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Background: Multivariate time series data generally contains missing values, which can obstacle
subsequent analysis and compromise downstream applications. One challenge in this endeavor is the
missing values brought about by sensor failure and transmission packet loss. Imputation is the usual
remedy in such circumstances. However, in some multivariate time series data, the complex correlation
and temporal dependencies, coupled with the non-stationarity of the data, make imputation difficult.

Mehods: To address this problem, we propose a novel model for multivariate time series imputation
called CGCNImp that considers both correlation and temporal dependency modeling. The correlation
dependency module leverages neural Granger causality and a GCN to capture the correlation
dependencies among different attributes of the time series data, while the temporal dependency module
relies on an attention-driven LSTM and a time lag matrix to learn its dependencies. Missing values and
noise are addressed with total variation reconstruction.

Results: We conduct thorough empirical analyses on two real-world datasets. Imputation results show
that CGCNImp achieves state-of-the-art performance than previous methods.
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ABSTRACT12

Background: Multivariate time series data generally contains missing values, which can obstacle

subsequent analysis and compromise downstream applications. One challenge in this endeavor is the

missing values brought about by sensor failure and transmission packet loss. Imputation is the usual

remedy in such circumstances. However, in some multivariate time series data, the complex correlation

and temporal dependencies, coupled with the non-stationarity of the data, make imputation difficult.
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Mehods: To address this problem, we propose a novel model for multivariate time series imputation

called CGCNImp that considers both correlation and temporal dependency modeling. The correlation

dependency module leverages neural Granger causality and a GCN to capture the correlation dependen-

cies among different attributes of the time series data, while the temporal dependency module relies on

an attention-driven LSTM and a time lag matrix to learn its dependencies. Missing values and noise are

addressed with total variation reconstruction.
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Results: We conduct thorough empirical analyses on two real-world datasets. Imputation results show

that CGCNImp achieves state-of-the-art performance than previous methods.
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INTRODUCTION26

Multivariate time series data is common to many systems and domains– any data that changes value over27

time, any data captured by a sensor or measured at intervals ,for example, traffic monitoring (Wang et al.,28

2017; Zhang et al., 2017), healthcare and patient monitoring (Che et al., 2018; Suo et al., 2019; Liu and29

Hauskrecht, 2016), IIoT systems, financial marketing (Bauer et al., 2016; Batres-Estrada, 2015) and so30

on, from which the data collected is typically extracted in the form of multivariate time series data. What31

is also common is missing values and noise brought about by sensor failure, transmission packet loss,32

human error, and other issues. These missing values will not only destroy the integrity and balance of33

original data distributions, but also affect the subsequent analysis and application of related scenarios34

(Cheema, 2014; Berglund et al., 2015). The processing of missing values in time series has become a very35

important problem. Some researches try to directly model the dataset with missing values (Zheng et al.,36

2017). However, for every dataset, we need to model them separately. In most cases, imputation is the37

standard remedy, but imputing with multivariate time series data is not so easy. The complex correlation38

and temporal dependencies found in some multivariate time series data complicates matters, and the39

non-stationarity of the data only exacerbates the issue, explained as follows:40

Attribute correlation dependencies : In many multivariate time series, it is important to interpret41

the attribute correlation within time series that naturally arises. Typically, this correlation provides42

information about the contemporaneous and lagged relationships within and between individual series43

and how these series interact (Tank et al., 2021, 2018). Fig. 1 (a) illustrates the causal relationship44

graph with the KDD time series which collects air quality and weather data. In this data, there are 12145
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variables in total being 11 different locations, each with 11 different variables. Different attributes for the46

same places are arranged in adjacent positions. A dark blue element (i, j) means that there is a strong47

Granger causal effect from variable i to variable j. It can be seen that the causal effect is strong along the48

diagonal of the matrix, which means that there are strong causal effects among different variables at the49

same location. Several research teams have also demonstrated that many aspects of weather, including50

temperature, precipitation, air pressure, wind speed, and wind direction, have substantial impacts on the51

migration of birds and that those impacts are inherently nonlinear (Clairbaux et al., 2019; Bozó et al.,52

2018). Hence, when attempting to impute missing values, all of these factors must be taken into account53

and the correlations between all these factors needs to be properly modeled to arrive at an accurate result.54

(a) the causal effect matrix of KDD dataset (b) the causal effect of bird migration dataset

Figure 1. The causal effect matrix of KDD dataset and bird migration dataset.The X axis indicates

attributes. The Y axis indicates attributes. The matrix indicates the causal effect between attributes

Temporal auto-correlation dependencies : The evolution of multivariate time series changes55

dynamically over time and is mainly reflected in auto-correlations and trends (Anghinoni et al., 2021).56

For example, in bird migration case, factors affecting these correlations can include inadequate food and57

subsequent starvation, too little energy to travel, bad weather conditions, and others (Visser et al., 2009).58

Researchers have proposed various methods of imputing missing values for time series data. The most59

recent techniques include using the complete data of existing observations to build a model or learning60

the data distribution and then using that distribution to estimate the missing values. The current models61

and algorithms with good prediction performance include imputation methods based on machine learning,62

recurrent neural networks (RNNs) (Che et al., 2018; Suo et al., 2019), and generative adversarial networks63

(GANs) (Goodfellow et al., 2014). Recently, autoencoders have also been used to impute missing values64

in multivariate time series data. These represent the current state-of-the-art. For instance, Fortuin et al.65

(Fortuin et al., 2020) proposed a model based on a deep autoencoder that maps the missing values of66

multivariate time series data into a continuous low-dimensional hidden space. This framework treats67

the low-dimensional representations as a Gaussian process but does not specify the goal of learning to68

generate real samples. Rather, the model simply tries to generate data that is close to a real sample. The69

result is a set of fuzzy samples. GlowImp (Liu et al., 2022) combines Glow-VAEs and GANs into a70

generative model that simultaneously learns to encode, generate and compare dataset samples. Although71

all these systems perform well at their intended task, none consider complex attribute correlations or72

temporal auto-correlation dependencies.73

To fill this gap in the literature, we propose a novel model for multivariate time series imputation74

called CGCNImp that tackles two challenges. CGCNImp leverages neural Granger causality and a75

GCN to capture correlation dependencies between the attributes and an attention-driven LSTM plus a76

time lag matrix to model temporal auto-correlation dependencies and generate the missing values. Last,77

neighbors with similar values are used to smooth the time series and reduce noise. In summary, our main78

contributions include:79

• A novel model for imputing multivariate time series that considers both attribute correlation and80
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temporal auto-correlation dependencies. The combination of neural Granger causality, an attention81

mechanism and time lag decay yields satisfactory performance compared to the current methods.82

• An imputation technique based on Granger causality and a GCN that captures attribute correla-83

tions for higher accuracy. In addition, an attention mechanism and total variation reconstruction84

automatically recovers latent temporal information.85

• We conduct thorough empirical analyses on two real-world datasets. Imputation results show that86

CGCNImp achieves state-of-the-art performance than previous methods.87

Reproducibility: Our open-sourced code and the data used with the supplement document are88

available at https://github.com/zhewen166/CGCNImp.89

RELATED WORK90

In recent years, researchers have proposed large body of literature on the imputation of missing value.91

Due to the limited space, we only describe a few closely related ones.92

Statistical Based Methods93

Statistical (Little and Rubin, 2019) imputation algorithms impute the missing values with mean value94

(Kantardzic, 2011), median value (na Edgar and Caroline, 2004), mode value (Donders et al., 2006) and95

last observed valid value (Amiri and Jensen, 2016), which may impute the missing value by the same96

value (for example median value) if the missing rate is very high.97

Machine Learning Based Methods98

Some researchers impute the missing values with Machine learning algorithm showing that machine99

learning based imputation methods are useful for time series imputation. K-Nearest Neighbor (KNN)100

(Liew et al., 2011) uses pairwise information between the target with missing values and the k nearest101

reference to impute the missing values. Expectation- Maximization (EM) (Nelwamondo et al., 2007) carry102

on a multi-step process which predicts the value of the current state and then two estimators refining the103

predicted values if given state, maximizing a likelihood function. The Matrix Factorization (MF) (C. Li104

et al., 2015) uses the low rank matrix to estimate the missing value. Tensor Singular Value Decomposition105

(t-SVD) (Jingfei He and Geng, 2016) initializes the missing values as zeroes. It carries on the SVD106

decomposition and selects the k most significant columns of V, using a linear combination of these columns107

to estimate the missing values. Multivariate Imputation by Chained Equations (MICE) (Azur et al., 2011;108

Buuren and Groothuis-Oudshoorn, 2011) uses a chained equation to fill the missing values. Autoregressive109

(S. Sridevi et al., 2011) estimates missing values using autoregressive-model. Vector autoregressive110

imputation method (VAR-IM) (Bashir and Wei, 2018) is based on a vector autoregressive (VAR) model111

by combining an expectation and minimization algorithm with the prediction error minimization method.112

Gradient-boosted tree (Friedman, 2020) model is built in a stage-wise fashion as in other boosting methods,113

but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function.114

Deep Learning Based Methods115

In time series imputation, can be classified into RNN-based methods, VAE-based methods and GAN-based116

methods.117

RNN-Based methods. GRU-D (Che et al., 2018) predicts the missing variable by the combination of118

last observed value, the global mean and the time lag. But, it has drawbacks on general datasets (Che119

et al., 2018). M-RNN (Yoon et al., 2017) utilizes bi-directional RNN to impute missing values since120

both previous series and future series of missing values are known. BRITS (Cao et al., 2018) only use121

the RNN structure to model the time series including Unidirectional Uncorrelated Recurrent Imputation,122

Bidirectional Uncorrelated Recurrent Imputation and Correlated Recurrent Imputation algorithm. All these123

models may suffer from bias vanish or exploding problems (Bengio et al., 2015) and error accumulation124

when encountering the continuous missing values.125

VAE-Based methods. VAE (Kingma and Welling, 2014) proposed a novel for efficient approximate126

inference with continuous latent variables. HI-VAE (Nazábal et al., 2020) deals with missing data on127

Heterogeneous and Incomplete Data. But HI-VAE does not suitable for time series data as it do not exploit128

temporal information. GP-VAE (Fortuin et al., 2020) combine variational autoencoders and Gaussian129
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processes for time series data. The VAE maps the missing data from the input space into a latent space130

where the temporal dynamics are modeled by the GP. GlowImp (Liu et al., 2022) combines Glow-VAEs131

and GANs into a generative model that simultaneously learns to encode, generate and compare dataset132

samples. All these methods only optimize the lower bound and do not specify the goal of learning to133

generate real samples.134

GAN-Based methods. Goodfellow et al. (2014) introduced the generative adversarial networks135

(GAN), which trains generative deep models via an adversarial process. GAIN (Yoon et al., 2018) has136

some unique features. The generator receives noise and mask as an input data and the discriminator gets137

some additional information via a hint vector to ensure that the generator generates samples depending138

on the true data distribution. But GAIN is not suitable for time series. GRUI-GAN (Luo et al., 2018)139

proposed a two second stage GAN based. The G tries to generate the realistic time series from the140

random noise vector z. The D tries to distinguish whether the input data is real data or fake data. The141

adversarial structure can improve accuracy. But This two-stage training needs a lot more time to train142

the “best” matched data and seems not stable with a random noise input. E2GAN (Luo et al., 2019) can143

impute the incomplete time series via end-to-end strategy. This work proposes an encoder-decoder GRUI144

based structure as the generator which can improve the accuracy and stable when training the model. the145

discriminator consists a GRUI layer and a fully connected layer working as the encoder. SSGAN (Miao146

et al., 2021) propose a novel semi-supervised generative adversarial network model, with t a generator, a147

discriminator, and a classifier to predict missing values in the partially labeled time series data (Che et al.,148

2018; Cao et al., 2018; Luo et al., 2019).149

METHODOLOGY150

Motivation151

In many multivariate time series, it is important to interpret the attribute correlation within time series that152

naturally arises. Generally, these correlation can be divided into attribute correlation dependencies and153

temporal auto-correlation dependencies. Hence, our work includes three main considerations: these two154

types of dependencies plus end-to-end multi-task modeling to properly capture both.155

Attributes correlation dependency Typically, this correlation provides information about the con-156

temporaneous and lagged relationships within and between individual series and how these series interact157

(Tank et al., 2021, 2018). For example, in bird migration case, the main attribute dependencies are weather158

factors such as temperature, air pressure, and wind conditions. All can have a substantial impact on159

evolution of multivariate time series (Clairbaux et al., 2019; Bozó et al., 2018). These therefore need160

to be considered if one is to accurately impute any missing values. At the same time, there may be161

false correlation between some attributes. Hence, determining reasonable causal effects among different162

attributes is also an important issue. We opted for neural Granger causality (Tank et al., 2021, 2018) to163

model the correlation dependencies between the variables because it has achieved satisfactory performance164

on multivariate time series causal inference and it could be easily integrated into the multivariate time165

series imputation framework.166

Temporal auto-correlation dependency. The evolution of multivariate time series changes dynami-167

cally over time and patterns are quasi-periodical on different scales of years and days (Anghinoni et al.,168

2021). Additionally, sensor malfunctions and failures, transmission errors, and other factors can mean169

the recorded time series carries noise (Han and Wang, 2013). Effectively exploiting auto-correlation170

relationships and eliminating sensor noises is therefore a key consideration.171

Multitask modeling. Classical time series imputation methods adopt a two-stage modeling approach172

(Luo et al., 2018; Yoon et al., 2018; Miao et al., 2021). First, they analyze the correlations between173

multiple sequences and then impute the different sequences separately. However, these two-stage methods174

can not guarantee the global optimum. In this paper, we aim to establish an end-to-end model for Granger175

causal analysis and deep-learning-based time series imputation under the same framework, which will176

hopefully accelerate the imputation process and provide interpretability.177

Preliminary178

Definition 1: Multivariate Time Series. A multivariate time series X = {x1,x2, . . . ,xn} is a sequence179

with data observed on n timestamps T = (t0, t1, . . . , tn−1). The i− th observation xi contains d attributes180

(x1
i ,x

2
i , . . . , xd

i ).181
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Example 1: Multivariate Time Series. We give an example of the multivariate time series X with182

missing values, / indicates the missing value.183

X =




5 / / / 18

12 32 9 / 76

2 / 24 / 47




Definition 2: Binary Mask Matrix. Time series X may contain missing values, and a binary mask184

vector Rn×d is introduced to indicate the missing positions, which is defined as:185

M
j
i =

{
0, if x

j
i is null

1, otherwise

if the j-th attribute of xi is observed, M
j
i is set to 1. Otherwise, M

j
i is set to 0.186

Example 2: Binary Mask Matrix. We can thus compute the binary mask matrix according to the187

multivariate time series X in example 1 which have missing values.188

M =




1 0 0 0 1

1 1 1 0 1

1 0 1 0 1




Definition 3: Time Lag Matrix. In order to record the time lag between current value and last189

observed value, we introduce the time lag matrix δ ∈ Rn∗d . The following formation shows the calculation190

of the δ .191

δ d
t =





st − st−1 +δ d
t−1 if t > 0 and Md

t−1 == 0

st − st−1 if t > 0 and Md
t−1 == 1

0 if t == 0

CGCNImp model192

To impute reasonable values in place of the missing values, as shown in Fig. 2, the model contains193

an attribute correlation dependency module and a temporal auto-correlation dependency module. The194

correlation dependency module leverages neural Granger causality and a GCN to capture the correlation195

dependencies between attributes. The output of this module is passed to the temporal dependency module,196

which combines an attention-driven LSTM with a time lag matrix to generate the missing values. Last, a197

noise reduction and smoothness module uses neighbors with similar values to smooth the time series and198

remove much of the noise, while still preserving occasional rapid variations in the original signal. The199

details of each of these modules and the framework as a whole are discussed in the following sections.200

Attributes causality modeling201

Determining complex correlation dependencies is a key problem in the process of imputing with multivari-202

ate time series data. Here we use the neural Granger causality (Tank et al., 2021, 2018) to model the cor-203

relation dependency between the attributes of the multivariate time series. Let xt ∈ Rd be a d-dimensional204

stationary time series and assume we have observed the process at n timestamps T = (t0, t1, . . . , tn−1). The205

basic idea of neural Granger causality is to gauge the extent to which the past activity of one time series is206

predictive of another time series. Thus, let ht ∈ Rd represents the d-dimensional hidden state at time t, the207

represents the historical context of the time series for predicting a component xti. The hidden state at time208

t +1 is updated recursively209

ht+1 = f (xt ,ht) (1)

where f is some nonlinear function that depends on the particular recurrent architecture. We opted for an210

LSTM to model the recurrent function f due to its effectiveness at modeling complex time dependencies.211

The standard LSTM model takes the form212
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Figure 2. The CGCNImp framework for multivariate time series missing value imputing.

ft = σ(Wf xt +U f ht−1)

it = σ(Wixt +Uiht−1)

ot = σ(Woxt +Uoh(t−1))

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt +Ucht−1)

ht = ot ⊙ tanh(ct)

(2)

where ⊙ denotes component-wise multiplication and it , ft , and ot represent input, forget and output gates,213

respectively. These control how each component of the state cell ct , is updated and then transferred to the214

hidden state used for prediction ht . Wf ,Wi,Wo,Wc,U f ,Ui,Uo,Uc are the parameters that need to learn by215

LSTM. The output for series i is given by a linear decoding of the hidden state at time t :216

xti = gi(x<t)+ eti (3)

where the dependency of gi on the full past sequence x<t is due to recursive updates of the hidden state.217

The LSTM model introduces a second hidden state variable ct , referred to as the cell state, giving the full218

set of hidden parameter as (ct ,ht ).219

In Eq. 2 the set of input maxtrices,220

W = ((Wf )
T ,(Wi)

T ,(Wo)
T ,(Wc)

T )T (4)

controls how the past time series xt , influences the forget gates, input gates, output gates, and cell updates,221

and, consequently, the update of the hidden representation. A group lasso penalty across the columns of222

W can be selected to indicate which Granger series causes series i during estimation. The loss function of223

for modeling the attribute correlation dependencies is as follows:224

LNG = min
W,U,Wo

T

∑
t=2

(xit −gi(x<t))
2 +λ

d

∑
j=1

||W || (5)

where U = (((U f )
T ,(Ui)

T ,(Uo)
T ,(Uc)

T )T ) . The adjacent matrix A, which is produced by neural granger225

causality is stated as:226

Ai j = ||W i
g j
||2F (6)

Attributes Correlation Dependency Modeling227

Convolutional neural networks (CNNs) can derive local correlation features but can only be used in228

Euclidean space. GCNs, however, are semi-supervised models that can handle arbitrary graph-structured229
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data. As such, they have received widespread attention. GCNs can include spectrum and/or spatial230

domain convolutions. In this study, we use spectrum domain convolutions. In the Fourier domain,231

spectral convolutions on graphs are defined as the multiplication of a signal x with a filter with a filter232

gθ : gθ ∗ x = Ugθ (UT x). Here U is the matrix of eigenvectors of the normalized graph Laplacian L =233

IN−D− 1
2 AD− 1

2 =Uλ UT , UT x is the graph Fourier transform of x ,A ∈ Rd∗d is an adjacency matrix and234

λ is diagonal matrix of its eigenvalues. In multivariate time series, x can also be a X ∈ Rn∗d , where d235

refers to the number of features and n refers to the time internals. Given the adjacent matrix A which236

is produced by neural granger causality, GCNs can perform the spectrum convolutional operation with237

consideration capture the correlation characteristics of graph. The GCN model can be expressed as:238

HG = σ(W̃− 1
2 ÃW̃− 1

2 Xθ ) (7)

where Ã = A+ IN is an adjacent matrix with self-connection structures, IN is an identity matrix, W̃ is239

a degree matrix, HG ∈ Rn∗d is the output of GCN which is the input of the temporal auto-correlation240

dependency modeling, θ is the parameter of GCN, and σ (·) is an activation function used for nonlinear241

modeling.242

Temporal Auto-correlation Dependency Modeling243

Obtaining complex temporal auto-correlation dependencies is another key problem with imputation of244

multivariate time series data. In particular, sometimes the input decay may not fully capture the missing245

patterns since not all missingness information can be represented in decayed input values. Due to its246

effectiveness at modeling complex time dependencies, we choose to model the temporal dependencies247

using an LSTM (Graves, 2012). However, to properly learn the characteristics of the original incomplete248

time series dataset, we find that the time lag between two consecutive valid observations is always249

changing due to the nil values. Further, the time lags between observations are very important since they250

follow an unknown non-uniform distribution. These changeable time lags remind us that the influence of251

the past observations should decay with time if a variable has been missing for a while.252

Thus, a time decay vector α is introduced to control the influence of the past observations. Each value253

of α should be greater than 0 and fewer than 1 with the larger the δ , the smaller the decay vector. Hence,254

the time decay vector α is modeled as a combination of δ :255

αt = 1/emax(0,Wα δt+bα ) (8)

where Wα and bα are parameters that need to learn. Once the decay vector has been derived, the hidden256

state in the LSTM ht−1 is updated in an element-wise manner by multiplying the decay vector αt to fit the257

decayed influence of the past observations. Thus, the update functions of the LSTM are as follows:258

h
′

t−1 = αt ⊙ht−1

it = σ(Wi[h
′

t−1;HGt ]+bi)

ft = σ(Wf [h
′

t−1;HGt ]+b f )

st = ft ⊙ st−1 + it ⊙ tanh(Ws[h
′

t−1;HGt ]+bs)

ot = σ(Wo[h
′

t−1;HGt ]+bo)

ht = ot ⊙ tanh(st)

(9)

where Wf ,Wi,Wo,Wc,b f ,bi,bo,bs are the parameters that need to learn by LSTM and HG is the output of259

attributes correlation dependency modeling.260

Attentive neural networks have recently demonstrated success in a wide range of tasks and, for this261

reason, we use one here. Let HL be a matrix consisting of output vectors HL = [h1,h2, ...,hn] ∈ R
T×d that262

the LSTM layer produced, where n is the time series length. The representation βi j of the attention score263

is formed by a weighted sum of these output vectors:264

βi j =
exp(tanh(W [hi|h j]))

∑
T
k=1 exp(tanh(W [hk|h j]))

(10)
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H
′
= AttenL ∗HL (11)

where the AttenL =




β11,β12, . . . ,β1T

β21,β22, . . . ,β2T

· · ·
βn1,βn2, . . . ,βnT


 is the attention score.265

In Eq.11, We reconstruct the missing value by some linear transformation of the hidden state H
′

at266

time t. Hence the reconstruction loss is formulated as:267

Lreg = ∑
x∈D

∥x⊗m− x̂⊗m∥2 (12)

x represents the input multivariate time series data, x̂ represents the imputed multivariate time series268

data and m means the masking matrix. The expression in Eq. 12 is the masked reconstruction loss that269

calculates the squared errors between the original observed data x and the imputed sample. Here, it should270

be emphasized that when calculating the loss, we only calculate the observed data as previously described271

in (Cao et al., 2018; Luo et al., 2018, 2019; Liu et al., 2022).272

Noise Reduction and Smoothness Imputation273

In the past, reconstructions were performed directly, which ignores the noise in the actual sampling process.274

However, in real-world multivariate time series data, when time series are collected the observations may275

be contaminated by various types of error or noise. Hence, these imputation values may be unreliable.276

To ensure the reliability of the imputation results, a total variation reconstruction regularization term is277

applied to the reconstruction results. The method is based on a smoothing function where neighbors278

with similar values are used to smooth the time series. When applied to time series data, abrupt changes279

in trend, spikes, dips and the like can all be fully preserved. This regularization term is formulated as280

follows:281

M

∑
j=1

N−1

∑
i=1

|x̂ j
i+1 − x̂

j
i | (13)

where M is the number of time series, that is, the number of variables, and N is the length of each time282

series. Compared to a two-norm smoothing constraint, this total variation reconstruction term can ensure283

smoothness without losing the dynamic performance of the time series (Boyd and Vandenberghe, 2004) .284

Eq.13 applies this term to the reconstruction results. As a result, noise in the original data is reduced285

and completion accuracy is improved. The reconstruction loss is formulated as:286

LSL =
M

∑
j=1

N

∑
i=1

|x̂ j
i+1 − x̂

j
i | (14)

287

The total object function of our model is:288

Lloss = α ∗LNG +β ∗Lreg +θ ∗LSL (15)

where α ,β ,θ indicate the weight among different part of the total loss. We optimize Eq. 15 using proximal289

gradient descent with line search.290

EXPERIMENT291

To accurately verify and measure the performance of the proposed CGCNImp framework, we compare292

its performance at imputation with multiple time series against several other contemporary methods.293

The selected datasets used in the evaluations were two real-world bird migration datasets focusing on294

migratory patterns in China – Anser albifrons and Anser fabalis – as well as the KDD 2018 CUP Dataset.295
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Dataset Description296

KDD CUP 2018 Dataset297

The KDD dataset comes from the KDD CUP Challenge 2018 1. The dataset which is is a public298

meteorologic dataset is about 15% missing values. It was hourly collected between 2017/1/20 to 2018/1/30299

of Beijing collecting air quality and weather data . Each record contains 12 attributes,for example CO,300

weather, temperature etc. In our experiment, We select 11 common features for our experiments 12301

attributes as the previous method did. We split this dataset for every hour. For every 48 hours , we302

randomly drop p percent of the dataset,and then we impute these time series with different models and303

calculate the imputation accuracy by RMSE and MAE where p ∈ {10,20,30,40,50,60,70,80,90}.304

Bird Migration Dataset in China305

The Birds Migration Dataset collects migration trace data which comes from the project Strategic Priority306

Research Program of Chinese Academy of Sciences which. The dataset was hourly collected between307

2017/12/30 to 2018/5/10 of Anser fabalis and Anser albifrons. Each record contains 13 attributes which308

are longitude, latitude, speed height,speed velocity, heading, temperature etc. The dataset is about 10%309

missing values. We select 10 common features contains longitude, latitude, speed height,speed velocity,310

heading, temperature etc. for our experiments. We split this dataset for 5 minutes time series, and for311

every 5 minutes, we randomly drop p percent of the dataset,and then we impute these time series with312

different models and calculate the imputation accuracy by RMSE and MAE between original values and313

imputed values where p ∈ {10,20,30,40,50,60,70,80,90}.314

Comparison Methods and Evaluation Metrics315

We compare our methods to eight current imputation methods as previously described in (Liu et al., 2022).316

A brief description of each follows.317

• Statistical imputation methods (Rubinsteyn and Feldman, 2016), where we simply impute the318

missing values with zero, mean , median.319

• KNN (Liew et al., 2011), which the missing data is imputed as the weighted average of k neighbors320

by using a k-nearest neighbor algorithm to find neighboring data.321

• MF (C. Li et al., 2015), which fills the missing values through factorizing an incomplete matrix322

into low-rank matrices .323

• SVD (Jingfei He and Geng, 2016), which uses iterative singular value decomposition for matrix324

imputation to impute the missing values.325

• GP-VAE (Fortuin et al., 2020), a method that combines ideas from VAEs and Gaussian processes to326

capture temporal dynamics for time series imputation.327

• BRITS (Cao et al., 2018), one of methods that include Unidirectional Uncorrelated Recurrent328

Imputation,Bidirectional Uncorrelated Recurrent Imputation and Correlated Recurrent Imputation329

algorithm to impute the missing values.330

• GRUI (Luo et al., 2018), which is a two-stage GAN based method that use the generator and331

discriminator to impute missing values.332

• E2E-GAN (Luo et al., 2019). It relies on an end-to-end GAN network that proposes an encoder-333

decoder GRUI based structure and is one of the state-of-the-art methods.334

To evaluate the performance of our methods, we use two metrics to the compare and analyze with the335

results of previous methods.336

(1) RMSE (Root Mean Squared Error) refers to the mean value of the square root of the error between337

the predicted value and the true value. This kind of measurement method is very popular, it can better338

describe the data, and it is a quantitative weighing method. The calculation formula is as follows:339

RMSE =

√
1

n

n

∑
i=1

(x− x̂)2

1KDD CUP. Available on: http://www.kdd.org/kdd2018/, 2018.
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(2) MAE(Mean Absolute Error) is the average of the absolute value of the error between the observed340

value and the real value. it is used to describe the error between the predicted value and the real value.341

The formulation is as follows:342

MAE =
1

n

n

∑
i=1

|x− x̂|

Implementations Details343

All the experimental results are obtained under the same hardware and software environment. The344

hardware is Intel i7 9700k, 48GB memory, NVIDIA GTX 1080 8GB. And the deep learning framework345

is PyTorch1.7 and TensorFlow1.15.0.346

To maintain the same experiment environment as the contemporary method, the dataset was split347

the datasets into two parts which first part with 80% of the records is used for the training set and the348

remaining 20% is used for the test set. All values are normalized within the range of 0 to 1. For training349

process, 10% of the data of the training set was randomly dropped. When testing dataset, we drop the350

data with different drop-rate between 10% and 90%, tested each method at a range of levels of missing351

data between 10% and 90%.352

Performance Analysis353

The results with the KDD, Anser albifrons and Anser fabalis datasets at a missing value ratio of 10%354

appear in Table 1. Here, CGCNImp yields significantly fewer errors than the other methods in terms of355

RMSE and MAE, demonstrating that our method is better than other methods.356

dataset KDD dataset Anser albifrons dataset Anser fabalis dataset

Method RMSE MAE RMSE MAE RMSE MAE

Zero 1.081 1.041 1.088 1.047 1.089 1.054

Mean 1.063 1.035 1.033 1.025 1.043 1.035

Random 1.821 1.637 1.802 1.431 1.721 1.677

Median 1.009 0.994 1.109 1.042 1.001 0.998

KNN 0.803 0.724 0.758 0.714 0.824 0.817

MF 0.784 0.627 0.643 0.626 0.663 0.646

SVD 1.043 0.966 1.253 1.051 1.129 1.011

GP-VAE 0.597 0.486 0.693 0.572 0.534 0.375

BRITS 0.156 0.148 0.159 0.124 0.137 0.078

GRUI 0.149 0.102 0.152 0.113 0.138 0.086

E2E-GAN 0.133 0.074 0.139 0.081 0.116 0.066

Ours 0.114 0.062 0.128 0.072 0.107 0.059

Table 1. The RMSE and MAE results of the CGCNImp and other methods on two datasets(lower is

better).

Generally , the higher the proportion of missing data, the more difficult it is to impute the missing357

value. However, the proportion of missing data is often uncertain. The prediction ability of the model is358

very important with different missing ratio. To assess the frameworks with different levels of missing359

data, we then conduct the same experiment with the BRITS,GRUI, E2EGAN and CGCNImp , varying360

the ratios of missing values from 10% to 90% in steps of 10% as previously described in (Liu et al., 2022).361

The results are shown in Table 2 and Table 3. Again, our methods return the fewest errors.362

Fig. 3 , Fig. 4 and Fig. 5 show the imputation results from the KDD datasets for the Tongzhou ,363

Mentougou and Miyun districts, respectively. The blue dots are the ground truth time series and the red364

curve shows the imputed values. As illustrated, CGCNImp captures the evolution trend and imputes365

the missing values quite well. Further, it capture the potential probability density distribution of the366

multivariate time series and makes full use of the interactive information available.367
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missing rate (%)

10 20 30 40 50 60 70 80 90

BRITS 0.1484 0.1587 0.1722 0.1924 0.2076 0.2391 0.2624 0.3076 0.3591

GRUI 0.1026 0.1397 0.1522 0.1684 0.1876 0.1971 0.2341 0.2863 0.3198

KDD E2EGAN 0.0747 0.1087 0.1292 0.1428 0.1576 0.1796 0.1981 0.2076 0.2590

Ours 0.0624 0.0721 0.0814 0.0959 0.1109 0.1238 0.1397 0.1564 0.1745

BRITS 0.1242 0.1289 0.1331 0.1446 0.1576 0.1891 0.2021 0.2386 0.2896

GRUI 0.1133 0.1197 0.1202 0.1377 0.1478 0.1691 0.1723 0.1976 0.2259

albifrons E2EGAN 0.0815 0.0967 0.1026 0.1124 0.1389 0.1582 0.1648 0.1870 0.1993

Ours 0.0721 0.0785 0.0923 0.0992 0.1152 0.1346 0.1537 0.1714 0.2014

BRITS 0.0782 0.1371 0.1462 0.1639 0.1978 0.2123 0.2694 0.2971 0.3791

GRUI 0.0863 0.1007 0.1252 0.1504 0.1771 0.1925 0.2492 0.3084 0.3271

fabalis E2EGAN 0.0661 0.0787 0.0928 0.1027 0.1285 0.1382 0.1537 0.2004 0.2596

Ours 0.0591 0.0688 0.0815 0.0928 0.1099 0.1257 0.1467 0.1776 0.2189

Table 2. The MAE results of the CGCNImp methods on two datasets with different missing rate (lower

is better).

missing rate (%)

10 20 30 40 50 60 70 80 90

BRITS 0.1561 0.1721 0.1928 0.2120 0.2571 0.2980 0.3284 0.3625 0.3912

KDD GRUI 0.1493 0.1527 0.1702 0.1937 0.2098 0.2541 0.2824 0.3051 0.3361

E2EGAN 0.1336 0.1457 0.1601 0.1778 0.1926 0.2235 0.2574 0.2808 0.3031

Ours 0.1142 0.1279 0.1402 0.1610 0.1803 0.2026 0.2263 0.2509 0.2776

BRITS 0.1596 0.1706 0.1931 0.2126 0.2398 0.2571 0.2964 0.3351 0.3686

albifrons GRUI 0.1394 0.1562 0.1799 0.1971 0.2205 0.2483 0.2670 0.2995 0.3297

E2EGAN 0.1289 0.1358 0.1572 0.1704 0.1976 0.2371 0.2480 0.2746 0.3098

Ours 0.1287 0.1394 0.1589 0.1679 0.1902 0.2163 0.2389 0.2590 0.2921

BRITS 0.1372 0.1451 0.1680 0.1901 0.2273 0.2398 0.2647 0.3004 0.3469

fabalis GRUI 0.1381 0.1483 0.1761 0.2007 0.2492 0.2703 0.2906 0.3209 0.3501

E2EGAN 0.1160 0.1246 0.1508 0.1688 0.1898 0.2103 0.2562 0.2953 0.3391

Ours 0.1076 0.1242 0.1444 0.1588 0.1829 0.2059 0.2323 0.2713 0.3205

Table 3. The RMSE results of the CGCNImp methods on two datasets with different missing rate (lower

is better).

Ablation study368

An ablation study is designed to assess the contribution of the attribute causality discovery and the noise369

reduction and smoothness imputation. This comprised three tests: the first with no ablation; the second370

where we simply removed the noise reduction and smoothness module and set β to 0 in Eq. 15; plus a371

third where we simply removed the noise reduction and smoothness module and set α to 0 in in Eq. 15.372

All tests are conducted with a range of missing value ratios. Table 4 and Table 5 show the results. What373

we found with the Anser bird migration data was that, at a missing rate lower than 40%, removing either374

the noise reduction and smoothness module or the neural Granger causality gives fewer errors. However,375

at higher missing rates, the tests with both modules returned substantially fewer errors. This verifies376

the contribution of both modules to the framework. With the KDD data, CGCNImp in full returned377

substantially fewer errors, again supporting the contribution of both these modules.378

Fig. 1 (a) illustrates the causal relationship graph with the KDD time series. In this data, there are 121379

variables in total being 11 different locations, each with 11 different variables. Different attributes for the380

same places are arranged in adjacent positions. A dark blue element (i, j) means that there is a strong381

Granger causal effect from variable i to variable j. It can be seen that the causal effect is strong along382

the diagonal of the matrix, which means that there are strong causal effects among different variables at383

the same location. Furthermore, there are also strong causal effects between different locations, such as384
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(j) wind direction
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Figure 3. The ground true(blue) and the imputed values(red) in Tongzhou,Beijing of KDD dataset.The

X axis indicates time step. The Y axis indicates imputed values.

variables 66 to 110.385

There are 9 attributes in the bird migration dataset. Fig. 1 (b) shows the Granger causal matrix derived386

from the neural Granger causality analysis. It should be noted that the Granger causality should be a387

one-way relationship, which means that, theoretically, we need to eliminate conflicting edges in the causal388

graph. However, in practice, the causal graph is derived from the neural Granger causality analysis and389

the edge indicate there are strong prediction benefit between variables. Therefore, we kept the conflicting390

edge and placed them into the GCN network for better performance.391

CASE STUDY : Bird migration route analysis392

Fig. 6 , Fig. 7 and Fig. 8 show the imputation results of Anser fabalis birds migration routes. What393

we can see is that the imputed data shows some important wild reserves not seen with the original data.394

According to the list of wetlands of international importance in China, for example, Fig. 6 (b) shows395

the ground truth time series with missing values. This time, CGCNImp imputed the location of Binzhou396

Seashell Island and the Wetland National Nature Reserve not shown in Fig. 6 (a) showing that the bird397

migration trajectory could be recovered by our methods.398

missing rate (%)

10 20 30 40 50 60 70 80 90

θ = 0 0.1468 0.1607 0.1713 0.1890 0.2071 0.2251 0.2449 0.2634 0.2845

KDD α = 0 0.1278 0.1445 0.1607 0.1788 0.1982 0.2173 0.2372 0.2611 0.2826

no ablation 0.1142 0.1279 0.1402 0.1610 0.1803 0.2026 0.2263 0.2509 0.2776

θ = 0 0.1240 0.1329 0.1567 0.1726 0.1918 0.2143 0.2416 0.2694 0.3112

albifrons α = 0 0.1180 0.1301 0.1473 0.1761 0.1873 0.2098 0.2304 0.2639 0.3047

no ablation 0.1287 0.1394 0.1589 0.1679 0.1802 0.2063 0.2289 0.2590 0.2921

θ = 0 0.1156 0.1296 0.1373 0.1582 0.1827 0.2092 0.2437 0.2833 0.3276

fabalis α = 0 0.1169 0.1294 0.1393 0.1617 0.1781 0.2132 0.2359 0.2781 0.3230

no ablation 0.1076 0.1242 0.1444 0.1588 0.1829 0.2059 0.2323 0.2713 0.3205

Table 4. The ablation study RMSE results of the CGCNImp methods on two datasets(lower is better).
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(k) wind speed

Figure 4. The ground true(blue) and the imputed values(red) in Mentougou,Beijing of KDD dataset.The

X axis indicates time step. The Y axis indicates imputed values.

missing rate (%)

10 20 30 40 50 60 70 80 90

θ = 0 0.0801 0.0925 0.1028 0.1155 0.1289 0.1416 0.1552 0.1688 0.1833

KDD α = 0 0.0717 0.0835 0.0957 0.1090 0.1224 0.1356 0.1492 0.1658 0.1806 0.1866

no ablation 0.0624 0.0721 0.0814 0.0959 0.1109 0.1238 0.1397 0.1564 0.1745

θ = 0 0.0659 0.0739 0.0891 0.1012 0.1163 0.1327 0.1528 0.1764 0.2118

albifrons α = 0 0.0638 0.0722 0.0833 0.1001 0.1112 0.1284 0.1457 0.1723 0.2083

no ablation 0.0721 0.0785 0.0923 0.0992 0.1052 0.1246 0.1437 0.1714 0.2014

θ = 0 0.0618 0.0721 0.0799 0.0935 0.1106 0.1298 0.1569 0.1879 0.2265

fabalis α = 0 0.0633 0.0709 0.0795 0.0947 0.1079 0.1315 0.1497 0.1825 0.2218

no ablation 0.0591 0.0688 0.0815 0.0928 0.1069 0.1257 0.1467 0.1776 0.2189

Table 5. The ablation study MAE results of the CGCNImp methods on two datasets(lower is better).

Fig. 7 (b) which is the ground truth time series with missing values, CGCNImp method imputed the399

location of Wanfoshan Nature Reserve which is not noticeable in the original data on its own (Fig. 7 (a)).400

Wanfoshan is now a national forest park, a national nature reserve, and a national geological park which401

is an important location for bird migration.402

Likewise, Fig. 8 (b) shows the imputed location of the Momoge National Nature Reserve (Cui et al.,403

2021) not showed in Fig. 8 (a).404

CONCLUSION405

In this paper, we present a novel imputation model, called CGCNImp , that is specifically designed to406

imputation of multivariate time series data. CGCNImp considers both attribute correlation and temporal407

auto-correlation dependencies. Correlation dependencies are captured through neural Granger causality408

and a GCN, while an attention-driven LSTM plus a time lag matrix captures the temporal dependencies409

and generates the missing values. Last, neighbors with similar values are used to smooth the time series410

and reduce noise. Imputation results show that CGCNImp achieves state-of-the-art performance than411

previous methods. We will explore our model for missing-not-at-random data and we will conduct412
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Figure 5. The ground true(blue) and the imputed values(red) in Miyun,Beijing of KDD dataset.The X

axis indicates time step. The Y axis indicates imputed values.

Figure 6. Anser fabalis dataset imputation.

theoretical analysis of our model for missing values in the further works.413
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