks are provided in
“Conclusion”.

LITERATURE REVIEW ON EXISTING SOLUTION METHODS
There are several dedicated solution algorithms for solving the CTSP that are based on
exact, approximation, and metaheuristic approaches.

Along with the introduction of the CTSP, Chisman (1975) proposed a branch-and-
bound algorithm to solve the integer programming model presented in the Introduction
section. Jongens & Volgenant (1985) developed an algorithm based on the 1-tree relaxation
to provide lower bounds as well as a heuristic to find satisfactory upper bounds.
Mestria, Ochi & de Lima Martins (2013) used the mathematical formulation of Chisman
(1975) and IBM Parallel CPLEX solver (version 11.2) to obtain lower bounds for medium
CTSP instances (|V| ≤ 1,000).

Various a-approximation algorithms (Anily, Bramel & Hertz, 1999; Gendreau, Laporte
& Hertz, 1997; Guttmann-Beck et al., 2000) have been developed for the CTSP. These
approximation algorithms require either the starting and ending vertices in each cluster or
a prespecified order of visiting the clusters in the tour as inputs, and solve the inter-cluster
and intra-cluster problems independently. Bao & Liu (2012) presented a new 2.17-
approximation algorithm where no starting and ending vertices were specified. Later, Bao
et al. (2017) provided a 2.5-approximation algorithm for another version of the CTSP
where the starting vertex of each cluster is given while the ending vertex is not specified.
Recently, Kawasaki & Takazawa (2020) improved the approximation ratio for the CTSP
by incorporating a recent approximation algorithm for the TSP by Zenklusen (2019).

Given that the CTSP is a NP-hard problem, a number of heuristic and metaheuristic
algorithms have also been investigated, which aim to provide high-quality solutions in
acceptable computation time, but without provable optimal guarantee of the attained
solutions. For example, Laporte, Potvin & Quilleret (1997) presented a tabu search
algorithm to solve a particular case of the CTSP, where the clusters are visited in a
prespecified order. Potvin & Guertin (1996) developed a genetic algorithm for the CTSP
that finds inter-cluster paths and then intra-cluster paths. Later, Ding, Cheng & He
(2007) proposed a two-level genetic algorithm for the CTSP. In the first level, a genetic
algorithm is used to find the shortest Hamiltonian cycle for each cluster. In the second
level, a modified genetic algorithm is applied to merge the Hamiltonian cycles of all the
clusters into a complete tour.

In addition to these early heuristic algorithms,Mestria, Ochi & de Lima Martins (2013)
investigated GRASP (Greedy Randomized Adaptive Search Procedure) with path-
relinking. Among the six proposed heuristics, one heuristic corresponds to the traditional
GRASP procedure whereas the other heuristics include different path relinking
procedures. Mestria (2016) studied a hybrid heuristic, which is based on a combination of
GRASP, Iterated Local Search (ILS) and Variable Neighborhood Descent (VND). Recently,
Mestria (2018) presented another complex hybrid algorithm (VNRDGILS) which
mixes GRASP, ILS, and Variable Neighborhood Random Descent to explore several
neighborhoods. According to the computational results reported in Mestria, Ochi & de
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Lima Martins (2013) andMestria (2016, 2018), these GRASP-based algorithms are among
the best performing heuristics specially designed for the CTSP currently available in the
literature. In addition, Hà et al. (2022) proposed a metaheuristic method based on the ILS
framework with problem-tailored operators for a version of the CTSP where the order of
visiting the clusters is prespecified.

Existing studies have significantly contributed to better solving the CTSP. According to
the computational results reported in the literature, due to the NP-hardness of the
problem, only small CTSP instances were able to be solved to optimality with the exact
algorithms. The approximation algorithms provide solutions for the CTSP within a
given approximation factor. However, due to the high approximation factors involved (e.g.,
5/3 (Anily, Bramel & Hertz, 1999), 3/2 Gendreau, Laporte & Hertz (1997), 2.17 (Bao & Liu,
2012), and 2.5 (Bao et al., 2017)), these approximation algorithms are not practical for
solving large instances. To deal with large CTSP instances, heuristic and metaheuristic
algorithms are often preferred to find sub-optimal solutions within an acceptable
computation time.

SOLVING THE CTSP VIA TSP METHODS
Transformation of the CTSP to the TSP
As the literature review shows, a number of dedicated solution approaches have been
developed to solve the CTSP. However, one observes that these approaches have difficulty
producing robustly and consistently high-quality solutions for large-scale CTSP instances
with tens of thousands of vertices. Moreover, the best performing CTSP methods (e.g.,
VNRDGILS (Mestria, 2018), HHGILS (Mestria, 2016), and GPR1R2 (Mestria, Ochi & de
Lima Martins, 2013)) are computationally expensive (e.g., requiring 1,080 s to find good
solutions for instances with 1,173 ≤ n ≤ 2,000).

On the other hand, problem transformation has been highly successful in solving several
difficult optimization problems such as the latin square completion problem via graph
coloring (Jin & Hao, 2019) and the winner determination problem via weighted maximum
cliques (Wu & Hao, 2015). It is known that the CTSP can be transformed to the
conventional TSP (Chisman, 1975). Therefore, in principle, the CTSP can be solved by any
TSP algorithm. However, to our knowledge, no computational study on using problem
transformation to solve the CTSP has been presented in the literature. This work fills the
gap by exploring the problem transformation approach of Chisman (1975) and testing
three representative state-of-the-art TSP solvers including both exact and inexact solution
approaches.

The basic idea of transforming the CTSP to the TSP is to add a large artificial costM to
all inter-cluster edges in order to force the salesman to visit all the cities within each cluster
before leaving it.

Given a CTSP instance G = (V, E) with distance matrix C, we define a TSP instance G′ =
(V′, E′) with distance matrix C′ as follow.

� Define V = V′ and E = E′.
� Define the travel distance c′ij in G′ by
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c0ij ¼
cij þM if i and j belong to different clusters

cij otherwise

�

Obviously, if the value of M is sufficiently large, then the best Hamiltonian cycle in G′
is a feasible CTSP solution in G, in which the vertices of each cluster are visited
contiguously.

Property. An optimal solution to the TSP instance corresponds to an optimal solution to
the original CTSP instance.

Proof. Let S′ and S be the optimal solutions of the TSP instance G′ and the original
CTSP instance G, respectively. Letm be the number of clusters of G. To minimize the total
travel cost, there are only m inter-cluster edges in S′. Therefore, S′ is a feasible CTSP
solution for G and satisfies the following relation:

f ðS0 Þ ¼ f ðSÞ þm�M

Obviously, S′ corresponds to S by subtracting the constant m × M.

Solution methods for the TSP
There are numerous solution methods for the TSP. In this work, we adopt three very
powerful TSP solvers whose codes are publicly available, including one exact solver
(Concorde (Applegate, Bixby & Chvatal, 2006)) and two inexact (heuristic) solvers (LHK-2
(Helsgaun, 2009) and GA-EAX (Nagata & Kobayashi, 2013)).

Notice that the TSP instance converted from a CTSP instance has a particular feature
that the vertices are grouped into clusters and the distance between each pair of vertices
within a same cluster is in general small, while this distance is large for two vertices
from different clusters. Along with the presentation of the TSP solvers, we discuss their
suitability for solving such clustered instances each time this is appropriate.

Exact Concorde solver

Concorde is an advanced exact TSP solver for the symmetric TSP based on Branch-and-
Bound and problem specific cutting plane methods (Applegate, Bixby & Chvatal, 2006). It
makes use of a specifically designed QSopt linear programming solver. According to
Hoos & Stützle (2014), Concorde is the best performing exact algorithm for the TSP. As
shown in Applegate et al. (2006), Concorde can solve benchmark instances from TSPLIB
with up to 1,000 vertices to optimality within a reasonable computation time and it also
solves large TSP instances at the cost of a long computation time.

The run time behavior of Concorde has been investigated essentially on random
uniform instances. For instance, Applegate et al. (2006) investigated the run time required
by Concorde for solving random uniform instances and indicated that the run time
increases as an exponential function of instance size |V|. Hoos & Stützle (2014) further
demonstrated that the median run time required by Concorde scales with instance size |V|
of the form ab

ffiffiffiffiffi
jVj
p

(a ≈ 0.21, b ≈ 1.24) on the widely studied class of uniform random TSP
instances. To our knowledge, no study has been reported concerning the behavior of
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Concorde on sharply clustered instances. As a result, the current study will provide useful
information on this issue.

Lin-Kernighan based heuristic solver
According to the TSP literature, a majority of the best performing TSP heuristic algorithms
is based on the Lin-Kernighan (LK) heuristic (Lin & Kernighan, 1973) and its extensions.
The LK heuristic is a variable-depth k-opt local search procedure, where the k-opt
neighborhood is partially searched with a smart pruning strategy. LK explores the most
promising neighbors within the k-opt neighborhood, that is, the set of feasible tours
obtained by removing k edges and adding other k edges such that the resulting tour is
feasible. Several improved versions of the basic LK heuristic have been introduced within
the iterated local search framework (e.g., Applegate, Cook & Rohe, 2003; Helsgaun, 2000;
Helsgaun, 2009; Martin, Otto & Felten, 1991).

Among these iterated LK algorithms, Helsgaun’s LKH (Helsgaun, 2000, 2009) is the
uncontested state-of-the-art heuristic TSP solver. Helsgaun (2000) developed an iterated
version of LK together with an efficient implementation of the LK algorithm, known as the
Lin-Kernighan-Helsgaun (LKH-1) heuristic, where a 5-opt move is used as the basic
move to broaden the search and an α-measure method based on sensitivity analysis of
minimum spanning trees is used to restrict the search to relative few of the α-nearest
neighbors of a vertex to speed up the search process. Later, Helsgaun (2009) further
extended LKH-1 by developing a highly effective implementation of the k-opt procedure
(called LKH-2), which eliminated many of the limitations and shortcomings of LKH-1.
Furthermore, LKH-2 specially extended the data structures of LKH-1 to solve very large
TSP instances. The main features of LKH-2 include (1) using sequential and non-
sequential k-opt moves, (2) using several partitioning procedures to partition a large
TSP instance into smaller subproblems, (3) using a tour merging procedure to generate a
better solution from two or more local optimum solutions, and (4) applying a backbone-
guided search to guide the local search to make biased local perturbations. LKH-2 is
considered to be one of most effective heuristic methods for finding very high-quality
solutions for various large TSP instances (Dubois-Lacoste, Hoos & Stützle, 2015).

However, the LK algorithm and any LK-based algorithms require much longer running
times on clustered instances of the TSP than on uniformly distributed instances (Neto,
1999). The main reason why the LK heuristic stumbles on clustered instances is that
relatively large inter-cluster edges serve as bait edges. During the LK search, when
removing such a bait edge, the LK heuristic is tricked into long and often fruitless searches.
More precisely, each time an edge bridging two clusters is removed, the cumulative gain
rises enormously, and the procedure is encouraged to perform very deep searches. To
alleviate the problem, a cluster compensation technique was proposed in Neto (1999)
for the Lin-Kernighan heuristic to limit its performance degradation. Helsgaun (2009)
showed that the LKH-2 algorithm performs significantly worse on sharply clustered
instances than on uniform random instances. To remedy this difficulty, Helsgaun (2014)
considered the unusual structure of clustered instances, and adjusted the parameter
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settings of LKH-2 to better solve the clustered instances. The resulting solver is named
CLKH, which is used in this study.

Edge assembly crossover based genetic algorithm
Population-based evolutionary algorithms are another well-known approach for the
TSP. A popular example is the powerful genetic algorithm introduced by Nagata &
Kobayashi (2013). This algorithm (called GA-EAX, see Algorithm 1) is characterized by its
powerful edge assembly crossover (EAX) operator introduced in Nagata & Kobayashi
(1997) and Nagata & Soler (2012) with an efficient implementation and a cost-effective
selection strategy for maintaining population diversity.

The key EAX operator generates, from two high-quality tours (parents), one offspring
tour by first inheriting the edges from the parents to construct disjoint subtours and then
connecting the subtours with new edges in a greedy fashion (similar to building a minimal
spanning tree). Let SA and SB be the parents, EAX operates as follows (see Fig. 2 for an
example):

1. Generate an undirected multigraph defined as GAB = (V, EA ∪ EB), where EA and EB are
the sets of edges of parents SA and SB, respectively.

2. Extract all AB-cycles from GAB. An AB-cycle is defined as a cycle in GAB, such that edges
of EA and edges of EB are alternately linked.

3. Construct an E-set by selecting AB-cycles according to a given selection strategy (e.g.,
single, k-multiple, block and block2 (Nagata & Kobayashi, 2013)), where an E-set is a set
of AB-cycles.

4. Copy parent SA to an intermediate solution o. Then, remove the edges of EA in the E-set
from o and add those of EB in the E-set to o. This leads to an intermediate solution o with
one or more subtours.

Algorithm 1 GA-EAX for the CTSP.

Require: TSP instance G, population size p; number of offspring solutions r generated from each parent
pair

Ensure: best solution S*

1: POP ¼ fP1; P2;…; Ppg  Initial_Population(G)

2: while stopping condition is not met do

3: Randomly shuffle the solutions in POP

4: for i = 1,2,…, p do

5: S1  Pi, S2  Piþ1 /* Note: Pp + 1 = P1 */

6: ðo1;…; orÞ  EAX(S1, S2)

7: Pi  Select_Best(o1,…, or, S1)

8: end for

9: end while

10: S�  Best(POP)

11: Return S*
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5. Connect all the subtours in owith new short edges to generate a complete tour (a feasible
offspring solution) by using a greedy heuristic.

Note that different versions of EAX can be developed by using different selection
strategies of AB-cycles for constructing E-sets. The GA-EAX algorithm employs the single
and block2 strategies to generates offspring solutions from parent solutions. To maintain a
healthy population diversity, GA-EAX also uses an edge entropy measure to select the
solution to be used to replace a parent in the population.

Other studies (e.g., Hains, Whitley & Howe, 2012) also indicated the usefulness of
edge-assembly-like crossovers for solving clustered instances of the TSP. As shown in the
next section, the EAX-based genetic algorithm performs remarkably well on all the
clustered instances transformed from the CTSP.

COMPUTATIONAL EXPERIMENTS
In this section, we evaluate the capacity of the TSP solvers presented in “Solution Methods
for the TSP” to solve the CTSP via its transformation to the TSP. For this purpose, we
examine their qualitative performances and run time efficiencies on various benchmark
instances and make comparisons with the best dedicated CTSP algorithms in the literature.

Benchmark instances
Our computational assessments are based on three sets of 73 benchmark instances with
101 to 24,978 vertices. Sets 1 and 2 include 20 medium instances (101 ≤ |V| ≤ 1,000) and 15
large instances (1,173 ≤ |V| ≤ 2,000), which are classical and widely used in the CTSP
literature (e.g.,Mestria, Ochi & de Lima Martins, 2013;Mestria, 2016;Mestria, 2018). Set 3
includes 38 large GTSP instances (1,000 ≤ |V| ≤ 24,978) from Helsgaun (2014).

Figure 2 Illustrative example of the EAX crossover operator.
Full-size DOI: 10.7717/peerj-cs.972/fig-2
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Sets 1 and 2 (35 instances): These instances belong to the following six types:
(1) instances taken from the TSPLIB (Reinelt, 1991) where the clusters are generated by
using a k-means clustering algorithm; (2) instances created from a selection of classic TSP
instances (Johnson & McGeoch, 2007), where the clusters are created by grouping the
vertices in geometric centers; (3) instances generated by using the Concorde interface
(Applegate, Bixby & Chvatal, 2006); (4) instances generated using the layout proposed in
Laporte & Palekar (2002); (5) instances similar to type 2, but generated with different
parameters; (6) instances adapted from the TSPLIB (Reinelt, 1991), where the rectangular
floor plan is divided into several quadrilaterals and each quadrilateral corresponds to a
cluster. These instances are available at http://www2.ic.uff.br/~labic/conteudo/instance/.

Set 3 (38 instances): These large instances have 1,000 to 24,978 vertices and come from
GTSPLIB for the generalized traveling salesman problem (GTSP). They were generated
from TSP instances by using Fischetti, Salazar González & Toth (1997) clustering
algorithm and tested in Helsgaun (2014) by considering them as CTSP instances. These
instances are available at http://www.ruc.dk/~keld/research/CLKH. InHelsgaun (2014), six
very large instances with 31,623 to 85,900 vertices were also tested. We ignore these
instances, because they are too large for the exact Concorde solver and the GA-EAX solver
stops abnormally when solving these instances.

TSP solvers and experimental protocol
For our study, we employed three representative TSP solvers presented in “Solution
Methods for the TSP”, which are among the most powerful methods for the TSP in the
literature.

� Exact Concorde TSP solver (http://www.math.uwaterloo.ca/tsp/concorde/index.html):
We used version Concorde-03.12.19 and ran the solver with its default parameter setting
with a cutoff time of 24 CPU hours per instance.

� Inexact CLKH solver (http://www.ruc.dk/~keld/research/CLKH): We used the
version CLKH-1.0 which is based on the latest version 2.0.9 (http://akira.ruc.dk/~keld/
research/LKH/) of LKH-2. The default parameter setting given in Helsgaun (2014)
was adopted to run CLKH. Notice that to reduce its run time, the maximum number of
trials (iterations) is set to 1,000 in CLKH, while this number is set to n (instance size) by
default in LKH-2.

� Inexact GA-EAX TSP solver (https://github.com/sugia/GA-for-TSP): We used GA-EAX
with its default parameter setting given in Nagata & Kobayashi (2013): p = 300, r = 30
and GA-EAX terminates if the difference between the average tour length and the
shortest tour length in the population is less than 0.001. Following Kerschke et al. (2018)
and Kotthoff et al. (2015), we reset the random seed for GA-EAX for each run (which
was set to a fixed value in the official implementation).

The experiments were carried out on a computer running Linux operating system with
an Intel E5-2670 processor (2.8 GHz and 4G RAM). Given the stochastic nature of CLKH
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and GA-EAX, we ran each algorithm 10 times for each instances while the deterministic
Concorde TSP solver was run one time to solve each instance.

Computational results and comparison of popular TSP solvers
Our computational studies aim to answer the following questions: How do state-of-the-art
exact TSP solvers perform on clustered instances converted from the CTSP? How do
state-of-the-art inexact (heuristic) TSP solvers perform on clustered instances converted
from the CTSP?

The results of the three TSP solvers (Concorde, CLKH, GA-EAX) on the 20 medium
and 15 large CTSP benchmark instances are summarized in Table 1 (Set 1) and Table 2
(Set 2). Columns 1 to 3 show the basic information of each instance: the instance
name (Instance), the number of vertices (|V|) and the number of clusters (m). Column 4
gives the optimal objective value reported by the exact Concorde TSP solver, followed by
the required run time in seconds. For both the CLKH and GA-EAX solvers, we show
the best (Gapbest) and average (Gapavg) results over 10 independent runs in the form of the
percentage gap to the optimal solution, as well as the average run time in seconds. If the
best solution over 10 independent runs equals the optimal solution obtained with the

Table 1 Computational results of the TSP solvers Concorde, CLKH and GA-EAX on medium CTSP
instances (Set 1).

Concorde CLKH GA-EAX

Instance |V| m Opt. t(s) Gapbest Gapavg t(s) Gapbest Gapavg t(s)

i-50-gil262 262 50 135,431 1.9 =(10) 0.0000 1.3 =(10) 0.0000 1.7

10-lin318 318 10 529,584 2.2 =(10) 0.0000 19.5 =(10) 0.0000 1.8

10-pcb442 442 10 537,419 20.7 =(10) 0.0000 46.9 =(10) 0.0000 6.3

C1k.0 1,000 10 132,521,027 21.9 =(9) 0.0001 128.6 =(10) 0.0000 16.3

C1k.1 1,000 10 129,128,125 22.3 =(10) 0.0000 70.6 =(10) 0.0000 14.3

C1k.2 1,000 10 142,784,000 69.9 0.0009 0.0009 244.6 =(9) 0.0001 17.2

300-6 300 6 8,934 4.4 =(10) 0.0000 30.2 =(10) 0.0000 3.5

400-6 400 6 9,045 6.7 =(10) 0.0000 26.7 =(10) 0.0000 4.4

700-20 700 20 41,425 29.9 =(10) 0.0000 200.0 =(10) 0.0000 10.2

200-4-h 200 4 62,777 0.6 =(10) 0.0000 5.4 =(10) 0.0000 0.9

200-4-x1 200 4 60,574 1.1 =(10) 0.0000 6.5 =(10) 0.0000 0.9

600-8-z 600 8 128,891 9.9 =(10) 0.0000 48.2 =(10) 0.0000 5.3

600-8-x2 600 8 128,891 4.8 =(10) 0.0000 48.2 =(10) 0.0000 5.3

300-5-108 300 5 67,760 1.2 =(10) 0.0000 8.5 =(10) 0.0000 2.0

300-20-111 300 20 309,739 1.8 =(10) 0.0000 6.0 =(10) 0.0000 2.0

500-15-306 500 15 194,818 2.6 =(10) 0.0000 37.1 =(10) 0.0000 5.2

500-25-308 500 25 365,447 4.4 =(10) 0.0000 10.1 =(10) 0.0000 5.4

25-eil101 101 25 23,671 0.5 =(10) 0.0000 0.4 =(10) 0.0000 0.8

42-a280 280 42 129,645 2.3 =(10) 0.0000 2.4 =(10) 0.0000 1.7

144-rat783 783 144 914,228 70.2 =(10) 0.0000 14.6 =(10) 0.0000 9.4

Avg. 14.0 0.0001 47.8 0.0000 5.7
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exact Concorde TSP solver, the corresponding cell in column Gapbest shows ‘=’ along with
the number of runs that succeeded in finding the optimal solution. Finally, row ‘Avg.’
provides the average run time in seconds for each approach, and the average gap between
the average objective values obtained with CLKH/GA-EAX and the optimal values
obtained with the Concorde TSP solver.

From Tables 1 to 2, we can make the following observations:
First, the exact Concorde TSP solver performs very well on these 35 instances and is able

to solve all of them exactly. Specifically, the 20 medium instances can be solved easily in a
short run time (an average of about 14 s). The 15 large instances are more difficult and
the run time needed to solve these instances increases considerably (an average of 1,133.8 s,
reaching 7,214.3 s for the most difficult instance).

Second, the CLKH solver performs globally very well on these 35 instances. For the 20
medium instances, CLKH attains all the optimal solutions but one with an average run
time of 47.8. For the 15 large instances, CLKH reaches the optimal solutions for 13
instances with an average run time of 257.3 s.

Third, the GA-EAX solver performs remarkably well by attaining the optimal values for
all 35 instances but one. For the 20 medium instances, GA-EAX consistently hits the
optimal solutions for each of its 10 run (except for one instance for which it has a hit of
9 out of 10). The average run time is only 5.7 s for the medium instances and 33.6 s for the
large instances. Compared to Concorde and CLKH, GA-EAX is thus extremely time
efficient. Moreover, contrary to the Concorde and CLKH solvers, the computation time

Table 2 Computational results of the TSP solvers Concorde, CLKH and GA-EAX on large CTSP instances (Set 2).

Concorde CLKH GA-EAX

Instance |V| m Opt. t(s) Gapbest Gapavg t(s) Gapbest Gapavg t(s)

49-pcb1173 1,173 49 61,600 5,638.3 0.6250 1.0519 1,065.8 =(4) 0.0326 35.0

100-pcb1173 1,173 100 63,382 588.3 =(7) 0.0066 63.2 =(8) 0.0013 32.5

144-pcb1173 1,173 144 62,142 38.4 =(10) 0.0000 25.8 =(10) 0.0000 18.6

10-nrw1379 1,379 10 58,783 562.9 =(10) 0.0000 174.9 =(6) 0.0070 26.8

12-nrw1379 1,379 12 59,129 58.5 =(10) 0.0000 39.7 =(9) 0.0007 27.6

1500-10-503 1,500 10 11,116 65.5 =(5) 0.0225 603.6 =(10) 0.0000 28.4

1500-20-504 1,500 20 15,698 40.7 =(10) 0.0000 167.9 =(5) 0.0172 34.5

1500-50-505 1,500 50 22,900 67.0 =(7) 0.0476 178.8 =(5) 0.0044 35.1

1500-100-506 1,500 100 29,799 108.7 =(6) 0.0228 58.3 =(8) 0.0020 39.5

1500-150-507 1,500 150 34,068 114.7 =(10) 0.0000 44.4 =(10) 0.0000 32.3

2000-10-a 2,000 10 105,360 7214.3 0.0038 0.0155 401.9 0.0826 0.1167 45.3

2000-10-h 2,000 10 33,708 812.7 =(9) 0.0006 229.9 =(10) 0.0000 35.6

2000-10-z 2,000 10 33,509 200.9 =(10) 0.0000 160.1 =(9) 0.0003 37.3

2000-10-x1 2,000 10 33,792 1,325.4 =(4) 0.0213 485.3 =(6) 0.0136 35.6

2000-10-x2 2,000 10 33,509 170.9 =(10) 0.0000 160.1 =(10) 0.0000 39.6

Avg. 1,133.8 0.0793 257.3 0.0131 33.6
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required by GA-EAX remains very stable across the instances of the same set, indicating a
high robustness and scalability of this solver.

Table 3 presents the results of the three TSP solvers on the 38 large GTSP instances of
Set 3. Notice that the Concorde solver failed to exactly solve 17 instances in 24 h, the
corresponding cell (in parentheses) in column ‘Optimum’ indicates the best tour length
(best upper bound) found by CLKH and GA-EAX. In this case, the percentage gaps
(Gapbest and Gapavg) are calculated by using the best bound, and column Gapbest shows ‘=’
the number of runs for an algorithm to find the best bound.

From Table 3, we can make the following observations. First, Concorde manages to
optimally solve 21 large GTSP instances with up to 3,162 vertices with a run time ranging
from 17.4 s to 45,008.4 s while its solution time is not completely consistent with the size of
the problem instances. For the 21 instances that can be solved exactly by Concorde,
CLKH attains 15 best upper bounds, while GA-EAX reaches all best upper bounds in less
computing time. Second, for most of the instances with |V| < 10,000, compared with
CLKH, GA-EAX has a better performance both in terms of solution quality and
computation time. For the instances with 10,000 ≤ |V| ≤ 24,978, the solution quality of
GA-EAX is better than that of CLKH in most cases, while requiring more computation
time.

To sum up, the exact Concorde solver is very efficient for the instances with up to 1,000
vertices (order of seconds) and can even find optimal solutions for instances with up to
some 3,000 vertices at a price of more run time (order of minutes to hours). For larger
instances, both inexact solvers (CLKH and GA-EAX) are reliable alternatives to find
optimal or sub-optimal solutions with some advantages for GA-EAX. These heuristic
solvers also perform very well on smaller instances.

To deepen our computational study, we call upon to the performance profile, an
analytic tool for evaluating the performances of multiple compared optimization
algorithms (Dolan & Moré, 2002). The performance profile uses a cumulative distribution
function for a performance metric, such as run time, objective function values, number of
iterations, and so on. Precisely, let S be a set of algorithms and P be a set of problem

instances. For a given performance metric fs,p (that is the performance of algorithm s ∈ S

solving instance p ∈ P), the performance ratio is defined by rs;p ¼ fs;p
minffa;p : a 2 Sg. Then,

for each algorithm s ∈ S, the performance function is given by qsðsÞ ¼
jfp 2 P : rs;p � sgj

jPj .

Thus, the value of ρs(1) corresponds to the fraction of problem instances that algorithm s
can achieve many times the performance of the best algorithm (meaning the
probability that the algorithm s will win over the rest of the compared algorithms).
For a large value τ, the value of ρs(τ) indicates a high robustness of algorithm s.

To make a fair and meaningful comparison with this tool, we focus on the two inexact
solvers CLKH and GA-EAX and run each solver 10 times on each of the 73 instances.
We use the software ‘perprof-py’ (Siqueira, da Silva & Santos, 2016) to draw the
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Table 3 Computational results of the TSP solvers Concorde, CLKH and GA-EAX on large GTSP instances (Set 3).

CLKH GA-EAX

Instance |V| m Optimum Concorde’s run-time Gapbest Gapavg t(s) Gapbest Gapavg t(s)

10C1k.0 1,000 10 12,139,627 23.5 =(9) 0.0016 194.5 =(10) 0.0000 16.1

200C1k.0 1,000 200 11,929,315 17.4 =(10) 0.0000 64.7 =(10) 0.0000 15.6

200E1k.0 1,000 200 24,468,822 66.2 =(8) 0.0008 27.7 =(10) 0.0000 15.1

49usa1097 1,097 49 77,583,052 51.1 =(7) 0.0069 128.6 =(10) 0.0000 23.7

235pcb1173 1,173 235 59,796 65.5 =(9) 0.0151 36.4 =(10) 0.0000 16.4

259d1291 1,291 259 55,962 8,402.5 0.0286 0.0484 51.7 =(7) 0.0064 17.3

261rl1304 1,304 261 261,132 19.2 =(10) 0.0000 18.7 =(10) 0.0000 7.5

265rl1323 1,323 265 280,004 3,361.3 0.0114 0.0381 18.9 =(8) 0.0019 10.2

276nrw1379 1,379 276 60,473 234.4 =(3) 0.0223 30.8 =(10) 0.0000 30.7

280fl1400 1,400 280 20,229 6,108.5 =(3) 0.0900 504.7 =(8) 0.0178 21.5

287u1432 1,432 287 162,151 23,029.9 =(8) 0.0136 111.6 =(10) 0.0000 26.8

316fl1577 1,577 316 23,023 1,179.6 =(10) 0.0000 183.0 =(2) 0.2332 17.2

331d1655 1,655 331 65,871 142.9 =(3) 0.0797 51.8 =(7) 0.0029 24.6

350vm1748 1,748 350 348,244 230.9 =(2) 0.0371 88.2 =(10) 0.0000 25.7

364u1817 1,817 364 61,879 5,675.7 =(1) 0.0739 77.7 =(6) 0.0050 31.8

378rl1889 1,889 378 323,040 461.5 =(1) 0.1197 29.0 =(10) 0.0000 18.1

421d2103 2,103 421 (91,637) – =(2) 0.0598 112.7 =(10) 0.0000 32.8

431u2152 2,152 431 (69,876) – =(2) 0.0215 98.5 =(10) 0.0000 37.0

464u2319 2,319 464 (246,707) – =(10) 0.0000 703.2 =(3) 0.0167 84.9

479pr2392 2,392 479 397,707 1,267.5 =(4) 0.0223 102.1 =(10) 0.0000 38.0

608pcb3038 3,038 608 146,351 45,008.4 0.0014 0.0256 115.5 =(4) 0.0018 83.2

31C3k.0 3,162 31 20,058,457 912.6 0.0144 0.0637 249.2 =(5) 0.0211 111.6

633C3k.0 3,162 633 20,158,425 1,650.4 0.0207 0.0869 163.5 =(8) 0.0011 98.0

633E3k.0 3,162 633 42,697,510 5,239.0 0.0036 0.0226 105.7 =(3) 0.0052 115.0

759fl3795 3,795 759 (29,582) – =(9) 0.0068 464.0 0.2637 0.3729 53.9

893fnl4461 4,461 893 (193,834) – =(2) 0.0163 139.0 =(8) 0.0004 236.6

1183rl5915 5,915 1,183 (599,096) – 0.0212 0.1666 204.3 =(9) 0.0006 146.6

1187rl5934 5,934 1,187 (588,074) – 0.0126 0.1256 251.6 =(5) 0.0033 156.1

1480pla7397 7,397 1,480 (23,926,551) – 0.0035 0.0213 1104.7 =(2) 0.0078 388.2

100C10k.0 10,000 100 (36,352,580) – =(1) 0.6815 1877.4 0.0525 0.4872 2318.7

2000C10k.0 10,000 2,000 (34,574,383) – 0.0369 0.2590 730.6 =(1) 0.0139 992.9

2000E10k.0 10,000 2,000 (75,506,665) – 0.0112 0.0281 635.8 =(1) 0.0013 1,320.0

2370rl11849 11,849 2,370 (977,472) – 0.0081 0.0477 757.1 =(1) 0.0028 1,051.9

2702usa13509 13,509 2,702 (20,836,160) – 0.0118 0.0185 1028.6 =(1) 0.0012 2,154.0

2811brd14051 14,051 2,811 (496,827) – 0.0125 0.0213 944.7 =(1) 0.0024 2,454.9

3023d15112 15,112 3,023 (1,658,091) – 0.0220 0.0296 1193.3 =(1) 0.0019 3,864.0

3703d18512 18,512 3,703 (683,839) – 0.0209 0.0328 1561.9 =(1) 0.0019 4,306.8

4996sw24978 24,978 4,996 (893,042) – 0.0237 0.0369 2076.3 =(1) 0.0008 5,706.2

Avg. 0.0616 427.3 0.0319 686.0
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performance profiles (see Fig. 3) where the quality of the solution is measured by the
average objective value and average run time. These performance profiles tend to show an
advantage of GA-EAX over CLKH for solving these clustered instances with up to 24,978
vertices.

TSP solvers v.s. state-of-the-art CTSP heuristics
In “Computational Results and Comparison of Popular TSP Solvers”, we observed that the
exact Concord TSP solver and the inexact CLKH and GA-EAX TSP solvers are powerful
tools for solving clustered TSP instances converted from the CTSP. We now answer
the following question: Do these general TSP solvers compete well with state-of-the-art
CTSP heuristics specially designed for the problem?

For this purpose, we adopt GA-EAX as our representative TSP solver and compare it
with three best performing CTSP heuristics in the literature: VNRDGILS (Mestria,
2018), HHGILS (Mestria, 2016), and GPR1R2 (Mestria, Ochi & de Lima Martins,
2013). Indeed, according to the experimental studies reported in Mestria, Ochi & de Lima
Martins (2013) andMestria (2016, 2018), these three heuristics perform the best among the
recent CTSP heuristics available in the literature (see Table 4). This study is based on
the 35 medium and large instances of Sets 1 and 2 (no results for the three CTSP heuristics
are available on the large GTSP instances of Set 3).

Table 5 provides the comparative results of the GA-EAX TSP solver along with the
results reported by the three CTSP algorithms on the medium and large instances. For each
instance and algorithm, columns ‘fbest’, ‘favg’ and ‘t(s)’ show respectively the best objective
value over 10 independent runs, the average objective value and the average run time

Figure 3 Performance profiles comparing solution quality and computing time. Full-size DOI: 10.7717/peerj-cs.972/fig-3
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in seconds. Furthermore, the row ‘Avg.’ shows the average performances for each
compared algorithm, including the average percentage gap of the best/average result to the
optimal result obtained with the Concorde TSP solver and the average run time in seconds.
To determine whether there exists a statistically significant difference in performance
between the GA-EAX TSP solver and each CTSP algorithm in terms of best and average
results, the p-values from the Wilcoxon signed-rank tests are given in the last row of
Table 5. Entries with “-” mean that the corresponding results are not available in the
literature. The best objective values obtained by the compared algorithms are indicated in
bold if they attain the optimal solution. Notice that the results of the CTSP algorithms
(VNRDGILS, HHGILS and GPR1R2) correspond to 10 executions per instance on a
computer with 2.83 GHz Intel Core 2 CPU and 8 GB RAM and the time limit per run was
set to 720 s for medium instances and 1,080 s for large instances.

Table 6 summarizes the statistical results for each compared algorithm on the two sets
of medium and large instances. The first row indicates the number of optimal solutions
found by each approach. The average percentage gap of the best/average result from
the optimal result is provided in row ‘Average Gapbest/Gapavg’. Finally, row ‘Average time
(s)’ provides the average run time in seconds for each algorithm.

From Tables 5 and 6, we observe that the GA-EAX solver significantly outperforms
the three CTSP algorithms on the medium and large instances in terms of both the best
and the average results. For the large instance set, the improvement gaps between the
results of GA-EAX and those of the CTSP methods are very high, ranging from 10.39% to
15.49%. Furthermore, in terms of the average run time, GA-EAX is about 30 to 130 times
faster than the CTSP algorithms. The above results thus indicate that the GA-EAX TSP
solver has a strong dominance over current best performing CTSP approaches in the
literature. In addition, the small p-values (<0.05) from the Wilcoxon signed-rank tests
further confirm the statistically significant difference of the compared results.

To have a finer analysis of the compared algorithms, Fig. 4 provides boxplot graphs to
compare the distribution and range of the average results for each compared algorithm,
except GPR1R2 for the medium instances since its results on several medium instances are
not available. In this figure, the average objective value favg of a given algorithm is

Table 4 List of the reference algorithms for the CTSP.

Algorithm name Reference Search strategy

VNRDGILS Mestria (2018) A hybrid heuristic based on GRASP, ILS and VNRD

HHGILS Mestria (2016) A hybrid heuristic based on GRASP, ILS and VND

GPR1R2 Mestria, Ochi & de Lima Martins (2013) A GRASP with Path Relinking PR1 and PR2

GPR1 Mestria, Ochi & de Lima Martins (2013) A GRASP with Path Relinking PR1

GPR2 Mestria, Ochi & de Lima Martins (2013) A GRASP with Path Relinking PR2

GPR3 Mestria, Ochi & de Lima Martins (2013) A GRASP with Path Relinking PR3

GPR4 Mestria, Ochi & de Lima Martins (2013) A GRASP with Path Relinking PR4

GRASP Mestria, Ochi & de Lima Martins (2013) A traditional GRASP heuristic

TLGA Ding, Cheng & He (2007) A two-level genetic algorithm
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normalized according to the relation y = 100 � (favg − fopt)/fopt, where fopt is the optimal
value. The plots in Fig. 4 show clear differences in the distributions of the average results
between GA-EAX and each compared CTSP heuristic, which further confirms the
efficiency of the GA-EAX TSP solver with respect to these dedicated CTSP heuristics.

Table 5 Comparative results between the GA-EAX TSP solver and three CTSP algorithms on medium and large CTSP instances. The best
objective values obtained by the compared algorithms are indicated in bold if they attain the optimal solution.

GA-EAX VNRDGILS HHGILS GPR1R2

Instance |V| m fbest favg t(s) fbest favg t(s) fbest favg t(s) fbest favg t(s)

i-50-gil262 262 50 135,431 135,431.0 1.7 135,483 135,510.2 720.0 135,510 135,578 720.0 – – –

10-lin318 318 10 529,584 529,584.0 1.8 530,604 530,871.4 720.0 530,283 530,817.9 720.0 530,443 532,697.9 720.0

10-pcb442 442 10 537,419 537,419.0 6.3 538,309 538,903.4 720.0 538,958 539,988.3 720.0 540,043 543,104.2 720.0

C1k.0 1,000 10 132,521,027 132,521,027.0 16.3 133,260,549 133,490,775.9 720.0 133,287,594 133,776,274.1 720.0 133,490,776 133,708,187.6 720.0

C1k.1 1,000 10 129,128,125 129,128,125.0 14.3 129,877,874 130,035,540.2 720.0 129,825,403 130,206,778.3 720.0 130,193,590 130,391,693.5 720.0

C1k.2 1,000 10 142,784,000 142,784,188.4 17.2 143,321,630 143,481,489.6 720.0 143,278,093 143,525,149.6 720.0 – – –

300-6 300 6 8,934 8,934.0 3.5 8,935 8,941.1 720.0 8,934 8,942.9 720.0 8959 8,985.3 720.0

400-6 400 6 9,045 9,045.0 4.4 9,053 9,062.3 720.0 9,051 9,063.2 720.0 – – –

700-20 700 20 41,425 41,425.0 10.2 41,456 41,489.7 720.0 41,452 41,485.6 720.0 41,540 41,573.3 720.0

200-4-h 200 4 62,777 62,777.0 0.9 62,867 63,058.3 720.0 62,804 63,058.3 720.0 62,994 63,710.2 720.0

200-4-x1 200 4 60,574 60,574.0 0.9 60,637 60,796.2 720.0 60,931 61,378.5 720.0 – – –

600-8-z 600 8 128,891 128,891.0 5.3 129,468 129,862.7 720.0 129,416 129,928.6 720.0 130,459 131,235.1 720.0

600-8-x2 600 8 128,891 128,891.0 5.3 129,246 129,533.9 720.0 129,246 129,691.5 720.0 – – –

300-5-108 300 5 67,760 67,760.0 2.0 67,766 67,868.7 720.0 67,814 67,930.5 720.0 – – –

300-20-111 300 20 309,739 309,739.0 2.0 310,146 310,270.9 720.0 310,209 310,427 720.0 309,928 310,551.9 720.0

500-15-306 500 15 194,818 194,818.0 5.2 194,946 195,201.5 720.0 195,202 195,438.1 720.0 – – –

500-25-308 500 25 365,447 365,447.0 5.4 365,717 365,937.8 720.0 365,828 366,085 720.0 366,232 366,785.7 720.0

25-eil101 101 25 23,671 23,671.0 0.8 23,673 23,685.2 720.0 23,678 23,690 720.0 23,676 23,711.3 720.0

42-a280 280 42 129,645 129,645.0 1.7 129,729 129,755.2 720.0 129,716 129,833.2 720.0 – – –

144-rat783 783 144 914,228 914,228.0 9.4 915,088 915,179.8 720.0 915,180 915,363.2 720.0 915,547 915,913.7 720.0

49-pcb1173 1,173 49 61,600 61,620.1 35.0 65,750 66,487.7 1,080.0 67,043 68,260.7 1,080.0 70,651 73,311.9 1,080.0

100-pcb1173 1,173 100 63,382 63,382.8 32.5 68,708 69,383.2 1,080.0 68,786 70,640.8 1,080.0 72,512 74,871.7 1,080.0

144-pcb1173 1,173 144 62,142 62,142.0 18.6 68,414 68,941.4 1,080.0 66,830 69,084.3 1,080.0 72,889 74,621.6 1,080.0

10-nrw1379 1,379 10 58,783 58,787.1 26.8 63,951 64,895.9 1,080.0 63,620 64,643.9 1,080.0 66,747 68,955.8 1,080.0

12-nrw1379 1,379 12 59,129 59,129.4 27.6 62,893 63,532.3 1,080.0 63,558 64,741.6 1,080.0 66,444 69,141.2 1,080.0

1500-10-503 1,500 10 11,116 11,116.0 28.4 11,969 12,103.0 1,080.0 11,986 12,109.5 1,080.0 12,278 12,531.4 1,080.0

1500-20-504 1,500 20 15,698 15,700.7 34.5 16,678 16,867.4 1,080.0 17,107 17,315.7 1,080.0 17,252 17,589.1 1,080.0

1500-50-505 1,500 50 22,900 22,901.0 35.1 24,631 24,803.6 1,080.0 25,264 25,558.9 1,080.0 25,124 25,761.5 1,080.0

1500-100-506 1,500 100 29,799 29,799.6 39.5 32,474 32,616.8 1,080.0 32,260 33,760.6 1,080.0 33,110 33,692.7 1,080.0

1500-150-507 1,500 150 34,068 34,068.0 32.3 37,357 38,251.1 1,080.0 37,658 38,433.1 1,080.0 38,767 39,478.0 1,080.0

2000-10-a 2,000 10 105,447 105,483.0 45.3 115,779 116,897.3 1,080.0 116,254 116,881.4 1,080.0 116,473 118,297.5 1,080.0

2000-10-h 2,000 10 33,708 33,708.0 35.6 36,806 38,351.8 1,080.0 36,447 37,305.1 1,080.0 37,529 38,861.8 1,080.0

2000-10-z 2,000 10 33,509 33,509.1 37.3 36,815 38,035.7 1,080.0 37,059 37,443.7 1,080.0 37,440 38,765.9 1,080.0

2000-10-x1 2,000 10 33,792 33,796.6 35.6 36,783 37,488.6 1,080.0 36,752 37,704.0 1,080.0 37,262 39,253.1 1,080.0

2000-10-x2 2,000 10 33,509 33,509.0 39.6 37,132 38,240.6 1,080.0 36,660 37,117.1 1,080.0 37,704 38,699.5 1,080.0

Avg. 0.00 0.01 17.7 3.79 4.62 874.3 3.94 4.96 874.3 6.98 8.94 920.0

p-value 2.477e−7 2.477e−7 3.651e−7 2.477e−7
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Finally, considering the results of the Concorde solver and the CLKH solver reported in
“Computational Results and Comparison of Popular TSP Solvers”, we conclude that these
TSP solvers also dominate the current best CTSP algorithms in the literature.

DISCUSSION
We now provide additional explanations regarding the behaviors of the three TSP solvers.
First, given the NP-hard nature of the CTSP and the exponential time complexity of the
exact Concorde solver, it is expected that the exact Concorde solver reaches its limit
when the instance to be solved reaches some size (about 3,000 vertices for the studies
instances). Indeed, when the search space becomes extremely large, the exact Branch-and-

Figure 4 Boxplots of the normalized average objective values for the (A) medium instance set and (B) large instance set.
Full-size DOI: 10.7717/peerj-cs.972/fig-4

Table 6 Statistical results for the GA-EAX TSP solver and three state-of-the-art CTSP algorithms on
Set 1 (medium instances) and Set 2 (large instances). Dominating values are indicated in bold.

GA-EAX VNRDGILS HHGILS GPR1R2

Set 1 Optimal solutions 20/20 0/20 1/20 0/20

Average Gapbest/Gapavg (%) 0.00/0.00 0.18/0.30 0.21/0.40 0.39/0.73

Average time (s) 5.7 720.0 720.0 720.0

Set 2 Optimal solutions 14/15 0/15 0/15 0/15

Average Gapbest/Gapavg (%) 0.00/0.01 8.61/10.39 8.92/11.04 12.25/15.51

Average time (s) 33.6 1,080.0 1,080.0 1,080.0
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Bound search even equipped with the best problem specific cutting plane methods cannot
effectively enumerate all candidate solutions. In fact, such a behavior has already been
observed in previous studies on Concorde applied to classical TSP instances (Applegate
et al., 2006; Hoos & Stützle, 2014). Second, regarding the two heuristic solvers CLKH and
GA-EAX, the CLKH solver exhibits a worse performance compared to GA-EAX. As
discussed in “Lin-Kernighan Based Heuristic Solver”, the underlying LK heuristic stumbles
on clustered instances because relatively large intercluster edges serve as bait edges. With
the presence of these bait edges, the LK heuristic may be tricked into long and often
fruitless search trajectories. Third, the GA-EAX solver performs its search mainly with its
edge assembly crossover, which inherits the edges of the parents to construct disjoint
subtours and then connect the subtours. This crossover proves to be meaningful and
helps the algorithm avoid local optimal traps. Once again, the excellent behavior of
GA-EAX on the CTSP instances is consistent with its performance on conventional TSP
instances as shown in Nagata & Kobayashi (2013).

CONCLUSION
This work presents the first extensive computational study on the transformation
approach of solving the Clustered Traveling Salesman Problem with general TSP solvers.
Based on the results from the exact Concorde solver and the heuristic CLKH and GA-EAX
solvers on 20 medium (101 ≤ |V| ≤ 1,000) and 15 large (1,173 ≤ |V| ≤ 2,000) CTSP
benchmark instances and 38 large GTSP benchmark instances (with up to 24,978 vertices)
available in the literature, we can draw the following conclusions.

� The exact Concorde solver can optimally solve all medium and large CTSP instances. It
also solves exactly large GTSP instances with up to 3,162 vertices in a reasonable time,
but fails to solve larger GTSP instances in 24 h. Its solution time is not completely
consistent with the size of the problem instances.

� The heuristic CLKH and GA-EAX solvers perform very well both in terms of solution
quality and computational efficiency. Both solvers have a good scalability, making them
particularly suitable for solving very large instances with at least several thousands of
vertices. For the tested instances with up to some 24,978 vertices, GA-EAX exhibits a
better performance than CLKH.

� The general TSP solvers significantly dominate, both in terms of solution quality and
computational efficiency, the current best performing CTSP heuristics specially
designed for the problem. In particular, the TSP heuristics are several orders of faster
than the state-of-the-art CTSP heuristics to find much better results.

This study indicates that the existing CTSP benchmark instances in the literature are
not challenging for modern TSP solvers even if they remain difficult for the existing CTSP
algorithms.

Finally, given the findings of this study, it would be interesting to investigate the
problem transformation approach for solving other TSP variants that can be converted to
the TSP or to a TSP variant for which effective algorithms are available.
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