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ABSTRACT
A morphological analyzer plays an essential role in identifying functional suffixes of
Korean words. The analyzer input and output differ from each other in their length
and strings, which can be dealt with by an encoder-decoder architecture. We adopt a
Transformer architecture, which is an encoder-decoder architecture with self-attention
rather than a recurrent connection, to implement a Korean morphological analyzer.
Bidirectional Encoder Representations from Transformers (BERT) is one of the most
popular pretrained representation models; it can present an encoded sequence of input
words, considering contextual information.We initialize both the Transformer encoder
and decoder with two types of Korean BERT, one of which is pretrained with a raw
corpus, and the other is pretrained with a morphologically analyzed dataset. Therefore,
implementing a Korean morphological analyzer based on Transformer is a fine-tuning
process with a relatively small corpus. A series of experiments proved that parameter
initialization using pretrained models can alleviate the chronic problem of a lack of
training data and reduce the time required for training. In addition, we can determine
the number of layers required for the encoder and decoder to optimize the performance
of a Korean morphological analyzer.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech
Keywords Korean morphological analyzer, Korean BERT, Transformer, End-to-end approach,
Parameter initialization, Pre-trained model

INTRODUCTION
Korean is an agglutinative language in which words consist of several morphemes, and
some verb forms changewhen conjugatedwith functional suffixes. AKoreanmorphological
analyzer (KMA) is designed to analyze a word and identify functional morphemes, which
can specify the syntactic role of words in a sentence. Although end-to-end approaches are
widely used in deep-learning models, some applications such as syntactic parsers require a
KMA as a preprocessor to separate functional morphemes before parsing.

In many cases, the productive inflectional system in Korean causes deletion and
contraction between a stem and the following morphemes when creating a Korean word.
Therefore, a KMA should identify the base form of a morpheme by recovering deleted
morphemes and decomposing contracted morphemes (Han & Palmer, 2004). Therefore,
a KMA output sequence differs from a raw input sequence in both length and surface
form. Figure 1 shows an example of KMA input and output. INPUT is a sequence of
words separated by white spaces, and OUTPUT is a morphologically analyzed result. The
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Figure 1 The output of a morphological analyzer for the example input sentence ‘‘I lost a black galaxy
note’’. (The Yale Romanized system is used to transcribe Korean sentences. ‘VA’ is an adjective, and
‘VV’ is a verb. ‘ETM’ is an adnominal ending that attaches to the end of a verb or an adjective. ‘NNP’ is a
proper noun, and ‘JKO’ is a particle that attaches to the end of nouns indicating an objective case. ‘EP’ is a
verbal ending in the past tense, and ‘EF’ is a verbal ending to make a sentence declarative.).

Full-size DOI: 10.7717/peerjcs.968/fig-1

output is a sequence of a single morpheme and the part-of-speech (POS) that follows the
morpheme. The symbol ‘‘<SP >’’ indicates a word boundary. In this example, the input
consists of three words, while the output consists of three words or seven morphemes,
where some morphemes indicate grammatical relationships in a sentence.

Because the input and output lengths are different, Korean morphological analysis
can be defined as an encoder–decoder problem. A raw input sequence is encoded and
then decoded into a morphologically analyzed sequence. An encoder–decoder problem
can be easily implemented by adopting two recurrent neural networks. Recent research
in deep learning has proposed a new architecture, Transformer (Vaswani et al., 2017),
for encoder–decoder problems that can increase the parallelism of learning processes by
eliminating recurrent connections. Transformer calculates self-attention scores that can
cross-reference between every input. Therefore, we adopt the Transformer architecture to
implement a KMA in this work. To train a KMA based on Transformer from scratch, we
need a considerable parallel corpus that includes raw input sentences and their analyzed
results.

Since the introduction of pretrained language representation models such as
Bidirectional Encoder Representations from Transformers(BERT) (Devlin et al., 2019),
most natural language processing (NLP) applications have been developed based on
pretrained models. Pretrained models provide context-dependent embeddings of an input
sequence and reduce both the chronic problem of a lack of training data and the time
required for training.

In this work, we utilize two types of BERTmodels to initialize Transformer, the backbone
of a KMA. One is pretrained with Korean raw sentences and the other withmorphologically
analyzed sentences consisting of morphemes and POS tags. For the sake of clarity, we name
the former ‘‘word-based BERT’’ (wBERT) and the latter ‘‘morpheme-based BERT’’
(mBERT); mBERT can encode a morphologically analyzed sequence into embedding
vectors in the same way wBERT can encode a raw sentence. We initialized the Transformer
encoder with wBERT and the Transformer decoder with mBERT.

While it is reasonable to initialize a Transformer encoder with BERT, it may seem
unusual to initialize a decoder with BERT. We do not have decoder-based models like
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GPT (Radford et al., 2018) pretrained with Korean morphologically analyzed data; instead,
only mBERT is pretrained with Korean morphologically analyzed data. Recently, Chi et
al. (2020) demonstrated that initializing an encoder and decoder with XLM (Lample &
Conneau, 2019) produced better results than initializing them with random values. XLM
is a pretrained model for cross-lingual tasks and is implemented based on a Transformer
encoder.

Therefore, both an encoder and decoder of a KMA can be expected to benefit from
initializing parameters with pretrained models. When Transformer is initialized with
pretrainedmodels, implementing a KMA based on the Transformer is a fine-tuning process
that can be done with a relatively small corpus. In addition, employing the fine-tuning
process is easier and faster than building a KMA from scratch.

Pretrained models such as BERT generally have 12–24 layers, which is deeper than
conventional models. A few studies (Clark et al., 2019; Jawahar, Sagot & Seddah, 2019)
have examined which layers of pretrained models are best suited for which tasks. It has
been established that tasks dealing with words and surface forms of a sentence generally
performwell on the lower layers rather than on the top layer. In this work, we also investigate
the number of layers in a Transformer architecture that obtains the best accuracy for Korean
morphological analysis.

Our contributions to achieving high-performance Korean morphological analysis are
the following:
1. Because we leverage pretrained Korean language representation models to initialize

the encoder and decoder of a morphological analyzer, we can train the morphological
analyzer faster and with less training data.

2. We find the most appropriate number of layers in the BERT models for a KMA rather
than using all layers in the models.
In the following section, we first explore related studies, and then we present the

main architecture of a Korean morphological analyzer in ‘A Korean Morphological
Analyzer’. Experimental results are described in ‘Experiments’, followed by the conclusion
in ‘Conclusion’.

SURVEY OF KOREAN MORPHOLOGICAL ANALYZERS
Traditional Koreanmorphological analysis consists of two pipeline stages: the first step is to
separate morphemes from a word and convert them into their stems, and the second step
is to assign them POS tags. Recently, a deep learning-based end-to-end approach has been
applied to many applications, including KMAs. A sequence-to-sequence architecture based
on recurrent neural networks is most often used to implement a KMA in full end-to-end
style. Using this architecture, morphological analyzers can be easily implemented without
complicated feature engineering or manually built lexicons. Conventional morphological
analysis models suffer from the out-of-vocabulary (OOV) problem. To mitigate this
problem, the following models adopted syllable-based sequence-to-sequence architecture.

Li, Lee & Lee (2017) adopted gated recurrent unit networks to implement a KMA with
a syllable-based sequence-to-sequence architecture. In addition, an attention mechanism
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(Luong, Pham &Manning, 2015) has been introduced to calculate the information needed
by a decoder to ensure the model performs well.

Jung, Lee & Hwang (2018) also used syllable-level input and output for a KMA to
alleviate the problem of an unseen word. Even with syllable-level input and output, the
model tends not to generate characters that rarely occur in a training corpus. Therefore,
they supplemented the model with a copy mechanism (Gu et al., 2016) that copies rare
characters to output sequences. A copy mechanism assigns higher probabilities to rare or
OOV words to perform better sequence generation during decoding phases. They reported
that the accuracy of the KMA improved from 95.92% to 97.08% when adopting input
feeding and the copy mechanism.

Choe, hoon Lee & goo Lee (2020) proposed a KMA specially designed to analyze Internet
text data with several spacing errors and OOV inputs. To handle newly coined words,
acronyms, and abbreviations often used in online discourse, they used syllable-based
embeddings, syllable bigrams, and graphemes as input features. The model performed
better when the dataset was collected from the Internet.

Since the introduction of BERT (Devlin et al., 2019) in the field of NLP research, pre-
training-then-fine-tuning approaches have become prevalent in most NLP applications. In
addition, notable improvements have been reported in several studies that have adopted the
pre-training-then-fine-tuning framework. However, due to the distinct characteristics of
Korean complex morphology systems, previous KMA studies have not adopted large-scale
pretrained models such as BERT. Li, Lee & Lee (2017), Jung, Lee & Hwang (2018), and
Choe, hoon Lee & goo Lee (2020) initialized word embeddings with random values and
then trained them through a supervised learning step. Park, Lee & Kim (2019) partially
adopted only character embeddings from BERT because BERT’s sub-word units and
Korean morphemes differ from each other. In this work, we implement a KMA using
Transformer. In addition, our work is the first attempt to initialize both an encoder and
decoder of Transformer with two different types of Korean BERT, which are wBERT and
mBERT.

A KOREAN MORPHOLOGICAL ANALYZER
Figure 2 illustrates the basic architecture of a KMA. Our model is implemented based on
Transformer, which consists of an encoder and a decoder. The encoder, the inputs of which
are raw sentences, is initialized with wBERT and the decoder, the outputs of which are
morphologically analyzed sentences, is initialized with mBERT, as shown in Fig. 3.

A training dataset consists of pairs of raw input sentences with their morphological
analyzed sequences. First, both sequences are tokenized into the multiple sub-word tokens
(WordPiece, Wu et al., 2016) used by wBERT and mBERT. A set of WordPiece that
both wBERT and mBERT use does not include a word-separator token to indicate word
boundaries. However, when the decoder generates a sequence of morpheme tokens, the
word separator token ‘‘<SP >’’ must be specified between morpheme tokens to recover
word-level results, as shown in the output of Fig. 1.

Therefore, we adopt a multi-task learning approach to generate morphological analysis
results while also inserting word-separators between the results. On the final layer of the
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Figure 2 Transformer: the basis architecture of a Koreanmorphological analyzer.
Full-size DOI: 10.7717/peerjcs.968/fig-2

Figure 3 Initialization of the Koreanmorphological analyzer withwBERT andmBERT.
Full-size DOI: 10.7717/peerjcs.968/fig-3

decoder, there is an additional binary classifier that can discern whether a word-separator
is needed for each output token. The final layer of the decoder produces two types of
output, as shown in Fig. 3, which are combined to generate a final morphological analyzed
sequence.

Given a raw input sentence, the tokenizer ofwBERT splits words into multiple sub-word
tokens. A token input to wBERT consists of a vector summation of a token embedding
(w), a positional embedding (p), and a segment embedding (EA), as shown in Eq. (1).

xi=wi+pi+EA (1)

where i is a token index of a sentence. The input of the encoder is denoted by
X ={x1,x2,..,xn}. The encoder of Transformer encodesX into a sequence of contextualized
embedding vectors Z = {z1,z2,...,zn}. Let us denote a sequence of hidden states in the
decoder by H = {h1,h2,...,hm}. As this work adopts a multi-task approach, the decoder
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simultaneously produces two kinds of output. The output of morpheme tokens is denoted
by Y = {y1,y2,...,ym} and the output of word separators is denoted by S= {s1,s2,...,sm},
where si ∈ {0,1}. At time t of the decoding phase, an output morpheme and a word-
separator are determined by Eqs. (2) and (3), respectively.

PG(yt |X)= P(yt |Z ,Y<t )= softmax(W T
G ht ) (2)

PS(st |X)= P(st |Z ,Y<t )= softmax(W T
S ht ) (3)

where WG and WS are learnable parameters for generating both outputs. The objective
function L of the model is in Eq. (4)

LGen=−
m∑
t=1

logPG(yt |X)

LSep=−
m∑
t=1

(logPS(st |X)− log(1−PS(st |X))) (4)

L= LGen+LSep

Figure 4 provides an example to clearly understand the model. The raw input sentence
has three words, which are split into eight WordPiece tokens (shown in INPUT(X)) for the
input of the encoder. The symbol ‘_’ in INPUT(X) indicates a word boundary. The output
of the KMA is OUTPUT(Y). The symbol ‘_’ in OUTPUT(Y) is not a word boundary but a
morpheme boundary. The KMA has another output, OUTPUT(S), that predicts whether
it is a word boundary or not. A ‘1’ in OUTPUT(S) indicates a word boundary, where we
insert ‘‘<SP >’’ when generating the final result.

EXPERIMENTS
Datasets and experimental setup
We used 90,000 sentences for training, 1,000 sentences for validation, and 10,000 sentences
for evaluation in this work. They were all collected from the POS-tagged corpus published
by the 21st Century Sejong Project (Kim, 2006). The sentence lengths were all less than 100
words and 46 POS labels were used in the Sejong corpus.

Table 1 describes the average number and the maximum number of WordPiece tokens
in the sentences. We adopted both wBERT and mBERT, released by the Electronics and
Telecommunications Research Institute (https://aiopen.etri.re.kr). They were pretrained
with approximately 23 GB of data from newspapers and Wikipedia.
Table 2 shows the hyperparameters of the encoder and decoder, and Table 3 shows the

hyperparameters for training the model.
The following experiments were designed to find the combination of the numbers of

encoder and decoder layers that achieved the best KMA performance. First, we initialized
the Transformer encoder and decoder with wBERT and mBERT, respectively, including
embeddings of the WordPiece tokens. The cross attentions between the Transformer
encoder and decoder were initialized with random values. Because the encoder and
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Figure 4 The input and the output of the Koreanmorphological analyzer for ‘‘I lost a black galaxy
note’’.

Full-size DOI: 10.7717/peerjcs.968/fig-4

Table 1 The statistics of the dataset.

Corpus Number of
sentences

Average number
of tokens

Maximum number
of tokens

Train Input 90,000 34.80 220
Output 39.22 185

Validation Input 1,000 40.61 120
Output 45.16 126

Evaluation Input 10,000 34.06 126
Output 38.55 132

Table 2 The hyperparameters of thewBERT andmBERT.

Hyperparameters Encoder Decoder
(wBERT) (mBERT)

Number of layers 1–12 1–12
Hidden dimension 768 768
Intermediate dimension 3,072 3,072
Number of attention heads 12 12
Activation function Gelu Gelu
Dropout 0.1 0.1
Maximum of input length 512 512
Vocabulary size 30,797 30,349

decoder each had 12 layers, we compared the KMA performances by performing 12 × 12
combinations of encoder and decoder layers. When we adopted fewer than 12 layers of the
encoder and decoder, we used the parameters of the corresponding layers from the bottom
of wBERT and mBERT. The remaining parameters, such as WG and WS in Eqs. (2) and
(3), were randomly initialized.
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Table 3 The hyperparameters for training the model.

Hyperparameters Value

Batch size 64
Optimizer Adam
Learning rate(encoder, decoder) 5e−3, 1e−3
Beta1, Beta2 0.99, 0.998
Maximum number of training steps 100,000

Results and evaluation
The BERT base model has 12 layers. Jawahar, Sagot & Seddah (2019) reported that tasks
dealing with surface information performed best in the third and fourth layers of BERT,
while tasks related to semantic information performed best in the seventh layer and above.

First, we wanted to find the optimal number of encoder and decoder layers to achieve
the best morphological analysis performance while reducing the number of parameters to
be estimated.

In the first experiment, the encoder and decoder were initialized with wBERT and
mBERT, respectively. Then we compared the KMA performance according to the number
of layers. The overall results of 12 × 12 combinations of encoder and decoder layers are
shown in Fig. 5. The accuracy improved as the number of encoder layers increased, while
it remained nearly the same when the number of decoder layers increased. We claim that
KMA achieves the best performance with 12 encoder layers. In the second experiment, we
examined the effect of the number of decoder layers on the KMA performance. We took a
closer look at the results of Fig. 5 to examine the effect of the number of decoder layers on
the KMA performance.

Based on the results of Fig. 5 the first experiment, we set the number of encoder layers
at 12 and initialized it with wBERT. Then, we initialized the decoder with mBERT and
compared the KMA performance while varying the number of decoder layers from 3 to
12. Table 4 shows the KMA accuracy according to the number of decoder layers. To get
definitive results, we obtained the accuracies by averaging three trials for each row in
Table 4. Although there seems to be little difference in KMA accuracy according to the
number of decoder layers, the KMA performed best with four decoder layers. Surprisingly,
the number of parameters in the decoder can be reduced without deteriorating the KMA
performance.

Through the above experiment these two experiments, we arrived at the preliminary
conclusion that KMA performs best when the decoder has only four layers and the encoder
has the full number of layers.

Table 5 summarizes the experimental results to evaluate the impact of initializing
wBERT and mBERT. In all subsequent experiments, the encoder had 12 layers and the
decoder had four. The KMA significantly improved when the encoder was initialized
with wBERT, increasing the F1 score by as much as 2.93. There was a slight performance
improvement when the decoder was initialized withmBERT. The KMA with the four-layer
decoder outperformed the KMA with the full-layer decoder. In addition, we discovered
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Figure 5 Comparison of performances according to the number of encoder and decoder layers. The X-
axis shows the number of encoder layers, and the Y -axis shows the number of decoder layers.

Full-size DOI: 10.7717/peerjcs.968/fig-5

Table 4 Comparison of accuracies according to the number of decoder layers.

Number of layers
in the Decoder

Morpheme-level
F1 score

Separator
accuracy

Sentence-level
accuracy

Number of
parameters

3 97.86 99.64 59.48 184M
4 98.31 99.78 66.45 193M
5 97.99 99.67 60.88 203M
6 98.01 99.70 61.33 212M
7 98.04 99.71 61.53 222M
8 98.07 99.72 62.22 231M
9 98.07 99.72 62.07 241M
10 98.09 99.72 62.46 250M
11 98.14 99.74 63.16 260M
12 98.29 99.73 64.42 269M

that the word separator could easily exceed 99% accuracy by adopting multi-task learning.
We obtained approximately 93.58% accuracy in word separation when adopting an
independent word separator.

Table 6 presents the robustness of the KMA to the lengths of the input sentences. The
KMAwith 12 encoder layers and four decoder layers outperformed the other combinations
of models in evaluating longer inputs.

To show the effect of initializing parameters with pretrained models more clearly, we
performed the following experiments. We measured changes in the accuracy of the models
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Table 5 The comparison of accuracies according to the number of layers and initialization in the en-
coder and the decoder.

Number of layers
& Initialization in the
encoder and decoder

Morpheme-level
F1 score

Separator
accuracy

Sentence-level
accuracy

Encoder-12-random
Decoder-4-random

95.32 98.84 40.49

Encoder-12-wBERT
Decoder-4-random

98.25 99.79 63.91

Encoder-12-wBERT
Decoder-4-mBERT

98.31 99.78 66.45

Encoder-12-wBERT
Decoder-12-mBERT

98.29 99.73 64.42

Table 6 Comparison of accuracies according to the input length and number of layers and initializa-
tion in the encoder and the decoder.

Encoder, Decoder
Initialization

Input sentence length

1–34 tokens 35–100 tokens >100 tokens

Encoder-12-random
Decoder-4-random

95.80 95.45 86.66

Encoder-12-wBERT
Decoder-4-random

98.25 98.26 97.35

Encoder-12-wBERT
Decoder-4-mBERT

98.35 98.31 97.37

Encoder-12-wBERT
Decoder-12-mBERT

98.14 98.11 96.28

Table 7 Comparison of F1 scores according to the size of the training corpus.

Encoder, Decoder
Initialization

Training dataset size

10% 30% 50% 70% 100%

Encoder-12-random
Decoder-4-random

26.57 85.66 92.25 94.38 95.32

Encoder-12-wBERT
Decoder-4-random

93.40 96.91 97.57 97.80 98.25

Encoder-12-wBERT
Decoder-4-mBERT

95.23 97.37 97.87 98.04 98.31

Encoder-12-wBERT
Decoder-12-mBERT

94.84 97.17 97.71 97.86 98.29

as the size of the training dataset decreased from 100% to 10%. The results are shown in
Table 7.

Initializing the model with wBERT and mBERT degraded the accuracy by less than
0.5%, even when only half of the training dataset was used to train the model. For the
model initialized with wBERT alone, the accuracy deteriorated by more than 0.6%, while
the accuracy of the model initialized with random values decreased by more than 3%. The
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Figure 6 Comparison of performances according to the number of encoder and decoder layers. The X-
axis shows the number of encoder layers, and the Y -axis shows the number of decoder layers.

Full-size DOI: 10.7717/peerjcs.968/fig-6

most surprising result was that the model initialized with wBERT and mBERT achieved
95.23% accuracy when trained with only 10% of the training dataset. This result was
approximately the same as when the model was trained with the complete training dataset
after being initialized with random values.

As the size of training dataset becomes smaller, the performance of the model in the
last row decreases faster than the model with 12 and 4 layers in the encoder and decoder
initialized with wBERT and mBERT, respectively. The main reason is that the former has
more parameters than the latter, and models with more parameters require more training
data.

Figure 6 depicts the training loss curves of the models with different initialization values
depending on the number of training steps. The X-axis shows the number of training steps,
while the Y -axis shows the loss values of the training steps. At the beginning of the training
phase, the losses of the model initialized with random values decreased very sharply.
However, as the number of training steps increased, the loss of the model using wBERT
and mBERT as parameter initializers dropped faster than the other models. This shows
that the KMA can be trained robustly and efficiently when its parameters are initialized
with the pretrained models wBERT and mBERT. Parameter initialization with pretrained
models helps successfully build deep learning models.

Table 8 shows a comparison of the F1 scores with those of previous approaches that used
sequence-to-sequence architectures. We reimplemented the models from the previous
approaches and compared their results directly to those of our model in the same
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Table 8 Comparison of results of previous approaches to those of the proposed model.

Models F1 score
(re-implementation)

Sequence-to-sequence (syllable-basis) (Li, Lee & Lee, 2017) 97.15 (96.58)
Sequence-to-sequence (syllable-basis)
+ input feeding + copy mechanism (Jung, Lee & Hwang,
2018)

97.08 (96.67)

Sequence-to-sequence
Syllable + grapheme + bigram embeddings (Choe, hoon
Lee & goo Lee, 2020)

97.93 (96.74)

Our model
Transformer + wBERT +mBERT

98.31

environments. The KMA proposed in this study demonstrates competitive end-to-end
performance without any additional knowledge or mechanisms.

Table 9 in the appendix provides the accuracy comparisons between the multi-task
separator and the independent separator.

CONCLUSION
In this work, we suggested adopting the Transformer architecture to implement a KMA.
Furthermore, we proposed using two Korean BERTs to initialize the parameters of the
Transformer encoder and decoder. We introduced a multi-task learning approach to
specify word boundaries in an output sequence of morpheme tokens. The KMA achieved
its best performance when initialized with two types of Korean BERT. In addition, we
observed that the accuracy of the KMA was highest when it had four layers in the decoder
and 12 layers in the encoder. To conclude this work, we proved that appropriate parameter
initialization can help ensure stable, fast training, and good performance of deep-learning
models.
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APPENDIX

Table 9 Comparison of accuracies according to the word separators. The multi-task separator was the
same as that in Table 5. The independent classifier was a binary classifier built onmBERT networks. The
input of the independent classifier was the sequence of tokens without word boundary information, and
the output was the sequence of prediction of whether each token was a word boundary.

Word separators Accuracy

Multi-task separator 99.78
Independent classifier 93.58
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